
Formal Verification of Out-of-Order Execution
Using Incremental Flushing

Jens U. Skakkeb~ek 1, Robert B. Jones i,2, and David L. Dill i

1 C o m p ~ SystemsLabor~ory, St~ford Umversity, Stanford, CA 94305, USA
{jus,dill}@cs.stanford.edu

Str~e~c CAD Labs, Intel, JFT-104,2111NE 25th Ave.,Hillsboro, OR 97124, USA
rjones@ichips.intel.com

Abstract. We present a two-part approach for verifying out-of-order execution.
First, the complexity of out-of-order issue and scheduling is handled by creating
an in-order abstraction of the out-of-order execution core. Second, incremental
flushing addresses the complexity difficulties encountered by automated abstrac-
tion functions on very deep pipelines. We illustrate the techniques on a model of
a simple out-of-order processor core.

1 Introduction
Formal verification of microprocessor designs using theorem proving aims at proving
that a processor model behaves as defined by an instruction-set architecture (ISA). The
ISA captures the programmer-level view of the machine. This approach requires an ab-
straction function that relates the state of the processor model with the corresponding
state of the ISA. Finding this abstraction function manually for pipelined designs is
tedious and time consuming. In response, Butch and Dill devised an approach that au-
tomatically generates the abstraction function byflushing the implementation state [3].
The technique has been extended to dual-issue and super-scalar architectures [7, 2, 15].

While formal verification techniques exist for pipelined and super-scalar architec-
tures, experience verifying out-of-order architectures is minimal. The distinct features
of out-of-order architectures challenge existing verification approaches. First, the ex-
tended instruction parallelism in out-of-order architectures results in many complex
interactions between executing instructions. This greater complexity makes it very dif-
ficult to devise an abstraction function. Second, large (> 40 element) buffers are used
to record and maintain the program order of instructions. Burch and Dill's automated
pipeline flushing approach does not work for out-of-order architectures in practice be-
cause the number of cycles required to empty the buffer completely is so large. The
logical formulas are too complex to manipulate in proofs and often too complex even
to construct.

We present a two-part approach that deals with the out-of-order scheduling logic and
the in-order buffering mechanisms separately. First, the implementation is modified to
derive an in-order abstraction. These modifications bypass the out-of-order logic and
result in instructions executing in order. By exploiting domain-specific knowledge, we
are able to establish a functional equivalence relation between the out-of-order imple-
mentation and the abstraction. The second step of our technique shows that the in-order

99

abstraction is functionally equivalent to the ISA. This is accomplished via a technique
introduced in this paper that we call incrementalflushing, based on the Burch-Dill au-
tomatic flushing approach and the self-consistency technique of Jones et al. [8]. In-
cremental flushing reduces the verification complexity associated with flushing lengthy
pipelines. This technique is also applicable to verification of other deeply-pipelined
hardware designs, not just out-of-order microarchitectures.

We have created a simple model of an out-of-order execution core that we use to il-
lustrate our approach. Although our example is not representative of industrial-scale de-
signs, it captures essential features of out-of-order architectures: large queuing buffers,
resource allocation within the buffers, and data-path scheduling of execution resources.
However, using the techniques presented here, we were able to verify it using the Stan-
ford Validity Checker (SVC) [1]. In particular, we have verified its correctness for any
(reasonable) scheduling algorithm.

2 Related Work
Sawada and Hunt's theorem-proving approach uses a table of history variables, called a
micro-architectural execution trace table (MAETF) [14, 13]. The MAETT is an inter-
mediate abstraction that contains selected parts of the implementation as well as extra
history variables and variables holding abstracted values. It includes the ISA state and
the ISA transition function. A predicate relating the implementation and MAETT is
found by manual inspection and proven by induction to be an invariant on the execution
of the implementation. In our approach, the intermediate abstraction does not include
the ISA state, but is closer to the implementation in abstraction level. This minimizes the
manual work needed to find the relation between the implementation and abstraction.
We then use an incremental flushing technique to automatically generate the abstrac-
tion function, significantly reducing the manual work required to relate the intermediate
abstraction to the ISA.

Datum and Pnueli generalize an ISA specification to a non-deterministic abstrac-
tion [4]. It is then verified that the implementation satisfies the abstraction by manually
establishing and proving the appropriate invariants. They have applied their technique to
the Tomasulo algorithm [5], which has out-of-order instruction completion. In contrast,
our out-of-order model features in-order retirement. In our approach, the intermediate
abstraction executes instructions in-order. Damm and Pnueli's abstraction represents all
possible instruction sequences which observe dataflow dependencies. Applying their
method to architectures with in-order retirement would require manual proof by in-
duction that the intermediate abstraction satisfies the ISA. We automate this proof by
incremental flushing.

Henzinger et al. use Tomasulo's algorithm to illustrate a method for manually de-
composing the proof obligation [6]. They provide abstract modules for parts of the
implementation. These modules correspond to implementation internal transactions.
Similar to our approach, the abstractions are invariants on the implementation and are
extended with auxiliary variables. Again, our approach automates part of the abstraction
process.

McMillan model checks the Tomasulo algorithm by manually decomposing the
proof into smaller correctness proofs of the internal transactions that together form

100

one step of execution [11]. Furthermore, he uses symmetry reduction technique to ex-
tend the proof to a large number of execution units. Our proofs are also decomposed
into properties of internal transactions. In contrast to an automated model checking ap-
proach, our theorem-proving based method is able to handle internal buffers of arbitrary
size.

Incremental flushing is related to the distributed systems work of Katz [10]. His
formalization deals with atomic, concurrent transactions which can be reordered into
a more convenient form for formal analysis--without affecting the soundness of the
final result. However, the framework of distributed transactions cannot be directly ap-
plied to verification microprocessor architectures where the control logic dictates the
sequencing of internal transactions.

3 Preliminaries
The desired behavior of a processor is defined by an instruction-set architecture (ISA).
The ISA represents the programmer-level view of the machine where instructions ex-
ecute sequentially. The ISA for our example is shown in Figure la. The simple state

Instructions

(a)

lnstmcfions

I
/ ~ w2,w3,wl, / '

; ~_ ~ Retirement Buffer '~

i
i . I

(b)

Register File

Fig. 1. (a) The simple ISA model. (b) Instruction flow in our out-of-order execution core IMPL.

consists of a register file (RF), while the next-state function is computed with an exe-
cution unit (EU) that can execute any instruction. The ISA also accepts a b u b b l e input
that leaves the state unchanged. Note that our ISA model does not include a program
counter or memory state--as these are also omitted from our simplified out-of-order
model.

Modern processors do not implement the ISA in this manner, because the perfor-
mance would be abysmal. In out-of-order architectures, instructions are fetched, de-
coded, and sent to the execution core in program order. Internally, however, the core
executes instructions out-of-order, as allowed by data dependencies. This allows inde-
pendent instructions to execute concurrently. Finally, instruction results are written back
to architecturally-visible state (the register file) in the order they were issued.

Consider our example out-of-order execution core (IMPL) shown in Figure 1 b. The
architectural register file (RF) contains the current state of the ISA-defined architectural

101

registers. When an instruction is issued, new entries are allocated in both the dispatch
and retirement buffers, and the register translation table (RTr) entry for the logical
register corresponding to the instruction destination is updated. The RTr is used to
locate the instruction's source data. Instructions are dispatched, possibly out-of-order,
from the dispatch buffer (DB) to individual execution units when their operands are
ready and an execution unit is available. When an instruction finishes execution, the
result is written back to the retirement buffer (RB). This data is also bypassed into the
DB for instructions awaiting that particular result. Finally, the RB logic must ensure that
instruction results are retired (committed to architectural state) in the original program
order. When an RB entry is retired, the RTr is informed so that the logical register entry
corresponding to the instruction's destination can be updated if necessary. IMPL also
accepts a special bubbJ.e flushing input in place of an instruction. Intuitively, a b u b b l e
is similar to a t~OP instruction but does not affect any state or consume any resources
after being issued.

We have made significant simplifying assumptions in our processor model: instruc-
tions have only one source operand, and only one issue and one retire can occur each
cycle. Our model is out-of-order because the execution units have variable latency. We
also omit a "front-end" with fetch, decode, and branch prediction logic. Omitting these
features allowed our efforts to focus on the features which make the out-of-order ver-
ification problem difficult: the out-of-order execution and the large effective depth of
the pipeline. The SVC verification reported in this paper used a model with unbounded
buffers.

4 The Approach
The goal of our verification approach is to prove that the out-of-order implementation
IMPL (as described by an HDL model) satisfies the ISA model. We define Ji to be the
implementation next-state function, which takes a state qi and an input instruction i and
returns a new state q~, i.e., q~ = ~i(qi, i). We extend ~i in the obvious way to operate
over input sequences w = i t . . . in. We define 5s similarly for ISA.

Let ~r be a size function that returns the number of currently executing instructions,
i.e., those that have been issued but not retired. We require that cr(q °) = 0 for an
initial implementation state qO. We define an instruction sequence w to be completed iff
¢r(~i (q~, w)) = 0, i.e., all instructions have been retired after executing w. We use the
projection function 7r~(qi) to denote the register file contents in state qi- For clarity in

presentation, we define qil =~ qi2 to be 7r~(qil) : 7r~(qi2), and we will sometimes use

when the projection 7r~ is redundant on one side of the equality.
The overall correctness property for IMPL with respect to ISA is expressed as:

Correctness For every completed instruction sequence w and initial state qO,

~j o w
i(qi , w) = 6s(Tr~(q~'), w).

That is, the architecturally visible state in IMPL and ISA is identical after executing
any instruction sequence that retires all outstanding instructions in the implementation.
This is the same commuting property used by several approaches, including [3]. Note
that because our model is only an execution core, we are only checking the correctness

102

of the register file. A (future) verification of a more complete processor model could
check the program counter and memory.

We verify the correctness property by dealing with the out-of-order and in-order
parts of IMPL separately. First, we derive an in-order intermediate abstraction (ABS)
from IMPL. We then establish an equivalence relation between ABS and IMPL. In the
second step, we demonstrate functional equivalence between ABS and ISA. By transi-
tivity of equality of the final register file values, this establishes functional equivalences
between IMPL and ISA.

5 First Step: Functional Equivalence of IMPL and ABS
ABS is derived directly from IMPL by removing the "out-of-orderness" while preserv-
ing the in-order buffering mechanism (Figure 2). In ABS, the DB has been removed:
instructions are executed immediately upon issue. However, the results are queued and
not written to architectural state until later. In the ABS model for this paper, instructions
are issued, executed, and written into an annotated RB in one clock. The write-only an-
notated state in the RB contains some of the information lost with the DB removal and
aids in finding invariants. ABS accepts the same b u b b l e input as IMPL. We add an
extra input to ABS called the retirement flag that signals when to retire the oldest in-
struction. ABS thus has more possible behaviors than IMPL: while instruction results
are computed immediately in ABS, they may be buffered indefinitely in the annotated
RB before being committed to architectural state.

R e t i r e m e n t I n p u t s

I n s t r u c t i o n s

, ~ R e t i r e m e n t B u f f e r

i
i

i
.

R e g i s t e r F i le

t

Fig. 2. Instruction flow in the intermediate abstraction.

We must prove that IMPL is a refinement of ABS. We define 5,~ to be the ABS
next-state function, which takes an initial state qa and a pair consisting of an input
instruction i and a Boolean-valued retirement input r, and returns a new state q ' , i.e.,
q'~ = 6a (qa, (i, r)). The retirement input r indicates in each step of execution whether or
not to retire a result. A retirement input r is allowed by a state q~ and input i iff r never
tells ABS to retire an instruction when one is not waiting. Note that it is allowable for r
to not retire a waiting instruction. We extend the definition of ~ to sequences of instruc-
tion inputs w and retirement inputs wr = r 0 . . . rn such that q~ = 6a(q~, (w, wr)) 1.

We define states qi of IMPL and q~ of ABS to be consistent when qi _w q~,- We must
demonstrate that:

1 The pair of sequences (w, wr) is easily derived from the corresponding sequence of pairs
(io, ro) , . . . , (i,,,-,~).

103

Impl-ABS Refinement For every completed instruction sequence w and every pair of
consistent initial states q~, qO, there exists a sequence of retirement inputs wr allowed
by qO and w such that

: t ~ o 5i(q °, w) ~ a(qa, (w, Wr)).

We prove that IMPL is a refinement of ABS by induction: we show that for each
step that IMPL makes, there exists an ABS step such that the register files are identical.
Forcing ABS to retire instructions in lock step with IMPL is straightforward. ABS re-
tirement inputs are generated from an oracle which observes whether or not the IMPL

is retiring an instruction and instructs ABS to do the same thing. We establish qi ~- q~
by proving a stronger property. We derive a relation 7~ between IMPL and ABS states

such that: T~(qi, q~) ~ (qi ~- qa). We demonstrate that ~ is a simulation relation [9]:

Proof Obligation 1 (IMPL-ABS Equivalence)

1. (Base Case) For every initial implementation state q~, there exists an initial ABS
state qO, such that:

Tg(qO, qO).

2. (Induction Step) For every instruction i, for every pair of consistent initial states
q°,qa, and for every instruction sequence w and retirement sequence Wr with re-

5 o sulting states qi = 6i(q °, w), qa = a(qa, (W, Wr)), there exists a retirement input
r such that

TC(qi, qa) ~ n(5i(qi, i), 5a(q~, (i, r))).

Deriving 7~ is non-trivial. One way to construct ~ is to mechanically derive the weakest

invariant which implies q~ ~ qa. Of course, this technique blows up when applied
directly to a complex circuit.

The relation ~ is formed as a conjunction of the IMPL reachability invariant, the
ABS reachability invariant, and assertions relating the IMPL state with the ABS state.
The difficulties associated with deriving invariants are ubiquitous. We used an ad hoc
collection of domain-specific techniques we found to be quite effective. The process
of deriving and proving the reachable-state invariant for IMPL was simplified by rec-
ognizing that the out-of-order mechanism in a given cycle consists of a number of
transactions--each of which operate on only part of IMPL state. In IMPL, these are
issue, dispatch, writeback, and retire. The ABS reachability invariant is easily derived
from the IMPL reachability invariant, because ABS is essentially a simple IMPL. Some
IMPL state is not present in ABS, and other IMPL state has been renamed and is now
part of the annotated RB.

We added link assertions which relate partially executed instructions in the DB and
RB of IMPL to their counterparts in the annotated RB of ABS. The link assertions
ensure that the partially executed instructions in the implementation always have the
correct value or the information needed (pointers or data) to eventually compute the
correct value. Run times and memory usage for proving the proof obligations on our
example are reported in Section 7.

104

I issue, no retire (o '= o+1) ; : ; no issue, retire (o '= o - l) N% issue, retire (o '= 6) (~ no issue. , o ream (o '= o)

i2

'::2 i3

- r l -Ti 4 " . •

i

r5 1-6

(a)

• 0 ~ : -

lO o0 0 - - 0

.. ,. o

3 2 1 • o0 3 •

1
- ~: ::0 3 e 2 • I ='-0

(b) (c)

Fig. 3. (a) A Max-n execution e,~. (b) An equivalent non-diagonal execution e,~. (c) An equivalent
Max-1 execution el. Labels in and rn denote the issue and retirement of instruction number n.
The label rnllin denotes simultaneous issue and retire. 7- : n is a shorthand for n cycles where
in each cycle, b u b b l e s are issued and nothing is retired. The numbers indicate the sizes of each
state. The squares indicate the distance between e¢~ and el.

6 Second Step: Functional Equivalence of ABS and ISA
In this section, we introduce incremental flushing, and use it to prove that ABS satisfies
ISA. Formally, we desire to establish that:
ABS-ISA Equivalence For every completed instruction sequence w, initial ABS state
qO, and sequence of retirement inputs Wr allowed by w and q: :

RF
6a(q~, (w, wr)) 6s(Zrr~(q~), w).

ABS contains an annotated RB that queues instruction results before they are com-
mitted to architectural state. Recall that the Burch-Dill abstraction function flushes an
implementation (by inserting bubbles) for the number of clock cycles necessary to
completely expose the internal state. In the case of a simple five-stage pipeline, only
five steps are required to complete the partially executed instructions. Following this
approach with our model would compare a potentially full annotated RB with the ISA
model. The Butch-Dill flushing technique would unroll ABS to the depth of the an-
notated RB, resulting in a logical expression too large for the decision procedure to
check.

Our incremental flushing approach overcomes this unmanageable complexity. In-
stead of flushing the entire pipeline directly, a set of smaller, inductive flushing steps
is performed. Taken together, these proof obligations imply the monolithic flushing op-
eration. To illustrate, consider the graphical presentation of three different executions
of ABS in Figure 3. We define the execution of a system as the sequence of states that
the system passes through when executing a given pair of input sequences (w, wr). For
instance, the execution shown in Figure 3a is a result of executing the input sequence:

(/ 1 , F) , (i 2 , F) , (bubble, F) , < i3 , F) , (bubble, T) , (i 4 , F) ,

(i5, T), (bubble, T), (bubble, F), (i6, T), (bubble, T), (bubble, T)

105

Apart from self-loops, edges are only traversed when instructions are issued or retired.
We use e(qa, (w, w~)) to denote the execution (sequence of states) resulting from

the application of ~a to qa and (w, w~). We define last(e(qa, (w, Wr))) as the last state
of the execution. Note that by definition:

last(e(qa, (w, Wr))) = ~a(qa, (W, Wr))).

Each state in an execution is associated with the number of active instructions---defined
earlier as the size function a. This is illustrated in Figure 3c. We call an execution where
for all states a _< n a Max-n execution (denoted ¢n). Accordingly, completely serialized
executions with at most one outstanding element are Max-1 executions (denoted 61).

Our verification of ABS-ISA equivalence proceeds in two steps. First, we establish
that:
Incremental Flushing For every initial state q~ and Max-n execution ~ (q~, (w, wr)),
there exists (w I , w~) (derived from W, Wr by reordering issues and retires) and a corre-
sponding Max-1 execution 61 (q~, (w 1 , w~)) such that:

last(c~(q~, (w, wr))) = last(el (qO, (w 1, w~))).

A Max-1 execution is derived from a Max-n execution by reordering the issues and
retires. This notion is based on the concept of self-consistency: execution results should
be equivalent for certain classes of inputs [8]. The final results of Max-n and Max-1
executions will be identical if we can prove inductively that reordering issue and retires
for distinct instructions does not change the resulting state. Section 6.1 details the proof
obligations for this step.

The second ABS-ISA verification step shows that all Max-1 executions produce the
same result as the ISA model.
Max-1 ABS-ISA Equivalence For every initial state q~, and for every Max-1 execution
61 corresponding to an instruction sequence w 1 and allowed retirement sequence wlr:

last(el (q~, (w 1 , w~))) -~ 6s(Tr~(q~), w).

Proving this is much simpler than the original problem of directly proving ABS-ISA
equivalence, since only one instruction is present in ABS at a time. The proof is carried
out by induction on the length of instruction sequences, as described in Section 6.2.

6.1 Incremental Flushing

Space limitations prevent us from presenting the complete proofs justifying the incre-
mental flushing approach. We will, however, state the verification steps and resulting
p~oof obligations. We also include a proof sketch for the inductive step of incremental
flushing.

The incremental flushing proof step can be split up into three proof obligations,
as illustrated in Figure 4a-c. Recall that 6a takes a state, an input, and a retirement
input flag. We use 2' and F for the values of the retirement input flag, where T forces
ABS to retire an instruction, and F prevents it from doing so. The first proof obligation
demonstrates the independence of inserting and removing elements from the system:

106

~=k>O retire k-I 0

k+l " retire k k k 1 retire 0 rrr

(a) (b) (c) (d)

Fig. 4. (a) Proof Obligation 2, the nodes are labeled with their sizes. (b) Proof Obligation 3. (c)
Proof Obligation 4. (d) Proof Obligation 5, the ISA induction step.

Proof Obligation 2 (Reordering Step) For every reachable state qa s.t. a(qa) > 1, and
for every input i:

6a(C~a(qa, <{, F)), <bubble, T)) = 6a(6a(qa, <bubble, T>), <{, F)).

In other words, we must show that the relative order of retirement and issue is immate-
rial for distinct instructions. The next proof obligation requires that simultaneous issue
and retirement of distinct instructions yields the same result as a sequential retirement
and issue:

Proof Obligation 3 (Parallel Correctness) For every reachable state qa s.t. a (q~) >_ 1,
and for every input i:

5a(q~, (i, T>) ---- 6a(Sa(qa, (bubble, T>), (i, F>).

The final proof obligation illustrates that bubb l e inputs without retirement do not
change ABS state:

Proof Obligation 4 (Correctness of Self-Loops) For every reachable state q~:

6a(qa, <bubble, F)) = qa.

Taken together, these three proof obligations establish the Incremental Flushing step
of our verification, i.e., that every Max-n execution has a functionally equivalent Max-1
execution. We next give a brief sketch of the proof.

Proof Sketch: We assume the three Proof Obligations shown above and must show
that for every Max-n execution e,~ there exists a corresponding Max-1 execution el
such that

last(en(q~, (w, Wr))) = last(el (q~, (w t, Wrl))).

We perform the proof in two steps, as illustrated in Figure 3. Given an execution e,~
(Figure 3a) we first show that we can construct a "non-diagonal" execution e,~ (Fig-
ure 3b) from en that does not have any diagonals nor self-loops, and such that

last(en(q °, <w, Wr))) = last(e~(q °, (zb, wr))).

This is proved by induction on the length of en. We use Proof Obligation 3 to replace
any diagonal edge with horizontal and vertical edges. Proof Obligation 4 is used to
remove the self-loops.

107

The second step shows that we can derive a Max-1 sequence el (Figure 3c) such
that

last(cc~(q °, (zb, Cr))) = last(G1 (qO, (w x ' wl))).

We prove this by induction on the distance between the non-diagonal Max-fi execution
e¢~ and the Max-1 execution 61, where distance is the number of"squares" that separate
the two executions. For example, eight squares separate the executions in Figures 3b
and 3c. We repeatedly apply Proof Obligation 2, "folding" the Max-h execution e¢~
back to the corresponding Max-1 execution el. This is possible because the input se-
quences resulting in E,~ and ca are completed (defined in Section 4). Each folding is a
reordering of independent retires and issues.
End Proof Sketch.

Note that each folding is a rewrite of the execution. It is easy to see that Proof
Obligations 2-4 together are a confluent (Church-Rosser) set of rewrite rules, where
the Max-1 execution is the unique normal form.

6.2 Max-1 ABS-ISA Equivalence

The final verification step is to show that all Max-1 executions of ABS are functionally
equivalent with ISA. We can divide the Max-1 execution up into issue-retire fragments
that are simple "steps" in the graphical illustration. The proof is a simple induction on
the number of these fragments, comparing the execution and retirement of an arbitrary
instruction from an arbitrary ABS Max-1 state with the result that is retired by ISA.
This is illustrated in Figure 4d. Formally:

Proof Obligation 5 (ABS-ISA Induction) For every initial IA state q: and every in-
struction i:

6a(6a(q °, (i, F}), (bubble, T}) ~ 6, (TrRF(%°), i).

Because we have previously shown that a functionally equivalent Max-1 execution can
be derived from an arbitrary Max-n execution, this step completes the proof of ABS-
ISA equivalence.

7 Results
We have mechanically checked Proof Obligations 1-5 for our models using the Stanford
Validity Checker (SVC). The three models (IMPL, ABS, and ISA) and the proof obli-
gations were written in a Lisp-like HDL. The proof formulas were constructed by sym-
bolically simulating the models in Lisp. SVC was invoked through a foreign-function
interface to decide the validity of the formulas. SVC's built-in support for linear arith-
metic was used to model buffer pointers for the IMPL, RB, and ABS annotated RB. We
also extended SVC with special read and write updates to support the writeback to the
associative memory in the dispatch buffer.

The total CPU run times and number of case splits required are enumerated in Fig-
ure 5. The number of case splits is a rough indicator of the relative complexity of the
simplified formula.

108

IMPL-ABS IMPL Reach. Inv. IMPL-ABS
Verification CPU Case CPU Case

(sec) Splits (sec) Splits

Base Case 1.9 10 0.7 4
Issue 454.8 26,214 130.9 18,686
Dispatch 49.1 12,036 163.3 45,828
Writeback 35.0 842 42.1 4,426
Retire 29.5 8,392 307.0 59,474

(a)

ABS-ISA I cPU Case
Verification (sec) Splits

ABS Inv. 222.2 48,440
Obl. 2 37.6 530
Obl. 3 26.2 2
Obl. 4 7.0 2
Obl. 5 17.8 14

(b)

Fig. 5. (a) SVC run-times and number of case splits required for Proof Obligation 1, specified for
each IMPL transaction. (b) SVC run-times and case splits for the verification of ABS. All runs
performed on a 200-MHz Intel Pentium Pro system running Redhat Linux.

8 Discussion
Our work addresses two of the major problems in symbolic verification of out-of-order
processor designs: the complexity of the out-of-order scheduling logic and the deep
effective length of the pipeline. While our IMPL example is far simpler than an ac-
tual out-of-order implementation, it is representative of the architectural features which
make out-of-order verification difficult for existing techniques.

There is still much work to be accomplished in addressing the complexity limita-
tions encountered by formal methods on practical industrial designs. As these problems
are solved, we expect that our approach will be directly applicable. We also anticipate
that the incremental flushing approach will find use in a wide variety of verification
problems involving very deep pipelines, such as digital-signal processing.

We are currently formalizing the incremental flushing theory in the PVS theorem
prover [12]. For each new design, PVS will automatically instantiate the proof obliga-
tions and pass them to SVC for automatic verification.

Acknowledgments
We thank Mark Aagaard, Tom Melham, and Carl Seger for reading drafts of this paper.
They each provided detailed and helpful feedback.

The second author is supported at Stanford by an NDSEG graduate fellowship.
The other authors are partially supported by DARPA under contract number E276. In-
sight about the difficulties associated with verifying pipelined processors was developed
while the third author was a visiting professor at Intel's Strategic CAD Labs in the sum-
mer of 1995.

References

1. C. Barrett, D. L. Dill, and J. Levitt. Validity checking for combinations of theories with
equality. In FMCAD "96, volume 1166 of LNCS, pages 187-201, Stanford, CA, USA,
November 1996. Springer-Verlag.

2. J.R. Burch. Techniques for verifying superscalar microprocessors. In DAC, pages 552-557,
Las Vegas, Nevada, USA, June 1996. ACM Press.

109

3. J. R. Butch and D. L. Dill. Automatic verification of microprocessor control. In David L.
Dill, editor, CAV, volume 818 of LNCS, pages 68-80, Stanford, California, USA, June 1994.
Springer-Vedag.

4. W. Damm and A. Pnueli. Verifying out-of-order executions. In H.E Li and D.K. Probst,
editors, CHARME "97, pages 23-47, Montreal, Canada, October 1997. Chapman & Hall.

5. J.L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann, 1990.

6. T. A. Henzinger, S. Qadeer, and S. K. Rajamani. You assume, we guarantee: Methodology
and case studies. Technical report, Electronics Research Lab, Univ. of Californaia, Berkeley,
CA 94720, 1998.

7. R.B. Jones, D. L. Dill, and J. R. Burch. Efficient validity checking for processor verification.
In ICCAD'95, November 1995.

8. R. B. Jones, C.-J. H. Seger, and D. L. Dill. Self-consistency checking. In FMCAD "96, vol-
ume 1166 of LNCS, pages 159-171, Stanford, CA, USA, November 1996. Springer-Vedag.

9. B. Jonsson. On decomposing and refining specifications of distributed systems. In J. W.
de Bakker, W.-E de Roever, and G. Rozenberg, editors, Stepwise Refinement of Distributed
Systems. Models, Formalisms, Correctness., volume 430 of LNCS, pages 361-385, Mook,
The Netherlands, May-June 1989. Springer-Verlag.

10. S. Katz. Refinement with global equivalence proofs in temporal logic. In D. A. Peled,
V. R. Pratt, and G. J. Holzmann, editors, Partial Order Methods in Verification, volume 29 of
DIMACS, Series in Discrete Mathematics and Theoretical Computer Science, pages 59-78,
Princeton, NJ, USA, 1996. Amer. Math. Society.

11. K. McMillan. Verification of an implementation of Tomasulo's algorithm by compositional
model checking. Appears in this volume.

12. S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining specifi-
cation, proof checking, and model checking. In R. Alur and T.A. Henzinger, editors, CAV
'96, volume 1102 of LNCS, pages 411-414, New Brunswick, NJ, July/Aug 1996. Springer-
Verlag.

13. J. Sawada and W. A. Hunt. Processor verification with precise exceptions and speculative
execution. Appears in this volume.

14. J. Sawada and W. A. Hunt. Trace table based approach for pipelined microprocessor verifi-
cation. In Orua Grumberg, editor, CAV '97, volume 1254 of LNCS, pages 364-375, Haifa,
Israel, June 1997. Springer-Vedag.

15. P.J. Windley and J. R. Burch. Mechanically checking a lemma used in an automatic verifi-
cation tool. In FMCAD'96, pages 362-376, November 1996.

