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Abstract. In this paper, Lagrangian-based evolutionary programming, Evolian 
is proposed for the general constrained optimization problem, which incorporates 
the concept of (1) multi-phase optimization process and (2) constraint scaling 
techniques to resolve the ill-conditioning problem. In each phase of Evolian, the 
typical EP is performed using augmented Lagrangian objective function with a 
penalty parameter fixed. If there is no improvement in the best objective function 
in one phase, another phase is performed after scaling the constraints, and updat- 
ing the Lagrange multipliers and penalty parameter. Simulation results indicate 
that Evolian gives outperforming or at least reasonable solutions for multivariable 
heavily constrained optimization problem compared to other several evolutionary 
computation based methods. 

1 Introduct ion  

Recently constraint handling techniques in evolutionary computation methods have 
been developed by some researchers [ 1, 2]. They are classified into several categories 
such as methods based on (1) penalty functions, (2) specialized operators, (3) the as- 
sumption of the superiority of feasible solutions over unfeasible solutions, (4) multi- 
objective optimization techniques, (5) co-evolutionary models, and (6) cultural algo- 
rithms. These methods, of course, have their own merits and drawbacks for nonlinear 
programming problems, however, they are unlikely to provide exact solutions for heav- 
ily constrained optimization problems. 

A hybrid method which consists of evolutionary and deterministic optimization pro- 
cedures was proposed [3]. Although the hybrid EP (Evolutionary Programming) ap- 
plied to a series of nonlinear and quadratic optimization problems has proved useful 
when addressing heavily constrained optimization problems in terms of computational 
efficiency and solution accuracy, the hybrid EP offers an exact solution only when the 
mathematical form of the function to be minimized and its gradient information are 
known. 

To remove such restrictions, Two-Phase EP (TPEP) method based on the hybrid 
method was proposed [4, 5]. TPEP consists of the standard EP as the first phase and 
the elitist EP with deterministic ranking strategy as the second phase. Using Lagrange 
multipliers and putting gradual emphasis on violated constraints in the objective func- 
tion, the trial solutions are driven to the optimal point where all constraints are satisfied. 
In many test cases, TPEP was shown to effectively face with heavily constrained prob- 
lems, except the case where the problem is ill-conditioned, e.g., one constraint function 
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is of different magnitude or changes more rapidly than the other constraint functions or 
the objective function and dominates the optimization process. Moreover, it would be 
necessary to introduce another subsequent phase if the dimension and the difficulty of 
the given problem are not manageable even by the second phase of TPEP. 

In this paper, Evolian (Evolutionary Optimization based on Lagrangian), the ex- 
tended version of TPEP, is proposed, which incorporates multi-phase optimization pro- 
cess and constraint scaling techniques. Scaling of the constraint functions eliminates the 
need to elaborately design the proper penalty parameter selection scheme or the cool- 
ing scheme. In each phase of Evolian, the typical EP is performed using augmented 
Lagrangian objective function with the penalty parameter fixed. If there is no improve- 
ment in the best objective function in one phase, another phase of Evolian is performed 
after scaling the constraints and then updating the Lagrange multipliers and penalty pa- 
rameter. Through repeated execution of this procedure, we can obtain desired solutions. 

2 Constrained Optimization Problem 

The general constrained optimization problem (P) for continuous variables is defined 
as: 

Minimize f ( x )  subject to constraints 

gl(x) ~ 0 , ' ' -  ,gr(X) < 0, hi(x)  : 0 , " "  ,hm(x) : 0 (1) 

where f and the gk' s are functions on R n and the hj '  s are functions on R n for m < n, 
x = [ x l , ' . "  , xn] T C R n, and x E Y C S. The set $ _C R n defines the search space 
and the set 5 ~ C S defines a feasible  part of the search space. Usually, the search space 
S is defined as an n-dimensional rectangle in R n, e.g., li <_ x i  < ri ,  i = 1 , . . .  , n, 

whereas the feasibility set 9 r is defined by the search space S and the constraints ex- 
pressed by (1). 

Recently several methods for handling infeasible solutions for continuous numer- 
ical optimization problems have emerged for the case of U C S. Some of them are 
based on the penalty function, however, they differ in methods how the penalty func- 
tion is designed and applied to infeasible solutions. Yet they commonly use the cost 
function f and the constraint violation measure, i.e., the penalty function ~p(X) for 
the r + m constraints usually defined as ~p (x) = ~ r  m + Ej_-I ths(x)l, or 

• p(X) = ½ k=l(gk  (x)) + ~ = l ( h j ( x ) )  2 , where g + = mmx(0,g~). Then to- 

tal evaluation of an individual x is obtained as ~(x)  = f ( x )  + S~Sp(X), where s is a 
penal ty  parameter.  By associating a penalty for each constraint violation, a constrained 
problem is transformed to an unconstrained problem such that we can deal with candi- 
dates that violate the constraints to generate potential solutions without considering the 
constraints. 

The major issue in using the penalty function approach is assigning proper penalty 
parameters to the constraints: these parameters play the role of scaling penalties if the 
potential solution does not satisfy them. There are several methods depending on the 
choice of the penalty parameter [6]. The penalty tunction theorem gives a guideline to 
these methods on how the penalty parameter should be selected [7, 8]. 
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Penalty Function Theorem: Let {st }~1 be a nonnegative, strictly increasing sequence 
tending to infinity. Define the function 

L(s ,x )  = f ( x )  + ~ 9 x)) 2 + h i (x) )  2 . (2) 

Let the minimizer of L(st, x) be xt. Then any limit point of the sequence {x t}~  is 
an optimal solution to (P). Furthermore, if xt -+ :~ and Y: is a regular point, then 

+X stg+(xt) --+ Ak where 9k ( t )  = max{O, gk(xt)} and sthj(xt) -+ #j, which are 
the Lagrange multipliers associated with gk and hi,  respectively. 

3 Two-Phase  EP 

EP used as the first phase of TPEP is implemented as in [3, 4]. For brevity, the proce- 
dures are omitted here. The fitness score for each solution x i is evaluated in the light of 
an objective function ~1 (x i) defined as: 

8t  + i 2 ~1(xi) = f (  x i ) + ~ "  (9k(X)) + (hj(xi))  2 

Lk=~ j=a 

(3) 

where {st}~ is a sequence of penalty parameter defined in the penalty function theo- 
rem. EP procedure stops if the following condition is satisfied: For the best solution at 
generation t, x 1 [t], and generation t -  1, x 1 I t -  1], if lx ~ [t] - x~ [ t -  t ]] / lx ~ [t]l < p = Pl 
for a sufficiently small positive value Pl and all j for successive Ng = N91 generations, 
then the procedure stops. 

After the first phase is halted, the EP formulation of the augmented Lagrangian 
method as a second phase is applied subsequently to the best evolved solution. In the 
light of the solution accuracy, the success rate and the computation time, the elitist EP 
with deterministic ranking strategy is considered for the EP formulation of the aug- 
mented Lagrangian method. In other words, the second phase initializes a population 
of Np2 trial solutions using the best solution found in the first phase, and employs the 
modified elitist EP, that is, the best solution always survives in the subsequent genera- 
tion through the deterministic ranking strategy. Putting emphasis on violated constraints 
in the objective function whenever the best solution does not fulfill the constraints, the 
trial solutions are driven to the optimal point where all constraints are satisfied. The 
second phase of TPEP is implemented as follows: 

1. A population of Np2 <_ Npl trial solutions is initialized. All vectors are initial- 
ized to be the same as the best evolved solution after the first phase. The values of 
o.~, Vi C {1, .--  , Np2}, are reset to (o'2 + o.E), where o'2 is the strategy parameter 
of the best evolved solution after the first phase and o.~ is a positive constant vec- 
tor, which can be considered as a strategy parameter resetting. Set t +- 0 and the 
Lagrange multipliers are initialized to zero. 
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2. The fitness score for each solution X i is evaluated in the light of an objective func- 
tion • 2(x i) defined as: 

)~ ~+/X i~ ~2(X i) ~l(Xi)--} - k Y k l  " ) + E # j h j ( x i )  (4) 
k=l j = l  

where 9 + (x) = max(ga (x), - ~s-~, )" 

3. From each of the Np2 parents (x i, eri), one offspring is generated by: 

x}[t] = x}[ t -  11 + a~[t]. N~(0, 1) 

a~[t] = a~[t - 1]. exp(T' • Ni(0, 1) + v'. N~(0, 1)). 

4. The fitness score, ~ (xi), is determined. 
5. Deterministic ranking over all the 2Np2 solutions is conducted. 
6. The Np2 best solutions out of all the 2Np2 solutions based on the rank are selected 

to be the parents for the subsequent generation. 
7. The Lagrange multipliers for the objective function ~2 are updated as follows: 

;~k[t] =)~k[t - 1] + • s t g + ( x l [ t  - 1]), k = 1 , . - .  , r  

#j[t] =t~j[t- 1] + esthj(xl[t - 1]), j = 1,---  ,m  (5) 

where e is a small positive constant. In this step, the penalty parameter st can be 
increased in an appropriate manner. 

8. The algorithm proceeds (t +- t + 1) to step 3 unless the best solution does not 
change for a prespecified interval of generations. 

By emphasizing the violated constraints using equation (5), the second phase even- 
tually drives the solution to satisfy the constraints. The objective function of the form 
like equation (4) is called an augmented Lagrangian [7, 8]. In the definition of ~2, 
g+(x) is redefined as max(gk(x),  x~ --~-),  which is appropriate for the augmented La- 
grangian [7, 8]. The stopping criteria for the second phase is the same as that of the first 
phase except for the values of p = P2 _< Pl and Ng = Ng2 >_ Ngl. 

4 Evolian 

Hybrid EP could only face with specific types of inequality constraints such as linear 
inequalities [3], while TPEP could consistently offer an exact feasible solution for other 
types of constraints [4, 5]. Generally speaking, TPEP was shown to be more applicable 
to the problems with various types of constraints. On the other hand, for problems 
having a moderate type of inequality constraints, the hybrid EP could give an accurate 
solution with less computation time and more convergence stability. Thus the proper 
application of either TPEP or hybrid EP, depending on the type of constraints, would 
offer better results with respect to the solution accuracy, convergence stability and the 
computation time. 

While applying TPEP to multivariable heavily constrained optimization problems, 
it was noticed that when the penalty function is used in the objective function, any 
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optimization method would encounter some numerical difficulties if the problem is ill- 
conditioned, e.g., one constraint function is of different magnitude or changes more 
rapidly than the other constraint functions or the objective function and dominates the 
optimization process. If the constraints are normalized so that the magnitude of the 
constraints is unity, the conditioning of the problem is improved considerably. The nor- 
malization is recommended when formulating the problem or during the optimization 
process. It is reported, however, that the rate of change of the constraint is the more 
critical issue than the normalization, and this additional scaling may be done during 
the optimization process itself [ 11]. The most well-known concept is to scale each con- 
straint so that the gradient of the constraint is of the same order of magnitude as the 
gradient of the original objective function. This ensures that the penalized objective 
function is not dominated by a single constraint and the result is less sensitive to the 
initial choice of penalty parameter. The scale factor ci, i = 1, .- .  , r + m, of each 
constraint is usually chosen so that 

~ckll~gk(x)l l ,  k = 1, . - .  , r  
IlVy(x)ll = [~r+~tlVhj(x)l t ,  j = 1 , . . .  ,~r~. (6) 

Another improvement is possible if another subsequent phase is employed after 
the second phase of TPEP depending on the dimension and the difficulty of the given 
problem. In some cases, due to the complexity of the problem, TPEP can not give 
meaningful solution in a reasonable time. Therefore, the application of the multi-phase 
concept is necessary to cope with various types of constrained problems, which can be 
regarded as a continuous extension of TPEP. 

In this section, Evolian (Evolutionary Optimization based on Lagrangian) is pro- 
posed to integrate the concept of constraint scaling and multi-phase optimization. In 
each phase of Evolian, the typical EP is performed using augmented Lagrangian objec- 
tive function with the penalty parameter fixed. If there is no improvement in the best 
objective function in one phase, another phase of Evolian is performed after scaling 
the constraints and then updating the Lagrange multipliers and penalty parameter. The 
procedure for Evolian is as follows: 

1. Init ia l izat ion 
(a) t +--- 0 (t indicates the phase number) 
(b) set Lagrange multipliers: 

Ak[t]+-0, k = l , . . . , r  
#J[t] +-O, j - 1 , - - - , m  

(c) set a penalty parameter: st +- so 
(d) set scaling factors: ci[t] +--1, i = l , . - - , r + m  
(e) scale the objective function f (x)  if necessary 
(f) initialize the population for EP 

2. While (not termination condition) do 
(a) execute EP for the augmented Lagrangian described by (4): 

• 2(x i)=q51(x ~)+ )~kg+(x i ) + ~ # j h j ( x i ) ,  i = l , . . . , ~ p  
k = l  j = l  

where g+(x) = max(gk (x), -s,)'h~" 
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(b) update constraint scaling factors by: 

n f xl ~/. ~ 1 (  ( + S e i ) -  f ( x l ) )  2 
Ck = n - I~(x l  g + x  1 2' k = l , . .  . , r  and 

V ~ i = l ( g k (  +~e i )  k( )) 

n 1 / ~ i = l ( f ( x  + 5ei) -- f ( x l ) )  2 
= ~ - f f " - ~  +(~ei) h j (x l ) )  2~ ,m  cr+j V}_~i=l(hj(x j = 1 , . - .  (7) 

where 5 is a small positive number and ei denotes the ith standard basis vector, 
i.e., e i = [ 0 , - .  • , 1,--- , 0] with 1 in the ith slot. 

(c) update Lagrange multipliers by: 

~k[t  + 1] +-),k[t]  + 1 + s t g  k (x  [t]), k = 1 , . - .  , r  

#j[t + 1] +--#j[t] + sthj(xl[t]), j = 1 , . . .  ,m  

(d) update the penalty parameter: st+l +-- min(Tst, Smax) 
(e) t< t + l  

In the initialization step, all the Lagrange multipliers, the penalty parameter, and the 
scaling factors are set to 0, so, and 1, respectively. In addition, the original objective 
function f ( x )  can be scaled by a constant factor if it is needed to avoid the ill-condition. 
The proper scaling of f ( x )  can reduce the computation time greatly. In the initialization 
of EP, each individual is randomly generated according to the uniform random variable 
ranging over the search space ,5:. The j th  parameter of x i, x} is chosen in [lj, rj]. 

In Step 2, the termination condition can be chosen among some known criteria such 
as (1) maximum generation number or (2) the termination condition used in the second 
phase of TPEP. 

In Step 2(a), the typical EP is not reinitialized, and terminated if there is no ira- 
provement in the best solution. Step 2(a) stops if the following condition is satis- 
fied: For the best solution at generation p, x 1 [p], and generation p - 1, x 1 [p - 1], if 
/ 1 E j ( X 1  ~ / Z  - - 1]) 2 _< p for  a sufficiently small positive real number p for  j[P] x l [ p  

successive N 9 generations, then the procedure stops. All variables x} are forced to be 
i i is greater than rj, xj  in the search space during the evolution process. If the variable xj 

i is less than l j ,  i is set t o  lj. is set to rj, and if xj  xj  
In Step 2(b), it should be noted that the inequality constraints are scaled based on 

the penalized constraints g+ (x) not on the original constraints gk(x). The equation 
(7) is derived from equation (6) following the definition of partial derivative using the 
Euclidean norm for more precise approximation. 

Lagrange multipliers are updated using the constraint functions evaluated at the best 
solution in Step 2(c). 

In Step 2(d), the penalty parameter is increased by a constant rate ~ > 0 according 
to the penalty function theorem until it reaches the prespecified maximum value Smax. 

After increasing the time counter in Step 2(e), Step 2 is repeated until the termina- 
tion condition is met. 
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It should be noted that the scale factors ci 's are multiplied to the constraint functions 
whenever the constraints are evaluated in all steps, and that the scaling of constraints and 
update of Lagrange multipliers are done around the best solution x 1. It should also be 
noted that any kind of evolutionary optimization algorithm such as Genetic Algorithms, 
Evolution Strategies, Genocop series, etc. can be used instead of the typical EP. 

5 Simulation Results 

Five test cases were chosen from Michalewicz (1996). Some experimental results are 
also provided using six different constrained optimization techniques. 
Problem #1: 

4 2__E~35Xi,  subject to: Minimize Ga (x) = 5xl + 5x2 + 5x3 + 5x4 - 5 ~--~=1 xi 

2Xl q- 2x2 q- Xlo ~- Xl l  ~ 10, 2Xl q- 2x3 + Xl0 q- x12 _~ 10, 
2 x 2 + 2 x 3 + x l l + x 1 2  < 10, - 8 x l + x l o _ < 0 ,  
--8X2 q- Xll  "~ 0, --8X3 -{- X12 ~_ O, 
--2x4 -- x5 q'- x lo  _< 0, - 2x6  -- X 7 -~ Xl l  ___~ 0, 
- 2 x s - x 9 + x 1 2  <_0, 0 _ < x i < _ l , i = 1 , . . . , 9 ,  
0 < x i _ < 1 ,  i = 1 0 , 1 1 , 1 2 ,  0_<xa3 < 1. 

The global solution is x* = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1), and G1 (x*) = -15 .  
Problem #2: 
Minimize G2 (x) = xl + x2 + x3, subject to: 

1 - 0.0025(x4 + x6) >_ 0, 1 - 0.0025(x5 + x7 - x4) _> 0, 
1 - 0.01(xs - Xb) _> 0, XlX6 - 833.33252x4 - 100x~ + 83333.333 > 0, 
x2xT--1250x5- -x2x4+1250x4  >_ O, X3Xs - -1250000-x3x5+2500x5  > O, 
1 0 0 < X l  < 10000, 1 0 0 0 < x i  < 10000, i = 2 , 3 ,  10 < x i  < 1000, i =  
4 , . . .  ,8. 

The global solution is 

x* = (579.3167,1359.943, 5110.071,182.0174, 295.5985, 217.9799, 286.4162, 395.5979), 

and G2(x*) -- 7049.330923. 
Problem #3: 
Minimize G3(x) = (xl - 10) 2 + 5(x2 - 12) 2 + x 4 + 3(x4 - 11) 2 + 

10x 6 + 7x 2 + x47 - 4x6xz - 10x6 - 8x7, subject to: 

t 2 7 - 2 x ~ - 3 x 4 - x a - 4 x ~ - 5 x 5  > O, 2 8 2 - 7 x l - 3 x 2 - 1 0 x ' ~ - x 4 + x 5  > O, 
196-23xl-z -rx  +Sx7 >_ o, -4x 1-x  + 3x x2-2x]-bxr+ llx7 >>_ o, 
- 1 0 . 0 < x i <  1 0 . 0 , i = 1 , - . - , 7 .  

The global solution is 

x* = (2.330499, 1.951372, -0.4775414, 4.365726, -0.6244870, 1.038131,1.594227), 

and G3(x*) = 680.6300573. 
Problem #4: 
Minimize G4(x) = e ~a~2x3x4xb, subject to: 
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x ~ + x  2 + x ~ + x  2 + x ~ = 1 0 ,  x 2 x 3 - b x 4 x ~ = O ,  x ~ + x ~ = - l ,  
- 2 . 3 < x i < _ 2 . 3 ,  i = 1 , 2 ,  - 3 . 2 < x ~ < 3 . 2 ,  i = 3 , 4 , 5 .  

The global solution is 

x* = ( -1 .717143,  1.595709, 1.827247, -0 .7636413,  -0 .7636450) ,  

and G4 (x*) = 0.0539498478. 
Problem #5: 
Minimize 

Gb(X ) _~ X12 + z  22 +x lx2  - 14xl - 16x2 + (x3 - 10)2 q-4(x4 - 5)2 q- (x5 - 3) 2 
+ 2(x6 - 1) 2 + 5x~ + 7(xs - 11) 2 + 2(x9 - 10) 2 + (xl0 - 7) 2 + 45, 

subject to: 

105 - 4xl - 5x2 + 3x7 - 9Xs > O, - 1 0 X l  + 8x2 + 17x7 - 2x8 _ O, 
8Xl - 2x2 - 5x9 + 2Xlo + 12 >_ O, 
- 3 ( x l  - 2) 2 - 4(x2 - 3) 2 - 2x 2 + 7x4 + 120 > 0, 
- b x l  2 - 8x2 - (x3 - 6) 2 -q- 2x4 q- 40 > 0, 
- x ~  - 2(x2 - 2) 2 + 2XlX2 - 14x5 + 6x6 > 0, 
- - 0 . 5 ( Z  1 - -  8 )  2 - -  2 ( Z 2  - -  4) 2 - 3x~ + x6 + 30 > 0, 
3 x l - 6 x 2 - 1 2 ( x 9 - 8 ) 2 + T x l o + 1 2 > O ,  - l O < x i < l O ,  i = l , . . . , l O .  

The global solution is 

x* = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 
1.430574, 1.321644, 9.828726, 8.280092, 8.375927), 

and Gb(X*) = 24.3062091. 
In each problem, the constraints were transformed to the form of equation (1) before 

solving the problem, and 20 independent experiments were carried out. ] h e  specific 
parameter values for Evolian are shown in Table 1. Methods #1 - #6(f) and their results 
are described in Michalewicz (1996). Specifically Method #4 is Genocop II and Method 
#6(f) is a death penalty method used in ES (Evolution Strategies) and EP initialized by 
feasible solutions [12]. Method #7 is the Evolian with no constraint scaling operation. 
The results are summarized again in Table 2, where the best (b), median (m), and the 
worst (w) results are reported, c indicates the numbers of  violated constraints at the 
median solution : the sequence of  three numbers indicate the number of  violations with 
violation amount between 0.1 and 10.0, between 0.1 and 1.0, and between 0.001 and 
0. l, respectively. If  at least one constraint was violated by more than 10.0, the solution 
was considered as "not meaningful ' .  Each method stops if it has reached its maximum 
generation number (5,000). 

It is not an easy job to provide a complete analysis of  each algorithm based on the 
five test problems. Considering Methods #1 to #7, Method #7 shows the best results for 
Problems #3, 4 and 5, and the reasonable results for Problems #1 and 2. For Problem #4, 
it was necessary to scale f ( x )  by a factor of  100. To investigate the differences of  the 
norm among objective and constraint functions, the norm of f ( x )  and constraints gk + (x) 
were compared for Problem #2 using Method #7. The active range of  f ( x )  is around 
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Table 1. The specific parameter values for Evolian. 

IParameterl[Value] Meaning 
Np 70 ...... Population size 
Nc 10 Num. of competing opponents in the ranking 
(rl 5.0 
6 0.01 ..... 

P 
N~ 
8 0  

8raaz 

3' 

Initial perturbation 
Perturbation for partial derivative 

Error tolerance'for EP 
Generation tolerance for EP 

Initial penalty parameter 
Maximun penalty parameter 

i0-~ 
10 
1.0 

100.0 
3.0 Increasing rate of penalty parameter 

Table 2. Experimental results for five problems. Methods #1 - #6(f) are described in 
Michalewicz (1996), of  which results are referred here. Method #7 is the Evolian with 
no constraint scaling operation. The symbols "*' and " - - '  stand for "the method was not 
applied to this test case' and "the results were not meaningful ' ,  respectively. 

b -15002 -15.000 -15,00C -15000 -15,000 -15000 -15.000 -15.00(3 
#1 -15,000 m -15.002 -15000 -15,00C ~15,000 -15.0~9 - -  -14.999 -14.999 -14.999 

w -15.001 -14.999 -1499 t5.f~JO -14.999 ~13.616 -13.000 -13.000 
c 0 ,0 ,4  0 , 0 , 0  0,0,G 0 ,0 ,0  0 ,0 ,0  0 ,0 ,0  0 ,0 .0  0 ,0 ,0  
b 2282.72! 3117.242 7485,667 7377.976 2101.367 7872.948 7667.241 7305,40~] 

#2 7049.331 m 2449.791 4213,497 8217.292 3206.151 2101.411 8559.423 11116.400 7476.08(} 
w 2756679 t5056.211 8752,412 )652.901 2101.551 - -  8668,648 14665,100 13500.40~ 
c 0 .3 ,0  0 .3 .0  O. 0. G 0 ,0 .0  1,2,0 0 ,0 ,0  0,3.1 0 ,0 ,0  
& 680,771 680.787 680.836 680.642 680.805 680.934 680.847 680.630 680.630 

#3 680.630 m 681.262 681111 681.175 680.718 682.682 681.771 681.826 680,633 680.636 
w 689.660 682.798 685.64(~ 680.955 685,738 689.442 689.417 681.400 680.766 
c 0,0,1 0 ,0 ,0  0,0,0 0 ,0 ,0  0 ,0 ,0  0 ,0 .0  0 ,0 ,0  0 ,0 .0  0.0.0 
b 0,084 0.059 0,054 0.067 0,054 0.054 

#4 0054 m 0.955 0.812 0.064 0.091 0,054 0.054 
• v 1.000 2.542 0,557 0.512 0.1357 0.770 
c 0 ,0 ,0  0 . 0 . 0  0.0, G 0 ,0 ,0  0 .0 .0  0 ,0 .0  0 .0 ,0  
b 24.690 '25.486 18.917 17.388 25.653 24,306 24.355 

#5 24306 m 29 .251  26.905 - -  24.418 22.932 - -  27.116 25,125 24.923 
m 36.060 42.358 44.302 48.866 32.477 26.737 26.459 
c 0 .1 .1  0 ,0 ,0  1.0.0 0 .0 . 0  0 .0 ,0  0 ,0 ,0  0 .0 ,0  

[2,000, 7,000], whereas 9 + (x), k = 1 , - - -  , 6 are around [0, 8]. The constraints are of 
different magnitude from the objective function and some constraints, e.g., 9 +,  9 + and 
9 + change more rapidly than the objective function or the other constraints. This ill- 
condition makes Method #7 difficult to solve the problem. The application of  Evolian 
to this problem results in the effective scaling of  all constraints. Rapidly changing con- 
straints 9 + ,  9+ and 9 + in Method #7 have become almost zero. The results of  Evolian is 
shown in Table 2. Evolian seems to give best results for all problems among 9 different 
methods. For Problem #4, however, the selection of  the sequence of  penalty parameters 
(so, sma~ and 7) was shown to have significant effect on the results, as can be seen from 
the fact that Evolian could not give better results than Method #7 for Problem #4. 
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6 Conclusions 

In this paper, Evolian was proposed incorporating the concept of multi-phase optimiza- 
tion process and constraint scaling techniques to resolve the ill-condition. In each phase 
of Evolian, the typical EP was performed using augmented Lagrangian objective func- 
tion with the penalty parameter fixed. I f  there was no improvement in the best objective 
function in one phase, another phase of Evolian was performed after scaling the con- 
straints and then updating the Lagrange multipliers and penalty parameter. 

Experimental results indicate that Evolian gives reasonable results for multivariable 
heavily constrained function optimization with smaller number of design parameters 
than the other methods. 

References 

1. Michalewicz, Z. (t995). A survey of constraint handling techniques in evolutionary compu- 
tation methods. In McDonnell, J. R., Reynolds, R. G., and Fogel, D. B., editors, Proc. of the 
Fourth Annual Conference on Evolutionary Programming, pages 135-155, Cambridge, MA. 
MIT Press. 

2. Michalewicz, Z. (1995). Genetic algorithms, numerical optimization, and constraints. In 
Eshelman, L. J., editor, Proc. of the Sixth International Conference on Genetic Algorithms, 
pages 151-158, Los Altos, CA. Morgan Kaufmann. 

3. Myung, H. and Kim, J.-H. (1996). Hybrid evolutionary programming for heavily constrained 
problems. BioSystems, 38:29-43. 

4. Kim, J.-H. and Myung, H. (1996). A two-phase evolutionary programming for general con- 
strained optimization problem. In Proc. of the Sixth Annual Conference on Evolutionary 
Programming, Cambridge, MA. MIT Press. in press. 

5. Myung, H. and Kim, J.-H. (1996). Constrained optimization using two-phase evolutionary 
programming. In Proc. of the 1996 IEEE lnternational Conference on Evolutionary Compu- 
tation, pages 262-267. IEEE Press. 

6. Michalewicz, Z. and Attia, N. (1994). Evolutionary optimization of constrained problems. 
In Sebald, A. V. and Fogel, L. J., editors, Proc. of Third Annual Conference on Evolutionary 
Programming, pages 98-108, River Edge, NJ. World Scientific. 

7. Luenberger, D. G. (1973). Introduction to Linear and Nonliner Programming. Addison- 
Wesley, Reading, MA. 

8. Bertsekas, D. E (1982). Constrained Optimization and Lagrange Multiplier Methods. Aca- 
demic Press, New York. 

9. Saravanan, N. and Fogel, D. B. (1994). Evolving neurocontrollers using evolutionary pro- 
gramming. In Michalewicz, Z., Kitano, H., Schaffer, D., Schwefel, H.-E, and Fogel, D. B., 
editors, Proc. of the First IEEE Cor~ on Evolutionary Computation, pages 217-222, Orlando, 
Florida. IEEE press. 

10. B~ick, T., Rudolph, G., and Schwefel, H.-E (1993). Evolutionary programming and evolu- 
tion strategies: Similarities and differences. In Fogel, D. B. and Atmar, W., editors, Proc. of 
the Second Annual Conference on Evolutionary Programming, pages 11-22, San Diego, CA. 
Evolutionary Programming Society. 

1 I. Vanderplaats, G. N. (1984). Numerical Optimization Techniques for Engineering Design. 
McGraw-Hill Inc. 

I2. Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. 
Springer-Verlag, Berlin. Third, Revised and Extended Edition. 


