
Verification of an Implementation of Tomasulo's
Algorithm by Compositional Model Checking

K. L. McMillan

Cadence Berkeley Labs
2001 Addison St., 3rd floor
Berkeley, CA 94704-1103
mcmillan@cadence.com

Abstract. An implementation of an out-of-order processing unit based
on Tomasulo's algorithm is formally verified using compositional model
checking techniques. This demonstrates that finite-state methods can be
applied to such algorithms, without recourse to higher-order proof sys-
tems. The paper introduces a novel compositional system that supports
cyclic environment reasoning and multiple environment abstractions per
signal. A proof of Tomasulo's algorithm is outlined, based on refinement
maps, and relying on the novel features of the compositional system. This
proof is fully verified by the SMV verifier, using symmetry to reduce the
number of assertions that must be verified.

1 I n t r o d u c t i o n
We present the formal design verification of an "out-of-order" processing unit
based on Tomasulo's algorithm [Tom67]. This and related techniques such as
"register renaming" are used in modern microprocessors [LR97] to keep multiple
or deeply pipelined execution units busy by executing instructions in data-flow
order, ra ther than sequential order. The complex variability of instruction flow
in "out-of-order" processors presents a significant opportuni ty for undetected er-
rors, compared to an "in-order" pipelined machine where the flow of instructions
is fixed and orderly. Unfortunately, this variability also makes formal verifica-
tion of such machines difficult. They are beyond the present capacity of methods
based on integrated decision procedures [BD94], and are not amenable to sym-
bolic t ra jec tory analysis [JNB96].

This paper was inspired by Damm and Pnueli, who recently presented a
pencil-and-paper proof of an implementation of Tomasulo's algorithm [DP97].
This proof is in two stages, first refining a sequential specification to an interme-
diate model based on partially ordered executions, and then refining this model
to the implementation. The proof presented here has several advantages over
this earlier work. First, it is conceptually simpler, since we refine the specifi-
cation directly to the implementation, with no intermediate step, and no need
to reason about second-order objects such as sets or partial orders. Second,
the proof here is fully mechanically checked, using a verifier based on symbolic
model checking. Although in principle, the proof of [DP97] can be carried out
in a higher order prover such as PVS [ORSS94], this would require considerable
elaboration. Here, the use of model checking to handle the details of the proof
allows the proof to be presented here in the same form in which it is actually
presented to the verifier. Third, the implementation here is at the bit level,

111

meaning that it can be either synthesized automatically into gates and latches,
or compared directly to a manual implementation by combinational equivalence
checking methods [KSL95]. The disadvantage of the present proof is that it ap-
plies to only a given fixed configuration of the implementation. However, the
proof is easily reverified for any desired configuration.

The compositional system used to construct the proof is similar in principle to
the work of Abadi and Lamport [AL93], in that it allows the use of environment
assumptions in a cyclic manner. As in [AL95], the proof relies on refinement
maps. However, there are several distinctions. First, the system allows the use of
synchronous processes with zero delay (i. e., combinational logic), whereas [AL93]
uses interleaving processes. Second, whereas in [AL95], the refinement maps are
functions from implementation state to specification state, here maps in either
direction may be used (though they are mostly in the opposite direction, from
specification to implementation). They are expressed as processes within the
system, and may be one-to-many. Third, all of the lemmas here are verified by
model checking, rather than by manual proof or automated proof assistants.
Hence, the degree of automation is greater (though far from complete).

Two techniques here are novel relative to previous work in compositional
model checking. The first is the compositional rule, which is more general than
those of [AH96, McM97] in that it allows the conjunction of multiple environment
processes constraining the same signal, while still allowing cyclic environment
reasoning. This ability is key to decomposing the proof of Tomasulo's algorithm.
Second, the verification system exploits symmetry to reduce the number of proof
obligations that need to be verified. This is key to the tractability of proof
checking in the present example.

In this article, we begin with a brief overview of the compositional system
and its implementation in the SMV model checking tool [McM93] (section 2).
Then we introduce an implementation of Tomasulo's algorithm, and prove its
correctness w.r.t, an executable specification within the compositional system
(section 3). Finally, we show how SMV uses symmetries to reduce proof obli-
gations to a tractable number (section 4), and conclude with some observations
and areas for future work (section 5).

2 P r o o f f r a m e w o r k

In this section, we briefly sketch the compositional system and its implementa-
tion as part of the SMV verifier.

A compos i t iona l sy s t em Let S be a finite set of signals, and V be a finite set
of values. A model is a function 7r : S -+ IN --+]; assigning an infinite sequence
of values to each signal. A process is a predicate on models. It constrains the
value of exactly one signal as a function of other signals, with either zero delay
(a gate) or unit delay (a latch). A gate p is a predicate of the form: for all t > 0,

o,,(t)

where ap, Vt . . . Vk are signals, and f is a function];k __+ 2 v. That is, the set of
possible values of ap at time t is a function of signals 71 .-- Vk at time t. A latch

112

p is a predicate of the form

Vo ; t = O
ap(t) E f(~/l(t - 1) . . .~ /k(t - - 1)) ; t > 0

That is, v0 is the set of possible initial values of ap, and f gives the set of possible
values of ap as a function of signals ~/1 . . . 7k one t ime unit earlier. We assume
the functions f never return the empty set.

Composition of processes in this system is simply conjunction. Tha t is, the
composition of two processes Pl and P2 is Pl A P2- Now, suppose we are given
two sets of processes: a specification P and an implementation Q, and we would
like to prove (A Q) ~ (A P)- That is, the composition of the implementation
processes implies the composition of the specification processes. Using a "com-
positional" approach, we would verify each component of P independently, using
some small subset of Q. For example, we might prove that ql ~ Pl, q2 ==~ P2,- . .
and thus avoid the complexity of considering all of the processes at once. Often,
however, this approach fails, as each process qi functions correctly only given
some constraints on its "environment". Absent these constraints, it will not sat-
isfy its part of the specification, hence the compositional proof will fail.

As observed in [AL93], we must typically assume that process q2 satisfies
some specification P2 to prove that ql satisfies Pl, and vice versa. This apparent
circularity can be broken by induction over time. Tha t is, let the notat ion p ~r
stand for Vt<T. p, or "p holds up to t ime t -- T". We can soundly reason as
follows, by induction on r:

P15~-1 ~ P21" T
P21" ~ ~ Pl 1 "T

Vt. (P2 A Pl)

In the base case, when ~- = 0, note tha t Pl 1" ~-1 is a tautology. Hence, we have
P2 t °, and thus pl 1 "°, p2 1 "1, Pl 1.1 and so on. By reasoning inductively, we use
each process's specification as the environment of the other, avoiding circularity.
In general, given a well-founded order -~ on P, when proving p 1 "r we assume
p~ $~ if p~ -~ p and p~ $~-1 otherwise. This rule of inference is stated formally
in the following meta-theorem. We use gp to stand for the environment of p and
Zp to stand for those processes which may be assumed with "zero delay" when
proving p:

Zp = Q U {p' e P : p' -~ p}

Note that p itself may be in gp, but by definition, p ~ Zp. Now, letting a set
of processes stand for the conjunction of its components, and Z~ stand for the
complement of Zp, we have:

T h e o r e m 1. For all p G P, let Ep C P U Q. If, for each p E P,

(EpCIZp) ~'r A (~pAZp) ~ v-1 =:~ p

is valid, then (Vt. Q) ~ (Vt. P) is valid.

Proof. Let F- be the lexical order s.t. (t, i) E (t ~, i ~) iff t < t' or t = t' and i -~ i ~.
Then p~ (t) holds by induction over r-.

113

Note that this rule allows us to assume that some environment process pj holds
for all times from 0 to T when proving that pi holds at T + 1 (or T itself in the
zero delay case). This allows us to take into account teachability from the initial
state, using model checking techniques. Thus, the technique is quite different
from proving mutually inductive invariants, as is typically done using theorem
provers. Also, though the rule is similar to [AL93] in that it allows the cyclic use
of environment assumptions, it differs in that it applies to synchronous processes
that can have zero delay (as opposed to their interleaving, unit delay model).
Other systems based on synchronous processes, such as [Kur94, GL94], do not
allow cyclic assumptions. Further, the above rule allows environment assump-
tions to contain the conjunction of many processes constraining the same signal,
whereas [McM97, AH96] do not. This ability is key to the proof presented here
of Tomasulo's algorithm, in that it allows for case analysis.

I m p l e m e n t a t i o n in SMV In the SMV implementation of the above system,
a "process" is an assignment of an expression to a signal (where the parameter
t is implicit). Syntactically, a gate is written in this form:

signal := expression;

while a "latch" appears thus:

init(signal) := expressionl;
next (signal) := expression2;

Here, ±ni t (a) stands for a(0) and next (if) stands for a(t + 1). Assignments are
grouped into named collections called "layers", as follows:

layer <name> : (<assignmen~l> <assignment2> ... }

Within a layer, a given signal may be assigned only once. Thus, an assignment
(i.e. process) can be uniquely identified by a signal-layer pair, which is written
s i g n a l / / l a y e r . The environment for proving a given specification component
is determined by statements of the form

using signall//layerl prove signal2//layer2;

The well-founded order -~ is determined automatically in most cases. SMV
assumes that an assumption about signal al should be used to prove an assertion
about a2 with zero delay only when there is some actual zero-delay dependency
path from al to 0" 2 . In order to guarantee a well-founded order, however, there
must be no zero-delay path from (72 to ffl. This leaves an ambiguity in the case
of assignments to the same signal, or to two signals on a zero-delay cycle. To
resolve this, the user can enter declarations of the form

laysrl refines layer2;

indicating that l a y e r l assignments should precede layer2 assignments in the
order. SMV then determines for each environment component whether it is in
Zp, and hence whether it is assumed up to ~- or 7- - 1 when proving p J'~.

Verif icat ion by mode l checking The actual verification of each specification
component p is done by symbolic model checking [BCM+92, McM93]. This topic
is mainly beyond the scope of this article. However, for the reader familiar with
these methods, we outline one possible (but highly simplified) implementation,
the understanding of which is not material to what follows. Briefly, the conjunc-
tion of the zero-delay environment assumptions (Ep A Zp) is translated into a
symbolically represented Kripke model (So, R0, I0). Here So is a state invariant

114

term derived from the gates, Ro is a symbolic transition relation and I0 is an ini-
tial condition (the latter two deriving from the latches). Similarly, the unit-delay
environment assumptions (Cp n Z~) are translated into a model ($1, R1,/1), and
p is translated into (Sp, Rp, Ip). Then our proof goal:

(~ n z ~) t ~ ^ (E ~ n z ~) t ~-~ ~ p

is true iff the Mu-Calculus formula

(Io A It A #H. (A V B V Img-l(Ro A R1, H))) V (Io A So A "-,(Sp AIp))

is empty, where A = Img-l(R0, S0 A -Sp), B = Img-l(R0 A -Rp, So) and
Img -1 (R, S) the the inverse image of S w.r.t .R. This formula can be evaluated
using symbolic model checking methods, and a counterexample trace generated
if the result is nonempty.

Auxi l ia ry variables Often it is necessary to introduce auxiliary variables either
as part of a specification, or part of the proof (as introduced by Owicki and
Gries [0G76]). The definitions of these variables (or signals in our case) can be
assumed, provided they are a "conservative extension". Formally, this means
that if ,-qA is the set of auxiliary signals, Q is the implementation, and A is
the set of auxiliary signal definitions, then Q ~ 2$A.(Q A A). That is, for every
implementation behavior, there exists a feasible valuation of the auxiliary signals.
In this case, if we can prove that Q A A ~ P, then we infer that Q ~ 33A.P.
The following conditions are sufficient to ensure conservative extension:

1. Every signal in ,SA has a unique assignment in A,
2. No assignment in Q refers to any signal in SA, and
3. There are no zero-delay cycles in A

In the SMV system, auxiliary variables are declared with the keyword abs t rac t .
The system guarantees that the above three conditions are met. As we will see,
auxiliary variables allow us to use recorded history information in compositional
proofs. We can then use these variables to express abstractions of the actual
implementation variables. Used in specifications, they also allow us to express
any regular-language property, which otherwise would not be possible.

3 V e r i f y i n g T o m a s u l o ' s a l g o r i t h m
In this section, we introduce Tomasulo's algorithm, and show how a proof of
correctness can be constructed in the foregoing framework and mechanically
checked using symbolic model checking. The proof is based on auxiliary variables
and refinement maps. These maps can be viewed as an interpretation of the
intended semantics of the various components of the implementation state.

Tomasulo ' s a lgo r i thm We consider here a pipelined arithmetic unit Q, ex-
ecuting a stream of operations on a register file. Tomasulo's algorithm allows
execution of instructions in data-flow order, rather than sequential order. This
can increase the throughput of the unit, by avoiding pipeline stalls. Each pend-
ing instruction is held in a "reservation station" until the values of its operands
become available, then issued "out-of-order".

The flow of instructions is pictured in figure 1. Each instruction, as it ar-
rives, fetches its operands from a special register file. Each register in this

115

REGISTER FILE

TAGGED RESULTS

._~VAL/TAG ~ PENANDS

RESERVATION
STATIONS

:iii!~[ii)iE~!!i)i)))[))

!~!!i)ili~:iiiii~i[!i!:

ili!i!iii!~%il

EXECUTION
PIPEUNES

Fig. 1. Flow of instructions in Tomasulo's algorithm

scallout := {0, I};

if (-stallout)

switch(opin) {

ADD_OP : {
opr_a := r[srca]; opr_b := r[srcb];
res := opr_a + opt_b;

next(r[dst]) := res;
}

RD_OP : {

dour := r[srca];
}

Fig. 2. Specification code (partial).

file holds either an actual value, or a "tag" indicating the reservation station
that will produce the register value when it completes. The instruction and its
operands (either values or tags) are stored in a reservation station (RS). The RS
watches the results returning from the execution pipelines, and when a result 's
tag matches one of its operands, it records the value in place of the tag. When
the station has the values of all of its operands, it may issue its instruction to
an execution pipeline. When the tagged result returns from the pipeline, the RS
is cleared, and the result value, if needed, is stored in the destination register.
However, if a subsequent instruction has modified the register tag, the result is
discarded, since its value in a sequential execution would be overwritten.

The ari thmetic unit also has instructions that read register values to an
external output and write values from an external input, and has a "stall" output ,
indicating that an instruction cannot be executed because either there is no
available RS, or the value of the register to be read is not yet available.

V e r i f i c a t i o n a p p r o a c h Thespecif icat ion is a machine P that executes instruc-
tions in order as they arrive, and stalls nondeterministically. A fragment of the
SMV code is shown in figure 2. Our goal is to prove that implementation Q im-
plies specification P , with internal variables SA projected. Tha t is, Q ~ 3SA. P.

116

We introduce auxiliary variables for each RS, and refinement maps relating the
specification state, auxiliary variables and implementation state. Finally we ver-
ify these relations using the compositional rule. We thus decompose the proof
into "lemmas" small enough to be verified by model checking. 1

Auxi l ia ry variables We begin this decomposition by introducing new state
components. When an RS is loaded with an instruction, we record the actual
values of the instruction operands and result, according to the specification ma-
chine. In SMV we have:

if('stallout & IS_PIPE_OP){
next (hist [st_choice] .opt_a) := opt_a;
next (hist [st_choice] . opr_b) : = opr_b;
next(hist[st_choice].res) := res;

}

where h i s t is the array of auxiliary variables, and st_choice is the reservation
station to which the arriving instruction is assigned. Because these are auxiliary
variables, we cannot refer to them in the implementation. However, we can use
them in refinement maps that specify components of the implementation state.

Ref inement maps The first refinement map states that if a given implementa-
tion register holds a value (and not a tag), then that value must equal the "real"
register value in the specification machine. In SMV, we write:

layer map1 :
forall(i in REG)

if('ir[i].resvd) ir[i].val := rill;

where i r is the implementation register file, and resvd is a bit indicating that
the register holds a tag. The second maps states that, if a register holds a tag,
the actual register value must equal the result of the indicated RS (an auxiliary
variable):

forall(i in REG)
layer map2[i] :

forall(j in TAG)
if(ir[i].resvd & ir[i].tag = j){

st[j].valid := 1;
hist[j].res := r[±];

}

Here, s t is the RS array, v a l i d is a bit indicating the station is full. The third
map defines the "producer/consumer" relation between RS's. It states that if
station j holds an operand value, then that value is the actual operand value.
Otherwise, if station j is waiting for an operand from station k, then the result
value of k is the actual operand value of j. This is the statement in SMV for the
"a" operand (the "b" operand is similar):

forall(j in TAG)
layer map3a[j] :

if (st [j]. valid) {
if (st [j] . opr_a, valid) st [j]. opr_a.val : = hist [j]. opt_a;
else hist[st[j].opr_a.taE].res := hist[j].opr_a;

}

1 The implementation and part of the proof text are omitted here for space reasons.
See ht tp: / /w~-cad, eecs.berkeley, edu/~kenmcmil for their complete text.

117

Note here that opr_a, the "a" operand field of the RS, has three subfields: v a l i d
indicates that the value is available, val is the value, and otherwise, t ag is the
tag. The final map states that, if a value returns on the result bus with a tag j ,
then it must be the actual result of RS j:

fora11 (j in TAG)
layer map4[j] :

if(pout.tag = j & pou~.valid) pout.val := hist[j].res;

Here, pout is the result bus, which has three fields: va l id , indicating a result is
present, tag, indicating a reservation station, and val, the result value.

Compos i t iona l p r o o f Now we give the environment for proving each of the
above maps. The compositional system allows us to use any map as an assump-
tion when proving another, even in an apparently circular manner, while ensuring
that the proof is inductively sound. The flow of this proof roughly follows the
progress of an instruction through the machine, as follows:

1. map2: For each pair i , j if register i contains tag j , then the result of RS j
must be the actual value of register i. This is verified using only the imple-
mentations of register i and RS j.

2. map3 ("else" case): For each pair j, k, if RS j holds tag k as an operand, then
the result value of k is the operand value of j. This is verified using map2
and the implementations of RS's j and k.

3. map3 ("if" case): The operand values obtained by RS j are always correct.
Since operand values may come from the register file or the result bus, we
need to assume both mapl (for all registers) and map4. Since map4 gives the
result bus value in terms of the RS results, we also need map3 for each RS
result. We also use the implementation of RS j.

4. map4: Result bus values tagged j match RS j 's result. To guarantee the
operands used are correct we use map3. We also use the execution pipeline,
RS j (including auxiliary vars) and the specification ALU.

5. mapl: Values in implementation register i are correct. We use map4 and map3
(for each RS result) to prove this.

Note, for example, the circularity in steps 3-5. Also note that, with other re-
finement maps as the "environment", each of the maps is verified using the
implementations of at most two registers or RS's, leaving the others as free vari-
ables. This addresses the state explosion problem and makes the verification by
model checking tractable. The general principle is to break the proof down into
lemmas relating pairs of array elements, rather than considering entire arrays.

As an example, consider the producer/consumer lemma (map3). We want to
show that when RS j holds tag k as an operand, the result value of k must be
the operand value of j . Suppose that an instruction is loaded into RS j, with
register i as its source operand, and suppose that register i holds tag k. Now,
map2 states that the result of station k (h i s t [k]. res) is in fact the correct value
for register i (r [i]) . It follows that at the next time the operand of j will be
equal to the result of k (which is what we are trying to prove). The behavior of
the reservation stations guarantees that this will continue to be true as long as
station j holds tag k, since neither station can change until a result value for
tag k returns on the result bus.

118

We don' t need to spell out the above reasoning, however. To verify the lemma,
we just apply model checking, assuming map2 holds between RS k and all regis-
ters i. In SMV, this is expressed as follows (for the "a" operand):

using hist [k].res//map2 [i] prove hist [k] .res//map3a [j] ;

If there are n registers, then in checking the]emma we are actually using
a simultaneous conjunction of n ÷ 1 assignments to h i s t [k] . r e s . One is the
definition of this signal as an auxiliary variable and the others are maps that
give its value as a function of each specification register. This allows us to prove
the correctness of station k relative to each register i as a separate case, then to
combine these cases to prove our lemma. The ability to use multiple assignments
to the same signal in the environment is thus key to the tractabil i ty of the proof.

V e r i f i c a t i o n b y m o d e l check ing As mentioned earlier, the SMV system trans-
lates each refinement map verification problem into a symbolic model checking
problem. BDD-based methods are then used to either verify the map or produce
a counterexample. A counterexample can indicate either that the map doesn't
hold, or tha t insufficient environment assumptions were used.

Note that , using model checking, we can only verify a fixed finite configura-
tion of the processor. For example, with 32-bit data, 16 registers, 16 RS's, and
one four-stage execution pipeline with one operation (integer addition) the total
model checking t ime (to verify all the refinement maps and the unit outputs)
is 92 seconds, running on a 266MHz Pent ium II processor, and a total of 52454
OBDD nodes used. 2

Several factors make the verification tractable. First, by stating refinement
maps and choosing environments appropriately, the number of state variables is
reduced to a tractable level. One important factor in this process is "bit slicing".
Tha t is, for most of the data-related refinement maps, we t reat each bit of the
data path separately. This is done automatically by SMV, which prunes away
those parts of the model which have no influence on the property being verified.
The only exception is the verification of the execution pipeline, in which there
are clearly dependencies between data bits.

4 E x p l o i t i n g s y m m e t r y

The final important factor is the exploitation of symmetry. Notice that several of
the refinement maps have an instance for each register/stat ion or s ta t ion/s ta t ion
pair (and also for each bit of the data path, if we use bit slicing). The number
of lemmas to be proved is thus on the order of R × S × B or S x S × B, where R
is the number of registers, S is the number of stations and B is the number of
bits. However, by exploiting symmetry we can reduce this to a small number of
representative cases. Space allows only a brief synopsis of this technique here.

2 In fact, the verification of the processor as described here fails, due to a design error.
A register bypass is needed to handle the case when an instruction arrives exactly
at the moment one of its operands is returning on the result bus. This requires
the addition of a one-line refinement map, not described here. The verification time
given is for the corrected version. Note also that if floating point arithmetic were
used, more elaborate techniques would be required to verify the arithmetic at the
bit level. Arithmetic verification, however, is beyond the scope of this work.

119

S c a l a r s e t s in S M V To express symmetries , the SMV language has been aug-
mented with scalarset types, as used in the Murphi language [ID96]. A scalarset
is a finite type, whose use is restricted such tha t a p rogram's semantics is invari-
ant under permuta t ions of elements of the type. A scalarset type is introduced
by a declaration such as:

s c a l a r s e t TAG 0 . . 1 5 ;

which creates a type called TAG with 16 values. Although these values are nom-
inally in the range 0..15, no constants of a scalarset type may occur in the
program. Values of scalarset type may appear only in certain symmetr ic con-
structions:

1. Two expressions of the same scalarset type may be compared for equality.
2. The index type of an array may be a scalarset. Subscripts applied to the

array must be of the same type. For example, if x is of type TAG and z of
type a r r a y TAG of boo lean , then one could write z [x] , but not z [0].

3. In a f o r a l l s ta tement of the form:

forall (i i n type) { <statements> }

the t y p e may be a scalarset. The semantics of this s ta tement is the conjunc-
t ion of s t a t e m e n t s for all i in t ype . 3

4. Any commutat ive /associa t ive operator may be applied as a "reduction op-
erator" over a scalarset type. For example we can take the conjunction of
the elements of z as follows:

[z [i] : i i n TAG]

Similarly, a "comprehension expression" can be formed over a scalarset type.
For example, this expression {i : i i n TAG, z [i] } denotes the set of val-
ues i in the type TAG such tha t z [±] is true.

S y m m e t r y r e d u c t i o n t e c h n i q u e The meaning of each of the above constructs
is unchanged if we exchange the roles of any pair of elements of a scalarset
type. As a result, the overall p rogram semantics is invariant. So, if we have
two assertions pl and p2, such tha t one is obtained from the other by some
permuta t ion of scaiarset values, then Pl holds iff P2 holds. Hence we need only
verify Pl. SMV uses this fact in the following way: given a parameter ized class of
assertions to prove, SMV chooses a representat ive set of instances of the class,
such tha t any instance can be reduced to one in the set by permut ing scalarset
values. For example, suppose tha t an arbi ter is to acknowledge exactly one user
of a resource, and tha t type "user" is a scalarset. The assertion m u t e x [i] [j]
s tates tha t users i and j are not acknowledged at the same time, if i ~ j . Here,
two representat ive cases, mutex[0][0] and mutex [0] [1], suffice. All cases where
i = j reduce to the former, while all cases where i ~ j reduce to the latter. In
general, if we have k parameters of a given scalarset type, then no more than k!
instances are required, regardless of the type ' s size.

In the case of Tomasulo 's algorithm, we have three scalarset types: REG, TAG
and BIT, corresponding to registers, RS's, and bits of the da ta path, respectively.
The "producer /consumer" lemma, for example, is a class of proof obligations of
the form:

3 As an aside for those familiar with Murphi, the use of a fora11 construct rather
than an iterative fo r loop as in Murphi simplifies the rules for scalarsets~ since there
is no need to check for possible "side effects" between loop iterations.

120

hist [k] .res [i]//map3a [j]

where j and k are tags, and i is a bit index, stating that when RS j points to
RS k, bit i of k's result is bit i of j ' s operand. There are R 2 × B instances to
prove, which reduce to two representatives: h i s t [0] . r e s [0] / /map3a[0] and
h i s t [1] . r e s [0] / /map3a[0] . If there are 16 RS's and 32 bits, then a factor
of 8192/2 in run time is saved.

S y m m e t r y b reak ing In the case of Tomasulo's algorithm, the symmetry of
the scalarset types is broken in several places. For example, the arithmetic unit
breaks the symmetry of the data path bits, and the logic that selects an RS
for the arriving instruction breaks the tag symmetry. Assignments that break
the symmetry of a scalarset can be introduced with a declaration such as the
following:

breaking (BIT)
res := opr_a + opr_b;

which defines the adder function in the specification. The system ensures that
a symmetry reduction over a given scalarset type is not performed when an
assignment breaking that type's symmetry is used in the "environment". This
allows us to localize the effect of symmetry breaking. For example, since the
"producer/consumer" lemma does not depend on the adder function, we can
still make use of the bit symmetry when proving it.

5 C o n c l u s i o n

We have seen that it is possible using compositional model checking methods to
formally verify an out-of-order processor. This was done by a direct refinement
from specification to implementation, without need of an infinite-state inter-
mediate abstraction or reasoning about partial orders. This refutes the claim
in [DP97] that such an intermediate level is needed to give a concise statement
of the refinement relation. In fact, the proof was possible even though the pro-
cesses in the compositional system are not only finite-state, but are not even
first-order expressive (much less regular-language expressive).

The proof itself is not automatic. Substantial human insight was required to
decompose the proof into lemmas about small collections of state components.
However, we note that the proof is at least textually short - substantia/y shorter
than the implementation - and that the refinement maps are a fairly natural
representation of the function of the various machine components. Also note
that other processor architectures (such as "in-order-completion" machines) are
strictly more deterministic in their scheduling than Tomasulo's algorithm. Thus,
it might be possible to reuse the present proof by refining Tomasulo's algorithm
to various other architectures, and thereby save the effort of verifying them "from
scratch".

There are several areas in which the present work could be extended or
improved. First, the processor is unrealistic in that it has no provision for "ex-
ceptions" (caused, for example by, interrupts, arithmetic errors, or mispredicted
branches). It would be useful to know, for example, if one could use a simi-
lar technique to verify a processor using "snapshots" or some other technique
to roll back the processor state after an exception. Second, the verification of
Tomasulo's algorithm should in principle be independent of the actual arith-
metic functions used, since they have no effect on the scheduling of instructions.

121

If the present techniques were integrated with the uninterpreted function cal-
culus techniques of [BD94], then the arithmetic unit might be modeled by an
uninterpreted function symbol, allowing the problem of arithmetic verification
to be separated. Third, note that this work and [DP97] only deal with the issue
of safety and not of liveness (i.e., a processor that always stalls would meet the
specification). The compositional framework presented here cannot handle live-
ness properties (in fact, Abadi and Lamport [AL93] show that liveness assertions
cannot be used as cyclic environment assumptions). The proof could, perhaps,
be undertaken using assume/guarantee style temporal reasoning, which is also
supported by SMV.

R e f e r e n c e s
[AH96] R. Alur and T. A. Henzinger. Reactive modules. In 11th annual IEEE

syrup. Logic in Computer Science (LICS 'g6), 1996.
[AL93] M. Abadi and L. Lamport. Composing specifications. A CM Trans. on

Prog. Lang. and Syst., 15(1):73-132, Jan. 1993.
[AL95] M. Abadi and L. Lamport. Conjoining specifications. ACM Trans. on Prog.

Lang. and Syst., 17(3):507-534, May. 1995.
[BCM+92] J. R. Bureh, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.

Symbolic model checking: 102o states and beyond. Information and Com-
putation, 98(2):142-70, Jun. 1992.

[BD94] J .R. Butch and D. L. Dill. Automatic verification of pipelined micropro-
cessor control. In Computer-Aided Verification (CA V '94). Springer-Verlag,
1994.

[DP97] W. Damm and A. Pnueli. Verifying out-of-order executions. In D. Probst,
editor, CHARME '97. Chapman ~: Hall, 1997. To appear.

[GL94] O. Grfimberg and D. E. Long. Model checking and modular verification.
ACM Trans. Programming Languages and Systems, 16(3):843-871, 1994.

lID96] C.N. Ip and D.L. Dill. Better verification through symmetry. Formal Meth-
ods in System Design, 9(1-2):41-75, Aug. 1996.

[JNB96] A. Jain, K. Nelson, and R. E. Bryant. Verifying nondeterministic imple-
mentations of deterministic systems. In Formal Methods in Computer-Aided
Design (FMCAD '96), pages 109-25, 1996.

[KSL95] A. Kuehlmann, A. Srinivasan, and D. P. LaPotin. Verity - a formal verifi-
cation program for custom CMOS circuits. IBM J. of Research and Devel-
opment, 39(1-2):149-65, Jam-Mar. 1995.

[Kur94] R.P. Kurshan. Computer-Aided Verification of Coordinating Processes.
Princeton, 1994.

[LR97] D. Leibholz and R. R.azdan. The alpha 21264: a 500 mhz out-of-order ex-
ecution microprocessor. In Digest of Papers, COMPCON Spring 97, pages
28-36, 1997.

[McM93] K.L. McMiUan. Symbolic Model Checking. Kluwer, 1993.
[McM97] K.L. McMiUan. A compositional rule for hardware design refinement. In

Computer Aided Verification (CAV'97), pages 24-35, 1997.
[OG76] S. Owicki and D. Gries. Verifying properties of parallel programs. Comm.

ACM, 19(5):279-85, May 1976.
[O1~SS94] S. Owre, J. M. Rushby, N. Shankar, and M. K. Srivas. A tutorial on us-

ing PVS for hardware verification. In Theorem Provers in Circuit Design
(TPCD '94), pages 258-79. Springer, 1994.

[Tom67] R.M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic
units. IBM J. of Research and Development; 11(1):25-33, Jan. 1967.

