
Ten Years of Part ial Order R e d u c t i o n

Doron Peled*

Bell Laboratories

A b s t r a c t . Checking the properties of concurrent systems is an ever
growing challenge. Along with the development of improved verification
methods, some critical systems that require careful attention have be-
come highly concurrent and intricate. Partial order reduction methods
were proposed for reducing the time and memory required to automati-
cally verify concurrent asynchronous systems. We describe partial order
reduction for various logical formalisms, such as LTL, CTL and process
algebras. We show how one can combine partial order reduction with
other efficient model checking techniques.

1 I n t r o d u c t i o n

An impor tan t progress in formal verification was the introduction of model check-
ing of finite s tate systems [6, 8, 36]. It allowed systems of certain types to be
verified in a completely au tomat ic way. Other techniques soon accompanied the
basic model checking algorithms, allowing bigger and more complicated systems
to be verified. Yet, it has been a constant challenge to verify concurrent systems
with many independent components. The number of different states, representing
the different values assigned to the variables of such systems, rapidly grows with
the number of concurrent components. With the rapidly growing telecommuni-
cation and hardware industry, faster and cheaper computers became available;
as a result, concurrent systems became more customary.

A seminal progress in at tacking the intricacy of large concurrent systems
was achieved by the use of binary decision diagrams (BDDs) [3, 4]. This da ta
structure allows an efficient representation of states, such tha t certain logical
operations can be performed on sets of states, rather than on a s ta te-by-state
basis. Symbolic model checking using BDDs was used to analyze systems with
an impressively large number of states. The success of symbolic model checking
was demonst ra ted mainly in verifying hardware systems. It was observed that
BDDs tend to represent hardware circuits in a rather compact way. As a result,
au tomat ic verification technology has s tar ted to be integrated with hardware
development and new industrial tools have been developed.

Even with the introduction of BDDs and symbolic model checking, software
verification is still a challenging task. Concurrent programs tend to be less struc-
tured than hardware, as the basic units of software are cheaper to produce (e.g.,

* This survey was written while the author was visiting Carnegie Mellon University
School of Computer Science Pittsburgh, PA 15213-3891, USA. Author's current ad-
dress: Bell Laboratories, 700 Mountain Ave. Murray Hill, NJ 07974, USA

18

compare manufactur ing a new adder circuit to writing a procedure for summing).
An impor tan t difference between hardware and software is their mode of execu-
tion. Hardware is usually executed synchronously: all enabled concurrent units
make progress at the same time, synchronized by some global clock. Software is
usually executed asynchronously: concurrent units may execute independently
and the result would be the same whether they execute simultaneously, or one
at a t ime in any order.

Part ial order reduction techniques [1, 5, 9, 12, 13, 14, 15, 17, 21, 23, 32, 33,
37, 38, 39, 40, 42] are based on this latter observation. Most formalisms, includ-
ing logics such as LTL or CTL, and many process algebras, model the execution
of concurrent systems as interleaved sequences, i.e., a total order between the oc-
currences of transitions. Thus, concurrently executed transitions create multiple
executions tha t differ from each other only by their relative Order of appearance.
Since this order is usually uninteresting, or unobservable, most specifications do
not distinguish between such executions. However, the existence of such differ-
ent executions may contribute considerably to the state space explosion. Part ial
order reduction a t tempts to exploit the cases where the specification does not
make such a distinction and allow performing model checking on smaller s tate
spaces, based on a smaller number of executions.

2 Partial Order Reduct ion

A finite transition system is a fivetuple (S, So, T, AP, L) where S is a finite set
of states, So C_ S are the initial states, T is a finite set of transitions such tha t
each transit ion a E T is a partial function a : S ~-~ S, A P is a finite set of
propositions and L : S ,-+ 2 AP is the assignment function. An execution is an
alternating sequence of states and transitions s 0 a 0 S l a l . . , such that so E So,
and for each i _> 0, s~+l = ai(s i) . Without loss of generality, we assume that
an execution is always infinite. For each execution ~ we can define the following
sequences:

- The states sequence st(~) = sosls2
- The transitions sequence tr(~) = a 0 a] a 2
- The propositions sequence pr(~) = L(so)L(s l)L(s2)

A segment is a finite or infinite contiguous par t of an execution.
A transit ion a E T is enabled from a s tate s if a(s) is defined. Tha t is, a can

be applied to s, obtaining some successor s tate s ' = a(s) . Denote by enabled(s)
the set of states that are enabled from s. States based model checking tech-
niques (including au toma ta based algorithms) perform a search, often a depth
first search (DFS), to explore the state space of the transit ion system. Then,
some verification algorithms are applied to the state space. (In practice, these
algori thms are usually applied to the s tate space during its construction. We de-
fer the t rea tment of such on-the-fly algori thms to a later subsection.) The main
principle of part ial order reduction is to find a subset of the enabled transitions
ample(s) C enabled(s) that are used to generate the successors of a s tate s.

19

By choosing the subset of enabled transitions carefully, the correctness of the
checked property (or the existence of a counterexample) is preserved between
the full state space and the reduced one. It is impor tan t to notice that partial
order reduction avoids generating the full s tate space, and constructs directly
the reduced one.

Part ial order reduction is based on several observations about the nature of
concurrent computat ions and specification formalisms. The first observation is
tha t concurrently executed transit ions are often commutat ive . This is formalized
in the definition of independence.

D e f i n i t i o n 1. An independence relation I C T x T is symmetr ic and antireflex-
ive. For each pair of independent transitions (or,/3) E I and state s E S such
tha t a , /~ E enabled(s), the following hold:

- ~ E enabled(fl(s)) and/~ C enabled(or(s)). Tha t is, independent transitions
cannot disable each other.

- a(/~(s)) =/3(or(s)). Tha t is, executing two enabled independent transition in
any order result in the same global state.

Denote D = (T x T) \ I . If (a , /3) E D, we say that a and/3 are dependent. A
refinement of this definition, allowing the independency between pairs of tran-
sitions to vary from state to state, can be used to further improve partial order
reduction [13, 20] and will not be discussed here.

Consider a state s and two enabled independent transitions ~ and ft. Let
r = ~(fl(s)). Then also r = fl(c~(s)). If the specification only mentions the first
and last states, there is no need to include both ~ and/~ in ample(s). Otherwise,
we need to consider the possibility tha t L(~(s)) and L(/3(s)) can be different
from each other, and can even be distinct from L(s) or L(a(~(s)).

A second observation is tha t in many cases, only a few of the transitions can
change, when executed, the t ruth values of the propositional variables [40].

D e f i n i t i o n 2 . A transit ion a E T is invisible if for each s, s ' E S such that
s ' = c~(s), L(s) = L(s ') .

When deciding the invisibility of a transition a is hard, one can conservatively
assume that a is visible.

When a pair of independent transitions a, fl are enabled at s and at most
one of them is visible, we have one of the following cases:

is invisible. L(s) = L(c~(s)), L(fl(s)) = L(a(/~(s)).
/3 is invisible. L(s) = n (/~ (s)) , L(~(s)) = L(/~(~(s)).
a , / 3 invisible. L(s) = L(a(s)) = L(fl(s)) = L(a(/3(s)).

In each one of these cases, there is at most one change when progressing from
s to r = a(/?(s)). The difference between executing cr before/3 or /3 before c~ in
the first two cases amounts to stuttering, as defined below. Typical specifications
cannot distinguish between two executions that are equivalent up to stuttering.
This allows eliminating either cr or /3 from ample(s).

20

D e f i n i t i o n 3. The stutter removal operator ~ applied to a propositions sequence
p results in a sequence ~(p) where each consecutive repetition of labeling is
replaced by a single occurrence. Two propositions sequences a, p are equivalent
up to stuttering if ~(~r) = ~(p). This is denoted by cr --~ p.

For example, i fAP = {p, q}, the finite sequences ~ = (p)(p, q)(p, q)(q)(q)(p, q)
and p = (p)(p)(p, q)(p, q)(p, q)(q)(p, q) are stuttering equivalent since ~(~) =

~(p) ---- (p)(p, q)(q)(P, q).
In the following sections we present reductions for several formalisms. In each

case, the reduction is represented by a set of constraints tha t need to be enforced
on selecting ample(s) for a given state s. When ample(s) = enabled(s), we say
that s is fully expanded.

2.1 R e d u c t i o n fo r L T L

Linear tempora l logic (LTL) cannot distinguish between two stuttering equiva-
lent sequences when disallowing the next t ime operator (' O ') . It is in fact argued
that specifications should be closed under stuttering equivalence [24] and proved
that LTL without the next t ime operator is exactly as expressive as stuttering
closed first order monadic logic properties [34]. The following conditions for se-
lecting the set ample(s) when generating a reduced state space are based on
DFS. We use the fact that during DFS, reaching a s tate tha t is already on the
search stack implies closing a cycle. The partial order reduction generates a re-
duced state space such that for each execution in the full s tate space, there is a
stuttering equivalent sequence in the reduced one.

C1 [13, 19, 32, 37] For every segment 2 start ing from the state s, a transit ion
that is dependent on some transition in ample(s) cannot be executed before
a transition f rom ample(s).

To understand Condition C1, consider a suffix of an execution or, s tart ing at s.
There are two possible cases:

C a s e 1. a is the first transition from ample(s) on ~r. Then, a is independent of
all the transitions tha t precedes it on ~. By applying Definition 1 repeatedly,
all the transitions on ~r prior to a can be commuted with a , obtaining a
segment or'.

C a s e 2. No transit ion in ample(s) occurs on ~. Then any a E ample(s) is
independent of all the transitions of ~. By Definition 1, one can form a
segment cr' by executing a and then the transitions of ~.

Condition C1 is quite abstract . Implement ing it takes into account the partic-
ular mode of execution, e.g., shared variables, asynchronous or synchronous mes-
sage passing [13, 14, 17, 40]. Consider for example an execution model with asyn-
chronous message passing. Then the reduction can be implemented by searching

2 Notice that the segment mentioned in C1 are not necessarily constructed in the
reduced state space.

21

for a set E of transitions belonging to a single process P. These transitions can be
executed at the current location of P . To guarantee Condition C1, there should
be no other transit ion c~ of type receive or send, originating at the same location
of P and disabled due to an empty or full communicat ion queue, respectively.
The reason is that a is then dependent on the transit ions in E (since E U {c~}
belong to the same process). By executing a sequence of independent transitions
of other processes tha t end with a send or receive transition, respectively, c~ may
become enabled.

In order for pr(~r) and pr(cr') will be stuttering equivalent (for both of the
above cases) we enforce the following condition:

C2 [33] If s is not fully expanded then all of the transitions in ample(s) are
invisible.

Expanding ample(s) from s instead of enabled(s) can defer the execution of
a t ransi t ion/~ E enabled(s) \ ample(s). (Notice that ~ remains enabled in any
s tate a(s) for a E ample(s).) With only Conditions C1 and C2, a transition
can be deferred forever along a cycle. This may result in ignoring an execution
tha t is not represented in the reduced s tate space by another stuttering equiv-
alent execution, and can consequently lead to incorrect verification result. The
following condition guarantee that no transit ion would be deferred forever.

C3 [32] If s is not fully expanded then for no transition a E ample(s) it holds
tha t a (s) is on the search stack.

There are different alternatives for condition C2, for example, Valmari [37]
presented an algori thm for the following condition:

C3i For every cycle in the reduced state space there is at least one fully ex-
panded node.

Another possibility is

C3i i [42] If a cycle contains a s tate where some transition ~ E T is enabled,
then it must also contain some state where c~ is taken.

It can be easily shown that C3 implies C3i, which in turn implies C3ii . Using a
stronger condition instead of a weaker one is less general and can be understood
as an implementat ion of the weaker condition. When restricting the specification
to safety properties, the following condition is sufficient:

C3i i i [16] For at least one of the transitions a E ample(s), c~(s) is not on the
search stack.

2.2 R e d u c t i o n f o r C T L

The model for temporal logics such as CTL or CTL* is a branching structure.
Even without the next t ime operator (the next t ime operator in these logics is

22

usually written as 'X'), two structures can have corresponding stuttering equiv-
alent sequences but still be distinguished as they have different branching points.
Thus, for branching temporal logics, we require that the partial order reduction
generates a reduced state space that is stuttering bisimilar [2] to the full s tate
space. Two states s and s I are related if the following conditions hold:

1. n(s) = n(s ') ,
2. for each infinite sequence c~ star t ing from s there exists an infinite sequence

al s tar t ing from s I such that ~r and ~r ~ can be part i t ioned into infinitely many
finite blocks of consecutive states BOB1... and BobBle..., respectively and
the states in Bi are stuttering bisimilar to the states in B~ ~ for each i > 0,
and

3. similarly, for each sequence ~r ~ f rom s I there exists a blockwise matching pa th
ff f rom s.

It is shown in [2] that CTL and CTL* without the next t ime operator cannot dis-
tinguish between stuttering bisimilar structures. Stuttering bisimilarity between
the full and reduced state space is achieved by adding the following constraint:

C4 [9] If s is not fully expanded, then ample(s) contains exactly one transition.

2.3 R e d u c t i o n fo r p r o c e s s a l g e b r a

The focus in process algebras is on the branching structure of states and the
execution of transitions. The model for various process algebras usually impose
labeling the transitions rather than the states. A transition labeled with v is
considered invisible, regardless of its effect on the state. Process algebras are
usually based on simulation relations. Such relations associate corresponding
pairs of states tha t have similar branching structure. Stuttering bisimulation was
discussed above. Other relations for which we can apply partial order reduction
are branching bisimulation [11, 29] and weak bisimulation [28].

The conditions C 1 - C 4 can be applied to produce a reduced structure that
is branching bisimilar [9] and thus also weak bisimilar. One concern is that in
process algebras transitions are often nondeterministic. To allow nondeterminism
in partial order reduction, one can reformulate Condition C4 as follows:

C4i [40] If s is not fully expanded, then ample(s) consists of one deterministic
transition.

Thus, nondeterministic transitions are allowed in ample sets of nodes that are
fully expanded.

2.4 R e d u c t i o n u n d e r f a i r n e s s

In many systems, the execution of concurrent components is constrained by some
fairness assumption. For example, it is natural to require that if a concurrent
process can execute some transition, independently of other processes, then it is

23

eventually allowed to do so. Model checking under fairness is modified to check
whether the fair executions satisfy the given specification [25].

For part ial order reduction, the following 'weak ' fairness (or ' justice' [26])
assumption is quite natural:

F if an operat ion a is enabled from some state of an execution, then some
operation that is dependent on a must appear later in this execution.

The reduction is based now on the following equivalence relation between
sequences:

D e f i n R i o n 4 . Given an independence relation I , two finite transitions sequences
u and v are trace equivalent [27], denoted u =tr v, if there exists a sequence
u = w l , w 2 , . . . , w~ = v such tha t for each 1 _< i < n, there exists some x, y E T*

and independent transitions ((~,/3) E I such that wi = x~ /3y and Wi+l = x/3~y.

Thus, u - t r v iff v can be obtained from u by repeatedly commut ing adjacent
transitions. The trace equivalence relation can be extended to infinite traces in
the following way: u - t r v iff for every finite prefix u ~ of u there exists a finite
prefix v ~ of v such that u~w - v ~ for some sequence w E T*. The symmetr ic
condition, replacing u with v, must also hold.

In fact, the origin of the te rm 'part ial order reduction' is due to the use of
trace equivalence. One can view trace equivalence as a part ial order semantics.
Consider the events obtained by taking the occurrences of transitions in an ex-
ecution, e.g., the first appearance of c~ denoted (c~, 1) and the second denoted
(c~, 2). Now, consider a part ial order between occurrences of transitions on a trace
equivalence class. (It can be easily checked that all trace equivalent sequences
have the same occurrences.) Then define the order -4 between occurrences such
that el -4 e2 when el preceded e2 on all the equivalent sequences. This order can
easily be checked to be a part ial order, i.e., asymmetric , irreflexive and transitive.
Occurrences that can appear in both orders in different equivalent sequences are
unordered by -< and are considered concurrent.

Consider the case where the checked property W is closed under trace equiva-
lence. Tha t is, it cannot distinguish between two executions by having c~ ~ ~ and
p ~: ~, while tr((r) =-t~ t r (p) . Assuming F-fairness, C a s e 2 of Section 2.1 can-
not happen. Then it is sufficient to apply Conditions C1 and C3; the obtained
reduced state space includes at least one sequence for each trace equivalence
class.

Checking tha t an LTL property is closed under trace equivalence [35] may be
unnatural: LTL usually refers to the states, whereas trace equivalence relates ex-
ecutions according to their executed transitions. Instead, it is possible to connect
trace equivalence to s tut ter ing equivalence, supplying a condition that guaran-
tees that every pair of sequences (r and p such that tr(c~) ~-tr t r (p) satisfies that
st(cr) - 9 s t (p) . One way to enforce this is by requiring the following:

D1 [32] Extend the dependency relation D to include every pair of visible
transitions.

24

It is important to note that the fairness assumption is still defined with respect
to the original dependency relation and not the extended one. Extending the
dependency relation limits the reduction. One way to relax Condition D1 is
to write the checked property, when possible, as a boolean combination p =
A~ Vj ~ , J . We can refine visibility such that vis(~, p) for ~ E T, p E AP holds
when the t ruth value of p may change by executing a. Then we require the
following:

D2 [32] Extend the dependency relation D to include every pair of transitions
a, /~ such that vis(a, p) and vis(~, q), and p, q both appear in some boolean
component ~ , j .

Weaker definitions, which require fewer dependencies to be added, appear in [18,
30].

Checking a property ~ under a fairness condition that is stronger than F, e.g.,
strong fairness [26], can be done in the following way. The fairness condition
is writen as a formula ¢, and dependencies are added to D according to D2
(or a variant of it) as if the property ¢ --+ ~ is checked. However, the checked
property is still ~, while the model checking algorithm checks the executions that
satisfies ¢. Model checking algorithms that assume various fairness constraints
appear in [25]. Typically, ¢ is written as a large boolean combination, containing
predicates related to the enabledness and execution of each transition. Thus,
using Condition D1 instead of D2 would not result in any reduction.

2.5 On-the-fly model checking

In practice, model checking does not include a separate stage where the full or
reduced state space is first generated before it is being analyzed. The analysis of
the state space can coincide with its construction [7, 22, 41]. With this on-the-fly
approach, if a counterexample is found, there is no further need to complete the
construction of the state space. This observation has a potential of considerably
reducing the memory size and time required for the verification. One way of per-
forming on-the-fly model checking is to represent the state space as an automaton
`4, recognizing the executions of the checked system. The checked property
is also represented as an automaton. In fact, one generally uses an automaton
B that accepts the sequences that do not satisfy ~ (by a direct translation of

[10, 41]).
The intersection of ,4 and B is an automaton recognizing executions of the

system that do not satisfy the specification. Such executions exist iff the property
is not satisfied by the system, and can be presented as counterexamples. Specif-

ically, with on-the-fly model checking one can combine the following [33, 39]:

- the construction of an automaton ,4 that corresponds to the reduced state
space,

- the intersecting with the automaton B, and
- checking for the emptiness of the intersection.

25

The crucial change from the off-line partial order reduction presented in
Section 2.1 is with respect to Condition C3. The cycles found during an on-the-
fly construction are cycles of the automaton for .A N B, rather than of the state
space automaton ,4. It can be shown [33] that relativizing C3 to these cycles,
i.e., fully expanding a state when it closes a cycle in the intersection of .4 and
B, still preserves the correctness of the algorithm. In fact, in the intersection,
cycles are going to be larger (they may include several iterations of the cycles of
the state space, coupled with different values for the property automaton). On
the other hand, since the reduced state space, as represented by the automaton
,4, contains fewer executions, some of the counterexamples may not be included,
deferring the discovery of a counterexample.

2.6 S y m b o l i c m o d e l check ing

By combining various verification techniques, one may obtain the benefits offered
by each one of them separately. Obvious candidates for such a combination are
partial order reduction and symbolic model checking. The main problem is that
the former is usually implemented using a DFS procedure that handles one state
at a time, while the latter is described using a fixpoint computation that involves
many states at the same time. This effects Condition C3 (or one of its variants).
One proposal for changing this condition for symbolic model checking is that the
fixpoint computation can be seen as a breadth first search (BFS) [1]. With each
successive fixpoint approximation, a new layer of states with further distance
from the original ones are discovered. The cycle closing condition can then be
relativized to BFS by pessimistically assuming that states in a new layer that
also appeared in previous layers are closing a cycle [5].

Another solution is based on the observation that each cycle of the state space
must be composed of several local cycles of the separate concurrent processes.
The local structures of the processes are analyzed and at least one transition from
each local cycle is selected. The selected transitions are called sticky transitions,
and the following condition is imposed:

C3iv [23] If s is not fully expanded then no transition a E ample(s) is sticky.

It can easily shown that Condition C3iv implies C31i. With this new condition,
the need to find when a cycle is closed during the state space exploration is
eliminated. One can in fact combine Conditions C3iv with C2 as follows:

C 2 + 3 If s is not fully expanded then no transition a E ample(s) can be sticky
or visible.

Sticky transitions decrease the reduction and thus their number need to be mini-
mized. One observation is that there are some dependencies between local cycles
of different processes. If one local cycle includes only local operations and receiv-
ing messages, another local cycle that includes sending messages must also be
included to form global cycle of the state space. Similarly, if one local cycle only
decreases the value of a variable, a local cycle of another process that increases

26

it is also needed to complete a global cycle. Thus, local cycles that change some
resource in a monotonic way can be exempted from the search for sticky transi-
tions (but not at the same time with cycles that change it in the complementary
way).

2.7 Reducing visibility

Experimental results [17] show that the reduction decreases rapidly with the
number of visible transitions. One way to reduce the effect of visibility on par-
tial order reduction is to let it dynamically decrease while checking the specifica-
tion [21]. We will illustrate this with an example. Suppose that the property to
be checked is 9 = [](P --4 Dq). The negation of the property is -"9 = ~(pAO-~q).
Once the automaton B constructed for -"9 has encounted a state where p holds,
it may concentrate on checking O-~q.

In this case, one may start the reduction by considering visible transitions
with respect to all the propositions that appear in the formula. In this case, the
relevant propositions are {p, q}. Then, once p occurs, we can then reduce the
visible transitions to those that can affect the truth value of q, which is the only
proposition that appears in ~-~q. Those transitions that can effect p but not q
can now be considered invisible. An LTL translation algorithm that produces an
automaton B that allows monotonically reducing the set of visible transitions as
B executes appears in [10].

A c k n o w l e d g e m e n t The author would like to thank Marius Minea for carefully
reading the paper and many useful comments.

References

1. R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and S.K. Rajamani, Partial or-
der reduction in symbolic state space exploration. In Proceedings of the Conference
on Computer Aided Verification (CA V'97), Haifa, Israel, June 1997.

2. M.C. Browne, E.M. Clarke, O. Grfimberg, Characterizing finite Kripke structures
in propositional temporal logic, Theoretical Computer Science 59 (1988), Elsevier,
115-131.

3. R.E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE
Transactions on Computers, C-35(8), 1986, 677-691.

4. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, Symbolic model
checking: 102° states and beyond, Information and Computation, 98 (1992), 142-
170.

5. C.T. Chou, D. Peled, Verifying a model-checking algorithm, Tools and Algorithms
for the Construction and Analysis of Systems, LNCS 1055, Springer, 1996, Passau,
Germany. 241-257.

6. E.M. Clarke, E.A. Emerson, Design and synthesis of synchronous skeletons using
branching time temporal logic, Logic of Programs, Yorktown Heights, NY, LNCS
131, Springer, 1981, 52-71.

7. C. Courcoubetis, M.Y. Vardi, P. Wolper, M, Yannakakis, Memory-efficient algo-
rithms for the verification of temporal properties, Formal methods in system design
1 (1992) 275-288.

27

8. E.A. Emerson, E.M. Clarke, Characterizing correctness properties of parallel
programs using fixpoints, Automata, Languages and Programming, LNCS 85,
Springer, 1980, 169-181.

9. R. Gerth, R. Kuiper, W. Penczek, D. Peled, A partial order approach to branching
time logic model checking, ISTCS'95, 3rd Israel Symposium on Theory on Com-
puting and Systems, IEEE press, 1995, Tel Aviv, Israel, 130-139. A full version was
accepted to Information and Computation.

10. R. Gerth, D. Peled, M.Y. Vardi, P. Wolper, Simple on-the-fly automatic verification
of linear temporal logic, PSTV95, Protocol Specification Testing and Verification,
Chapman & Hall, 1995, Warsaw, Poland, 3-18.

11. R.J. van Glabbeek, W.P. Weijland, Branching time and abstraction in bisimulation
semantics, Information Processing 89. Elsevier Science Publishers, 1989, 613-618.

12. P. Godefroid. Using partial orders to improve automatic verification methods. In
Proc. 2nd Workshop on Computer Aided Verification, LNCS 531, Springer, New
Brunswick, N J, 1990, 176-185.

13. P. Godefroid, D. Pirottin, Refining dependencies improves partial order verification
methods, 5th Conference on Computer Aided Verification, LNCS 697, Elounda,
Greece, 1993, 438-449.

14. P. Godefroid, D. Peled, M. Staskauskas, Using partial order methods in the for-
real validation of industrial concurrent programs, 1996, ISSTA'96, International
Symposium on Software Testing and Analysis, ACM Press, San Diego, California,
USA, 261-269.

15. P. Godefroid, P. Wolper, A Partial approach to model checking, 6th Annual IEEE
Symposium on Logic in Computer Science, 1991, Amsterdam, 406-415.

16. G.J. Holzmann, P. Godefroid, D. Pirottin, Coverage preserving reduction strategies
for reachability analysis, Proc. 12th Int. Conf on Protocol Specification, Testing,
and Verification, INWG/IFIP, Orlando, Florida, 1992, 349-363.

17. G.J. Holzmann, D. Peled, An improvement in formal verification, 7th International
Conference on Formal Description Techniques, Berne, Switzerland, 1994, 177-194.

18. S. Jha, D. Peled, Generalized stuttering equivalence for linear temporal logic spec-
ification, Submitted for publication.

19. S. Katz, D. Peled, Verification of distributed programs using representative inter-
leaving sequences, Distributed Computing6 (1992), 107-120. A preliminary version
appeared in Temporal Logic in Specification, UK, 1987, LNCS 398, 21-43.

20. S. Katz, D. Peled, Defining conditional independence using collapses, Theoretical
Computer Science 101 (1992), 337-359, a preliminary version appeared in BCS-
FACS Workshop on Semantics for Concurrency, Leicester, England, July 1990,
Springer, 262 280.

21. I. Kokkarinen, A. Valmari, D. Peled, Relaxed visibility enhances partial order re-
duction, CAV'97, June 1997, Israel, LNCS 1254, 328-339.

22. R.P. Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, Princeton, New Jersey,
1994.

23. R.P. Kurshan, V. Levin, M. Minea, D. Peled, H. Yenigiin, Static partial order
reduction, 345-357, 1997.

24. L. Lamport, What good is temporal logic, in R.E.A. Mason (ed.), Information
Processing '83: Proc. of the IFIP 9th World Computer Congress,, Paris, France,
North-Holland, Amsterdam, 1983, 657-668.

25. O. Lichtenstein, A. Pnueli, Checking that finite-state concurrent programs satisfy
their linear specification, Proceedings of the l l th Annual Symposium on Principles
of Programming Languages, AC.X[Press, 1984, 97-107.

28

26. Z. Manna, A. Pnueli, How to cook a temporal proof system for your pet language.
Proceedings of the Symposium on Principles on Programming Languages, Austin,
Texas, 1983, 141-151.

27. A. Mazurkiewicz, Trace theory, Advances in Petri Nets 1986, Bad Honnef, Ger-
many, LNCS 255, Springer, 1987, 279-324.

28. R. Milner, A calculus of communicating system, LNCS, Springer, 92.
29. R. de Nicola, F. Vaandrager, Three logics for branching bisimulation, Logic in

Computer Science '90, IEEE, 1990, 118-129.
30. D. Peled, On projective and separable properties, Theoretical Computer Science,

186(1-2), 1997, 135-155.
31. D. Peled, A. Pnueli, Proving partial order properties, Theoretical Computer Sci-

ence, 126(1994), 143-182.
32. D. Peled, All from one, one for all, on model-checking using representatives, 5th

Conference on Computer Aided Verification, Greece, 1993, LNCS, Springer, 409-
423.

33. D. Peled, Combining partial order reductions with on-the-fly model-checking. For-
mal Methods in System Design 8 (1996), 39-64. A preliminary version appeared in
Computer Aided Verification 94, LNCS 818, Springer, Stanford, USA, 377-390.

34. D. Peled, Th. Wilke, Stutter-invariant temporal properties are expressible without
the nexttime operator, Information Processing Letters 63 (1997), 243-246.

35. D. Peled, Th. Wilke, P. Wolper, An algorithmic approach for checking closure
properties of 0~-Regular Languages, CONCUR'96, 7th International Conference
on Concurrency Theory, Piza, Italy, LNCS 1119, Springer, August 1996, 596-610.
A full version accepted to Theoretical Computer Science.

36. J.P. Quielle, J. Sifakis, Specification and verification of concurrent systems in CE-
SAR, Proceedings of the 5th International Symposium on Programming, 1981,
337-350.

37. A. Valmari, Stubborn sets for reduced state space generation, lOth International
Conference on Application and Theory of Petri Nets, Bonn, Germany, 1989, LNCS
483, Springer, 491-515.

38. A. Valmari, A stubborn attack on state explosion. Formal Methods in System
Design, 1 (1992), 297-322.

39. A. Valmari, On-the-fly verification with stubborn sets, Proceedings of CAV '93,
5th International Conference on Computer-Aided Verification, Elounda, Greece,
LNCS 697, Springer 1993, pp. 397-408.

40. A. Valmari, Stubborn set methods for process algebras, POMIV'96, Partial Orders
Methods in Verification, American Mathematical Society, DIMACS, Princeton, N J,
USA, 1996, 213-232.

41. M.Y. Vardi, P. Wolper, An automata-theoretic approach to automatic program
verification, 1st Annual IEEE Symposium on Logic in Computer Science, 1986,
Cambridge, England, 322-331.

42. B. Willems, P. Wolper, Partial-order methods for model-checking: from linear time
to branching time, 11th Annual IEEE Symposium on Logic in Computer Science,
New Brunswick, N J, USA, 1996, 294-303.

