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A b s t r a c t .  Checking the properties of concurrent systems is an ever 
growing challenge. Along with the development of improved verification 
methods, some critical systems that require careful attention have be- 
come highly concurrent and intricate. Partial order reduction methods 
were proposed for reducing the time and memory required to automati- 
cally verify concurrent asynchronous systems. We describe partial order 
reduction for various logical formalisms, such as LTL, CTL and process 
algebras. We show how one can combine partial order reduction with 
other efficient model checking techniques. 

1 I n t r o d u c t i o n  

An impor tan t  progress in formal verification was the introduction of model check- 
ing of finite s tate  systems [6, 8, 36]. It  allowed systems of certain types to be 
verified in a completely au tomat ic  way. Other techniques soon accompanied the 
basic model checking algorithms, allowing bigger and more complicated systems 
to be verified. Yet, it has been a constant challenge to verify concurrent systems 
with many  independent components.  The number  of different states, representing 
the different values assigned to the variables of such systems, rapidly grows with 
the number  of concurrent components.  With  the rapidly growing telecommuni- 
cation and hardware industry, faster and cheaper computers  became available; 
as a result, concurrent systems became more customary. 

A seminal progress in at tacking the intricacy of large concurrent systems 
was achieved by the use of binary decision diagrams (BDDs) [3, 4]. This da ta  
structure allows an efficient representation of states, such tha t  certain logical 
operations can be performed on sets of states, rather than on a s ta te-by-state  
basis. Symbolic model  checking using BDDs was used to analyze systems with 
an impressively large number  of states. The success of symbolic model checking 
was demonst ra ted  mainly  in verifying hardware systems. It  was observed that  
BDDs tend to represent hardware circuits in a rather  compact  way. As a result, 
au tomat ic  verification technology has s tar ted to be integrated with hardware 
development  and new industrial tools have been developed. 

Even with the introduction of BDDs and symbolic model checking, software 
verification is still a challenging task. Concurrent programs tend to be less struc- 
tured than  hardware, as the basic units of software are cheaper to produce (e.g., 
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compare manufactur ing a new adder circuit to writing a procedure for summing).  
An impor tan t  difference between hardware and software is their mode of execu- 
tion. Hardware is usually executed synchronously: all enabled concurrent units 
make progress at the same time, synchronized by some global clock. Software is 
usually executed asynchronously: concurrent units may  execute independently 
and the result would be the same whether they execute simultaneously, or one 
at a t ime in any order. 

Part ial  order reduction techniques [1, 5, 9, 12, 13, 14, 15, 17, 21, 23, 32, 33, 
37, 38, 39, 40, 42] are based on this latter observation. Most formalisms, includ- 
ing logics such as LTL or CTL,  and many  process algebras, model the execution 
of concurrent systems as interleaved sequences, i.e., a total  order between the oc- 
currences of transitions. Thus, concurrently executed transitions create multiple 
executions tha t  differ from each other only by their relative Order of appearance. 
Since this order is usually uninteresting, or unobservable, most  specifications do 
not distinguish between such executions. However, the existence of such differ- 
ent executions may  contribute considerably to the state space explosion. Part ial  
order reduction a t tempts  to exploit the cases where the specification does not 
make such a distinction and allow performing model checking on smaller s tate 
spaces, based on a smaller number  of executions. 

2 Partial Order Reduct ion 

A finite transition system is a fivetuple (S, So, T, AP, L) where S is a finite set 
of states, So C_ S are the initial states, T is a finite set of transitions such tha t  
each transit ion a E T is a partial  function a : S ~-~ S, A P  is a finite set of 
propositions and L : S ,-+ 2 AP is the assignment function. An execution is an 
alternating sequence of states and transitions s 0 a 0 S l a l . . ,  such that  so E So, 
and for each i _> 0, s~+l = ai(s i ) .  Without  loss of generality, we assume that  
an execution is always infinite. For each execution ~ we can define the following 
sequences: 

- The states sequence st(~) = sosls2 . . . .  
- The transitions sequence tr(~) = a 0 a ] a 2  . . . .  
- The propositions sequence pr(~) = L(so)L(s l )L(s2)  . . . .  

A segment is a finite or infinite contiguous par t  of an execution. 
A transit ion a E T is enabled from a s tate  s if a(s)  is defined. Tha t  is, a can 

be applied to s, obtaining some successor s tate  s '  = a(s) .  Denote by enabled(s) 
the set of states that  are enabled from s. States based model checking tech- 
niques (including au toma ta  based algorithms) perform a search, often a depth 
first search (DFS), to explore the state space of the transit ion system. Then,  
some verification algorithms are applied to the state space. (In practice, these 
algori thms are usually applied to the s tate  space during its construction. We de- 
fer the t rea tment  of such on-the-fly algori thms to a later subsection.) The main  
principle of part ial  order reduction is to find a subset of the enabled transitions 
ample(s) C enabled(s) that  are used to generate the successors of a s tate  s. 
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By choosing the subset of enabled transitions carefully, the correctness of the 
checked property (or the existence of a counterexample) is preserved between 
the full state space and the reduced one. It is impor tan t  to notice that  partial  
order reduction avoids generating the full s tate space, and constructs directly 
the reduced one. 

Part ial  order reduction is based on several observations about  the nature of 
concurrent computat ions  and specification formalisms. The first observation is 
tha t  concurrently executed transit ions are often commutat ive .  This is formalized 
in the definition of independence. 

D e f i n i t i o n  1. An independence relation I C T x T is symmetr ic  and antireflex- 
ive. For each pair of independent transitions (or,/3) E I and state s E S such 
tha t  a , /~  E enabled(s), the following hold: 

- ~ E enabled(fl(s)) and/~  C enabled(or(s)). Tha t  is, independent transitions 
cannot disable each other. 

- a(/~(s)) =/3(or(s)). Tha t  is, executing two enabled independent transition in 
any order result in the same global state. 

Denote D = (T x T) \ I .  If  (a , /3)  E D, we say that  a and/3  are dependent. A 
refinement of this definition, allowing the independency between pairs of tran- 
sitions to vary from state to state, can be used to further improve partial  order 
reduction [13, 20] and will not be discussed here. 

Consider a state s and two enabled independent transitions ~ and ft. Let 
r = ~(fl(s)). Then also r = fl(c~(s)). If  the specification only mentions the first 
and last states, there is no need to include both ~ and/~ in ample(s). Otherwise, 
we need to consider the possibility tha t  L(~(s)) and L(/3(s)) can be different 
from each other, and can even be distinct from L(s) or L(a(~(s)).  

A second observation is tha t  in many  cases, only a few of the transitions can 
change, when executed, the t ruth  values of the propositional variables [40]. 

D e f i n i t i o n 2 .  A transit ion a E T is invisible if for each s, s '  E S such that  
s ' =  c~(s), L(s) = L(s ' ) .  

When deciding the invisibility of a transition a is hard, one can conservatively 
assume that  a is visible. 

When a pair of independent transitions a, fl are enabled at s and at most 
one of them is visible, we have one of the following cases: 

is invisible. L(s) = L(c~(s)), L(fl(s)) = L(a(/~(s)). 
/3 is invisible. L(s) = n ( /~ ( s ) ) ,  L(~(s)) = L(/~(~(s)). 
a , / 3  invisible. L(s) = L(a(s)) = L(fl(s)) = L(a(/3(s)). 

In each one of these cases, there is at most  one change when progressing from 
s to r = a(/?(s)). The difference between executing cr before/3 or /3  before c~ in 
the first two cases amounts  to stuttering,  as defined below. Typical  specifications 
cannot distinguish between two executions that  are equivalent up to stuttering. 
This allows eliminating either cr or /3  from ample(s). 
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D e f i n i t i o n  3. The stutter removal operator ~ applied to a propositions sequence 
p results in a sequence ~(p) where each consecutive repetition of labeling is 
replaced by a single occurrence. Two propositions sequences a, p are equivalent 
up to stuttering if ~(~r) = ~(p). This is denoted by cr --~ p. 

For example,  i fAP = {p, q}, the finite sequences ~ = (p)(p, q)(p, q)(q)(q)(p, q) 
and p = (p)(p)(p, q)(p, q)(p, q)(q)(p, q) are stuttering equivalent since ~(~) = 

~(p) ---- (p)(p, q)(q)(P, q). 
In the following sections we present reductions for several formalisms. In each 

case, the reduction is represented by a set of constraints tha t  need to be enforced 
on selecting ample(s) for a given state s. When ample(s) = enabled(s), we say 
that  s is fully expanded. 

2.1 R e d u c t i o n  fo r  L T L  

Linear tempora l  logic (LTL) cannot distinguish between two stuttering equiva- 
lent sequences when disallowing the next t ime operator  ( ' O ' ) .  It is in fact argued 
that  specifications should be closed under stuttering equivalence [24] and proved 
that  LTL without the next t ime operator  is exactly as expressive as stuttering 
closed first order monadic logic properties [34]. The following conditions for se- 
lecting the set ample(s) when generating a reduced state space are based on 
DFS. We use the fact that  during DFS, reaching a s tate  tha t  is already on the 
search stack implies closing a cycle. The partial  order reduction generates a re- 
duced state space such that  for each execution in the full s tate space, there is a 
stuttering equivalent sequence in the reduced one. 

C1 [13, 19, 32, 37] For every segment 2 start ing from the state s, a transit ion 
that  is dependent on some transition in ample(s) cannot be executed before 
a transition f rom ample(s). 

To understand Condition C1, consider a suffix of an execution or, s tart ing at s. 
There are two possible cases: 

C a s e  1. a is the first transition from ample(s) on ~r. Then, a is independent of 
all the transitions tha t  precedes it on ~. By applying Definition 1 repeatedly, 
all the transitions on ~r prior to a can be commuted  with a ,  obtaining a 
segment or'. 

C a s e  2. No transit ion in ample(s) occurs on ~. Then any a E ample(s) is 
independent of all the transitions of ~. By Definition 1, one can form a 
segment cr' by executing a and then the transitions of ~. 

Condition C1 is quite abstract .  Implement ing it takes into account the partic- 
ular mode of execution, e.g., shared variables, asynchronous or synchronous mes- 
sage passing [13, 14, 17, 40]. Consider for example an execution model with asyn- 
chronous message passing. Then the reduction can be implemented by searching 

2 Notice that the segment mentioned in C1 are not necessarily constructed in the 
reduced state space. 
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for a set E of transitions belonging to a single process P.  These transitions can be 
executed at the current location of P .  To guarantee Condition C1,  there should 
be no other transit ion c~ of type receive or send, originating at the same location 
of P and disabled due to an empty  or full communicat ion queue, respectively. 
The reason is that  a is then dependent on the transit ions in E (since E U {c~} 
belong to the same process). By executing a sequence of independent transitions 
of other processes tha t  end with a send or receive transition, respectively, c~ may  
become enabled. 

In order for pr(~r) and pr(cr') will be stuttering equivalent (for both  of the 
above cases) we enforce the following condition: 

C2 [33] If s is not fully expanded then all of the transitions in ample(s) are 
invisible. 

Expanding ample(s) from s instead of enabled(s) can defer the execution of 
a t ransi t ion/~ E enabled(s) \ ample(s). (Notice that  ~ remains enabled in any 
s tate  a(s) for a E ample(s).) With only Conditions C1 and C2,  a transition 
can be deferred forever along a cycle. This may  result in ignoring an execution 
tha t  is not represented in the reduced s tate  space by another stuttering equiv- 
alent execution, and can consequently lead to incorrect verification result. The 
following condition guarantee that  no transit ion would be deferred forever. 

C3 [32] If s is not fully expanded then for no transition a E ample(s) it holds 
tha t  a (s )  is on the search stack. 

There are different alternatives for condition C2, for example,  Valmari  [37] 
presented an algori thm for the following condition: 

C3i  For every cycle in the reduced state space there is at least one fully ex- 
panded node. 

Another possibility is 

C3i i  [42] If  a cycle contains a s tate  where some transition ~ E T is enabled, 
then it must  also contain some state  where c~ is taken. 

It  can be easily shown that  C3 implies C3i,  which in turn implies C3ii .  Using a 
stronger condition instead of a weaker one is less general and can be understood 
as an implementat ion of the weaker condition. When restricting the specification 
to safety properties, the following condition is sufficient: 

C3i i i  [16] For at least one of the transitions a E ample(s), c~(s) is not on the 
search stack. 

2.2 R e d u c t i o n  f o r  C T L  

The  model for temporal  logics such as CTL or CTL* is a branching structure. 
Even without the next t ime operator  (the next t ime operator  in these logics is 
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usually written as 'X'), two structures can have corresponding stuttering equiv- 
alent sequences but still be distinguished as they have different branching points. 
Thus, for branching temporal  logics, we require that  the partial  order reduction 
generates a reduced state space that  is stuttering bisimilar [2] to the full s tate 
space. Two states s and s I are related if the following conditions hold: 

1. n(s) = n(s ' ) ,  
2. for each infinite sequence c~ star t ing from s there exists an infinite sequence 

al s tar t ing from s I such that  ~r and ~r ~ can be part i t ioned into infinitely many  
finite blocks of consecutive states BOB1... and BobBle..., respectively and 
the states in Bi are stuttering bisimilar to the states in B~ ~ for each i > 0, 
and 

3. similarly, for each sequence ~r ~ f rom s I there exists a blockwise matching pa th  
ff f rom s. 

It  is shown in [2] that  CTL and CTL* without the next t ime operator  cannot dis- 
tinguish between stuttering bisimilar structures. Stuttering bisimilarity between 
the full and reduced state space is achieved by adding the following constraint: 

C4  [9] If  s is not fully expanded, then ample(s) contains exactly one transition. 

2.3 R e d u c t i o n  fo r  p r o c e s s  a l g e b r a  

The focus in process algebras is on the branching structure of states and the 
execution of transitions. The model for various process algebras usually impose 
labeling the transitions rather  than  the states. A transition labeled with v is 
considered invisible, regardless of its effect on the state. Process algebras are 
usually based on simulation relations. Such relations associate corresponding 
pairs of states tha t  have similar branching structure. Stuttering bisimulation was 
discussed above. Other relations for which we can apply partial  order reduction 
are branching bisimulation [11, 29] and weak bisimulation [28]. 

The conditions C 1 - C 4  can be applied to produce a reduced structure that  
is branching bisimilar [9] and thus also weak bisimilar. One concern is that  in 
process algebras transitions are often nondeterministic.  To allow nondeterminism 
in partial  order reduction, one can reformulate Condition C4 as follows: 

C4i  [40] If  s is not fully expanded, then ample(s) consists of one deterministic 
transition. 

Thus, nondeterministic transitions are allowed in ample sets of nodes that  are 
fully expanded. 

2.4 R e d u c t i o n  u n d e r  f a i r n e s s  

In many  systems, the execution of concurrent components  is constrained by some 
fairness assumption.  For example,  it is natural  to require that  if a concurrent 
process can execute some transition, independently of other processes, then it is 
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eventually allowed to do so. Model checking under fairness is modified to check 
whether the fair executions satisfy the given specification [25]. 

For part ial  order reduction, the following 'weak '  fairness (or ' justice'  [26]) 
assumption is quite natural:  

F if an operat ion a is enabled from some state  of an execution, then some 
operation that  is dependent on a must  appear  later in this execution. 

The reduction is based now on the following equivalence relation between 
sequences: 

D e f i n R i o n 4 .  Given an independence relation I ,  two finite transitions sequences 
u and v are trace equivalent  [27], denoted u =tr  v, if there exists a sequence 
u = w l ,  w 2 , . . . ,  w~ = v such tha t  for each 1 _< i < n, there exists some x,  y E T* 

and independent transitions ((~,/3) E I such that  wi = x~ /3y  and Wi+l = x/3~y.  

Thus, u - t r  v iff v can be obtained from u by repeatedly commut ing  adjacent 
transitions. The trace equivalence relation can be extended to infinite traces in 
the following way: u - t r v  iff for every finite prefix u ~ of u there exists a finite 
prefix v ~ of v such that  u~w - v ~ for some sequence w E T*. The symmetr ic  
condition, replacing u with v, must  also hold. 

In fact, the origin of the te rm 'part ial  order reduction'  is due to the use of 
trace equivalence. One can view trace equivalence as a part ial  order semantics. 
Consider the events obtained by taking the occurrences of transitions in an ex- 
ecution, e.g., the first appearance of c~ denoted (c~, 1) and the second denoted 
(c~, 2). Now, consider a part ial  order between occurrences of transitions on a trace 
equivalence class. (It can be easily checked that  all trace equivalent sequences 
have the same occurrences.) Then define the order -4 between occurrences such 
that  el -4 e2 when el preceded e2 on all the equivalent sequences. This order can 
easily be checked to be a part ial  order, i.e., asymmetric ,  irreflexive and transitive. 
Occurrences that  can appear  in both  orders in different equivalent sequences are 
unordered by -< and are considered concurrent. 

Consider the case where the checked property W is closed under trace equiva- 
lence. Tha t  is, it cannot distinguish between two executions by having c~ ~ ~ and 
p ~: ~, while tr((r)  =-t~ t r (p ) .  Assuming F-fairness, C a s e  2 of Section 2.1 can- 
not happen. Then it is sufficient to apply Conditions C1 and C3; the obtained 
reduced state space includes at least one sequence for each trace equivalence 
class. 

Checking tha t  an LTL property is closed under trace equivalence [35] may  be 
unnatural:  LTL usually refers to the states, whereas trace equivalence relates ex- 
ecutions according to their executed transitions. Instead, it is possible to connect 
trace equivalence to s tut ter ing equivalence, supplying a condition that  guaran- 
tees that  every pair of sequences (r and p such that  tr(c~) ~-tr t r (p )  satisfies that  
st(cr) - 9  s t (p) .  One way to enforce this is by requiring the following: 

D1  [32] Extend the dependency relation D to include every pair of visible 
transitions. 
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It is important  to note that  the fairness assumption is still defined with respect 
to the original dependency relation and not the extended one. Extending the 
dependency relation limits the reduction. One way to relax Condition D1 is 
to write the checked property, when possible, as a boolean combination p = 
A~ Vj ~ , J .  We can refine visibility such that  vis(~, p) for ~ E T, p E AP holds 
when the t ruth value of p may change by executing a.  Then we require the 
following: 

D2  [32] Extend the dependency relation D to include every pair of transitions 
a, /~ such that  vis(a, p) and vis(~, q), and p, q both appear in some boolean 
component ~ , j .  

Weaker definitions, which require fewer dependencies to be added, appear in [18, 
30]. 

Checking a property ~ under a fairness condition that  is stronger than F, e.g., 
strong fairness [26], can be done in the following way. The fairness condition 
is writen as a formula ¢, and dependencies are added to D according to D2  
(or a variant of it) as if the property ¢ --+ ~ is checked. However, the checked 
property is still ~, while the model checking algorithm checks the executions that  
satisfies ¢. Model checking algorithms that assume various fairness constraints 
appear in [25]. Typically, ¢ is written as a large boolean combination, containing 
predicates related to the enabledness and execution of each transition. Thus, 
using Condition D1 instead of D2  would not result in any reduction. 

2.5 On-the-fly model  checking 

In practice, model checking does not include a separate stage where the full or 
reduced state space is first generated before it is being analyzed. The analysis of 
the state space can coincide with its construction [7, 22, 41]. With this on-the-fly 
approach, if a counterexample is found, there is no further need to complete the 
construction of the state space. This observation has a potential  of considerably 
reducing the memory size and time required for the verification. One way of per- 
forming on-the-fly model checking is to represent the state space as an automaton 
`4, recognizing the executions of the checked system. The checked property 
is also represented as an automaton.  In fact, one generally uses an automaton 
B that  accepts the sequences that  do not satisfy ~ (by a direct translation of 

[10, 41]). 
The intersection of ,4 and B is an automaton recognizing executions of the 

system that  do not satisfy the specification. Such executions exist iff the property 
is not satisfied by the system, and can be presented as counterexamples. Specif- 

ically, with on-the-fly model checking one can combine the following [33, 39]: 

- the construction of an automaton ,4 that  corresponds to the reduced state 
space, 

- the intersecting with the automaton B, and 
- checking for the emptiness of the intersection. 
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The crucial change from the off-line partial order reduction presented in 
Section 2.1 is with respect to Condition C3. The cycles found during an on-the- 
fly construction are cycles of the automaton for .A N B, rather than of the state 
space automaton ,4. It can be shown [33] that  relativizing C3 to these cycles, 
i.e., fully expanding a state when it closes a cycle in the intersection of .4 and 
B, still preserves the correctness of the algorithm. In fact, in the intersection, 
cycles are going to be larger (they may include several iterations of the cycles of 
the state space, coupled with different values for the property automaton).  On 
the other hand, since the reduced state space, as represented by the automaton 
,4, contains fewer executions, some of the counterexamples may not be included, 
deferring the discovery of a counterexample. 

2.6 S y m b o l i c  m o d e l  check ing  

By combining various verification techniques, one may obtain the benefits offered 
by each one of them separately. Obvious candidates for such a combination are 
partial order reduction and symbolic model checking. The main problem is that  
the former is usually implemented using a DFS procedure that  handles one state 
at a time, while the latter is described using a fixpoint computation that  involves 
many states at the same time. This effects Condition C3 (or one of its variants). 
One proposal for changing this condition for symbolic model checking is that  the 
fixpoint computation can be seen as a breadth first search (BFS) [1]. With each 
successive fixpoint approximation, a new layer of states with further distance 
from the original ones are discovered. The cycle closing condition can then be 
relativized to BFS by pessimistically assuming that  states in a new layer that  
also appeared in previous layers are closing a cycle [5]. 

Another solution is based on the observation that  each cycle of the state space 
must be composed of several local cycles of the separate concurrent processes. 
The local structures of the processes are analyzed and at least one transition from 
each local cycle is selected. The selected transitions are called sticky transitions, 
and the following condition is imposed: 

C3iv  [23] If s is not fully expanded then no transition a E ample(s) is sticky. 

It can easily shown that  Condition C3iv  implies C31i. With this new condition, 
the need to find when a cycle is closed during the state space exploration is 
eliminated. One can in fact combine Conditions C3iv  with C2 as follows: 

C 2 + 3  If s is not fully expanded then no transition a E ample(s) can be sticky 
or visible. 

Sticky transitions decrease the reduction and thus their number need to be mini- 
mized. One observation is that  there are some dependencies between local cycles 
of different processes. If one local cycle includes only local operations and receiv- 
ing messages, another local cycle that  includes sending messages must also be 
included to form global cycle of the state space. Similarly, if one local cycle only 
decreases the value of a variable, a local cycle of another process that  increases 
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it is also needed to complete a global cycle. Thus, local cycles that  change some 
resource in a monotonic way can be exempted from the search for sticky transi- 
tions (but not at the same time with cycles that  change it in the complementary 
way). 

2.7 Reducing visibility 

Experimental results [17] show that  the reduction decreases rapidly with the 
number of visible transitions. One way to reduce the effect of visibility on par- 
tial order reduction is to let it dynamically decrease while checking the specifica- 
tion [21]. We will illustrate this with an example. Suppose that  the property to 
be checked is 9 = [](P --4 Dq). The negation of the property is -"9 = ~(pAO-~q). 
Once the automaton B constructed for -"9 has encounted a state where p holds, 
it may concentrate on checking O-~q. 

In this case, one may start  the reduction by considering visible transitions 
with respect to all the propositions that appear in the formula. In this case, the 
relevant propositions are {p, q}. Then, once p occurs, we can then reduce the 
visible transitions to those that  can affect the truth value of q, which is the only 
proposition that appears in ~-~q. Those transitions that can effect p but not q 
can now be considered invisible. An LTL translation algorithm that  produces an 
automaton B that allows monotonically reducing the set of visible transitions as 
B executes appears in [10]. 
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