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Abstract. An implementation of an out-of-order processing unit based 
on Tomasulo's algorithm is formally verified using compositional model 
checking techniques. This demonstrates that finite-state methods can be 
applied to such algorithms, without recourse to higher-order proof sys- 
tems. The paper introduces a novel compositional system that supports 
cyclic environment reasoning and multiple environment abstractions per 
signal. A proof of Tomasulo's algorithm is outlined, based on refinement 
maps, and relying on the novel features of the compositional system. This 
proof is fully verified by the SMV verifier, using symmetry to reduce the 
number of assertions that must be verified. 

1 I n t r o d u c t i o n  
We present the formal design verification of an "out-of-order" processing unit 
based on Tomasulo's algorithm [Tom67]. This and related techniques such as 
"register renaming" are used in modern microprocessors [LR97] to keep multiple 
or deeply pipelined execution units busy by executing instructions in data-flow 
order, ra ther  than sequential order. The complex variability of instruction flow 
in "out-of-order" processors presents a significant opportuni ty  for undetected er- 
rors, compared to an "in-order" pipelined machine where the flow of instructions 
is fixed and orderly. Unfortunately, this variability also makes formal verifica- 
tion of such machines difficult. They are beyond the present capacity of methods 
based on integrated decision procedures [BD94], and are not amenable to sym- 
bolic t ra jec tory  analysis [JNB96]. 

This paper was inspired by Damm and Pnueli, who recently presented a 
pencil-and-paper proof of an implementation of Tomasulo's algorithm [DP97]. 
This proof is in two stages, first refining a sequential specification to an interme- 
diate model based on partially ordered executions, and then refining this model 
to the implementation. The proof presented here has several advantages over 
this earlier work. First, it is conceptually simpler, since we refine the specifi- 
cation directly to the implementation, with no intermediate step, and no need 
to reason about  second-order objects such as sets or partial  orders. Second, 
the proof here is fully mechanically checked, using a verifier based on symbolic 
model checking. Although in principle, the proof of [DP97] can be carried out 
in a higher order prover such as PVS [ORSS94], this would require considerable 
elaboration. Here, the use of model checking to handle the details of the proof 
allows the proof to be presented here in the same form in which it is actually 
presented to the verifier. Third,  the implementation here is at the bit level, 



111 

meaning that it can be either synthesized automatically into gates and latches, 
or compared directly to a manual implementation by combinational equivalence 
checking methods [KSL95]. The disadvantage of the present proof is that it ap- 
plies to only a given fixed configuration of the implementation. However, the 
proof is easily reverified for any desired configuration. 

The compositional system used to construct the proof is similar in principle to 
the work of Abadi and Lamport [AL93], in that it allows the use of environment 
assumptions in a cyclic manner. As in [AL95], the proof relies on refinement 
maps. However, there are several distinctions. First, the system allows the use of 
synchronous processes with zero delay (i. e., combinational logic), whereas [AL93] 
uses interleaving processes. Second, whereas in [AL95], the refinement maps are 
functions from implementation state to specification state, here maps in either 
direction may be used (though they are mostly in the opposite direction, from 
specification to implementation). They are expressed as processes within the 
system, and may be one-to-many. Third, all of the lemmas here are verified by 
model checking, rather than by manual proof or automated proof assistants. 
Hence, the degree of automation is greater (though far from complete). 

Two techniques here are novel relative to previous work in compositional 
model checking. The first is the compositional rule, which is more general than 
those of [AH96, McM97] in that it allows the conjunction of multiple environment 
processes constraining the same signal, while still allowing cyclic environment 
reasoning. This ability is key to decomposing the proof of Tomasulo's algorithm. 
Second, the verification system exploits symmetry to reduce the number of proof 
obligations that need to be verified. This is key to the tractability of proof 
checking in the present example. 

In this article, we begin with a brief overview of the compositional system 
and its implementation in the SMV model checking tool [McM93] (section 2). 
Then we introduce an implementation of Tomasulo's algorithm, and prove its 
correctness w.r.t, an executable specification within the compositional system 
(section 3). Finally, we show how SMV uses symmetries to reduce proof obli- 
gations to a tractable number (section 4), and conclude with some observations 
and areas for future work (section 5). 

2 P r o o f  f r a m e w o r k  

In this section, we briefly sketch the compositional system and its implementa- 
tion as part of the SMV verifier. 

A compos i t iona l  sy s t em Let S be a finite set of signals, and V be a finite set 
of values. A model is a function 7r : S -+ IN --+ ]; assigning an infinite sequence 
of values to each signal. A process is a predicate on models. It constrains the 
value of exactly one signal as a function of other signals, with either zero delay 
(a gate) or unit delay (a latch). A gate p is a predicate of the form: for all t > 0, 

o,,(t) 

where ap, Vt . . .  Vk are signals, and f is a function ];k __+ 2 v. That is, the set of 
possible values of ap at time t is a function of signals 71 .-- Vk at time t. A latch 
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p is a predicate of the form 

Vo ; t = O  
ap(t) E f(~/l(t - 1) . . .~ /k( t - -  1 ) ) ; t  > 0 

That  is, v0 is the set of possible initial values of ap, and f gives the set of possible 
values of ap as a function of signals ~/1 . . .  7k one t ime unit earlier. We assume 
the functions f never return the empty set. 

Composition of processes in this system is simply conjunction. Tha t  is, the 
composition of two processes Pl and P2 is Pl A P2- Now, suppose we are given 
two sets of processes: a specification P and an implementation Q, and we would 
like to prove (A Q) ~ (A P)- That  is, the composition of the implementation 
processes implies the composition of the specification processes. Using a "com- 
positional" approach, we would verify each component of P independently, using 
some small subset of Q. For example, we might prove that  ql ~ Pl, q2 ==~ P2,- . .  
and thus avoid the complexity of considering all of the processes at once. Often, 
however, this approach fails, as each process qi functions correctly only given 
some constraints on its "environment".  Absent these constraints, it will not sat- 
isfy its part  of the specification, hence the compositional proof will fail. 

As observed in [AL93], we must typically assume that  process q2 satisfies 
some specification P2 to prove that  ql satisfies Pl, and vice versa. This apparent 
circularity can be broken by induction over time. Tha t  is, let the notat ion p ~r 
stand for Vt<T. p, or "p holds up to t ime t -- T". We can soundly reason as 
follows, by induction on r:  

P15~-1 ~ P21" T 
P21" ~ ~ Pl 1 "T 

Vt. (P2 A Pl) 

In the base case, when ~- = 0, note tha t  Pl 1" ~-1 is a tautology. Hence, we have 
P2 t °, and thus pl 1 "°, p2 1 "1, Pl 1.1 and so on. By reasoning inductively, we use 
each process's specification as the environment of the other, avoiding circularity. 
In general, given a well-founded order -~ on P,  when proving p 1 "r we assume 
p~ $~ if p~ -~ p and p~ $~-1 otherwise. This rule of inference is stated formally 
in the following meta-theorem. We use gp to stand for the environment of p and 
Zp to stand for those processes which may be assumed with "zero delay" when 
proving p: 

Zp = Q U {p' e P : p' -~ p} 

Note that  p itself may be in gp, but  by definition, p ~ Zp. Now, letting a set 
of processes stand for the conjunction of its components, and Z~ stand for the 
complement of Zp, we have: 

T h e o r e m  1. For all p G P, let Ep C P U Q. If, for each p E P, 

(EpCIZp) ~'r A (~pAZp) ~ v-1 =:~ p 

is valid, then (Vt. Q) ~ (Vt. P) is valid. 

Proof. Let F- be the lexical order s.t. (t, i) E (t ~, i ~) iff t < t' or t = t' and i -~ i ~. 
Then p~ (t) holds by induction over r-. 
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Note that this rule allows us to assume that some environment process pj holds 
for all times from 0 to T when proving that pi holds at T + 1 (or T itself in the 
zero delay case). This allows us to take into account teachability from the initial 
state, using model checking techniques. Thus, the technique is quite different 
from proving mutually inductive invariants, as is typically done using theorem 
provers. Also, though the rule is similar to [AL93] in that it allows the cyclic use 
of environment assumptions, it differs in that it applies to synchronous processes 
that can have zero delay (as opposed to their interleaving, unit delay model). 
Other systems based on synchronous processes, such as [Kur94, GL94], do not 
allow cyclic assumptions. Further, the above rule allows environment assump- 
tions to contain the conjunction of many processes constraining the same signal, 
whereas [McM97, AH96] do not. This ability is key to the proof presented here 
of Tomasulo's algorithm, in that it allows for case analysis. 

I m p l e m e n t a t i o n  in SMV In the SMV implementation of the above system, 
a "process" is an assignment of an expression to a signal (where the parameter 
t is implicit). Syntactically, a gate is written in this form: 

signal := expression; 

while a "latch" appears thus: 

init(signal) := expressionl; 
next (signal) := expression2; 

Here, ±ni t  (a) stands for a(0) and next (if) stands for a(t + 1). Assignments are 
grouped into named collections called "layers", as follows: 

layer <name> : ( <assignmen~l> <assignment2> ... } 

Within a layer, a given signal may be assigned only once. Thus, an assignment 
(i.e. process) can be uniquely identified by a signal-layer pair, which is written 
s i g n a l / / l a y e r .  The environment for proving a given specification component 
is determined by statements of the form 

using signall//layerl prove signal2//layer2; 

The well-founded order -~ is determined automatically in most cases. SMV 
assumes that an assumption about signal al should be used to prove an assertion 
about a2 with zero delay only when there is some actual zero-delay dependency 
path from al to 0" 2 .  In order to guarantee a well-founded order, however, there 
must be no zero-delay path from (72 to ffl. This leaves an ambiguity in the case 
of assignments to the same signal, or to two signals on a zero-delay cycle. To 
resolve this, the user can enter declarations of the form 

laysrl refines layer2; 

indicating that l a y e r l  assignments should precede layer2  assignments in the 
order. SMV then determines for each environment component whether it is in 
Zp, and hence whether it is assumed up to ~- or 7- - 1 when proving p J'~. 

Verif icat ion by mode l  checking The actual verification of each specification 
component p is done by symbolic model checking [BCM+92, McM93]. This topic 
is mainly beyond the scope of this article. However, for the reader familiar with 
these methods, we outline one possible (but highly simplified) implementation, 
the understanding of which is not material to what follows. Briefly, the conjunc- 
tion of the zero-delay environment assumptions (Ep A Zp) is translated into a 
symbolically represented Kripke model (So, R0, I0). Here So is a state invariant 



114 

term derived from the gates, Ro is a symbolic transition relation and I0 is an ini- 
tial condition (the latter two deriving from the latches). Similarly, the unit-delay 
environment assumptions (Cp n Z~) are translated into a model ($1, R1,/1), and 
p is translated into (Sp, Rp, Ip). Then our proof goal: 

( ~ n z ~ ) t ~ ^ ( E ~ n z ~ ) t  ~-~ ~ p 

is true iff the Mu-Calculus formula 

(Io A It A #H. (A V B V Img-l(Ro A R1, H))) V (Io A So A "-,(Sp AIp)) 

is empty, where A = Img-l(R0, S0 A -Sp), B = Img-l(R0 A -Rp, So) and 
Img -1 (R, S) the the inverse image of S w.r.t .R. This formula can be evaluated 
using symbolic model checking methods, and a counterexample trace generated 
if the result is nonempty. 

Auxi l ia ry  variables Often it is necessary to introduce auxiliary variables either 
as part of a specification, or part of the proof (as introduced by Owicki and 
Gries [0G76]). The definitions of these variables (or signals in our case) can be 
assumed, provided they are a "conservative extension". Formally, this means 
that if ,-qA is the set of auxiliary signals, Q is the implementation, and A is 
the set of auxiliary signal definitions, then Q ~ 2$A.(Q A A). That is, for every 
implementation behavior, there exists a feasible valuation of the auxiliary signals. 
In this case, if we can prove that Q A A ~ P, then we infer that Q ~ 33A.P. 
The following conditions are sufficient to ensure conservative extension: 

1. Every signal in ,SA has a unique assignment in A, 
2. No assignment in Q refers to any signal in SA, and 
3. There are no zero-delay cycles in A 

In the SMV system, auxiliary variables are declared with the keyword abs t rac t .  
The system guarantees that the above three conditions are met. As we will see, 
auxiliary variables allow us to use recorded history information in compositional 
proofs. We can then use these variables to express abstractions of the actual 
implementation variables. Used in specifications, they also allow us to express 
any regular-language property, which otherwise would not be possible. 

3 V e r i f y i n g  T o m a s u l o ' s  a l g o r i t h m  
In this section, we introduce Tomasulo's algorithm, and show how a proof of 
correctness can be constructed in the foregoing framework and mechanically 
checked using symbolic model checking. The proof is based on auxiliary variables 
and refinement maps. These maps can be viewed as an interpretation of the 
intended semantics of the various components of the implementation state. 

Tomasulo ' s  a lgo r i thm We consider here a pipelined arithmetic unit Q, ex- 
ecuting a stream of operations on a register file. Tomasulo's algorithm allows 
execution of instructions in data-flow order, rather than sequential order. This 
can increase the throughput of the unit, by avoiding pipeline stalls. Each pend- 
ing instruction is held in a "reservation station" until the values of its operands 
become available, then issued "out-of-order". 

The flow of instructions is pictured in figure 1. Each instruction, as it ar- 
rives, fetches its operands from a special register file. Each register in this 



115 

REGISTER FILE 

TAGGED RESULTS 

._~VAL/TAG ~ PENANDS 

RESERVATION 
STATIONS 
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ili!i!iii!~%il 

EXECUTION 
PIPEUNES 

Fig. 1. Flow of instructions in Tomasulo's algorithm 

scallout := {0, I}; 

if (-stallout) 

switch(opin) { 

ADD_OP : { 
opr_a := r[srca]; opr_b := r[srcb]; 
res := opr_a + opt_b; 

next(r[dst]) := res; 
} 

RD_OP : { 

dour := r[srca]; 
} 

Fig. 2. Specification code (partial). 

file holds either an actual value, or a "tag" indicating the reservation station 
that  will produce the register value when it completes. The instruction and its 
operands (either values or tags) are stored in a reservation station (RS). The RS 
watches the results returning from the execution pipelines, and when a result 's 
tag matches one of its operands, it records the value in place of the tag. When 
the station has the values of all of its operands, it may issue its instruction to 
an execution pipeline. When the tagged result returns from the pipeline, the RS 
is cleared, and the result value, if needed, is stored in the destination register. 
However, if a subsequent instruction has modified the register tag, the result is 
discarded, since its value in a sequential execution would be overwritten. 

The ari thmetic unit also has instructions that  read register values to an 
external output  and write values from an external input, and has a "stall" output ,  
indicating that  an instruction cannot be executed because either there is no 
available RS, or the value of the register to be read is not yet available. 

V e r i f i c a t i o n  a p p r o a c h  Thespecif icat ion is a machine P that  executes instruc- 
tions in order as they arrive, and stalls nondeterministically. A fragment of the 
SMV code is shown in figure 2. Our goal is to prove that  implementation Q im- 
plies specification P ,  with internal variables SA projected. Tha t  is, Q ~ 3SA. P.  
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We introduce auxiliary variables for each RS, and refinement maps relating the 
specification state, auxiliary variables and implementation state. Finally we ver- 
ify these relations using the compositional rule. We thus decompose the proof 
into "lemmas" small enough to be verified by model checking. 1 

Auxi l ia ry  variables We begin this decomposition by introducing new state 
components. When an RS is loaded with an instruction, we record the actual 
values of the instruction operands and result, according to the specification ma- 
chine. In SMV we have: 

if('stallout & IS_PIPE_OP){ 
next (hist [st_choice] .opt_a) := opt_a; 
next (hist [st_choice] . opr_b) : = opr_b; 
next(hist[st_choice].res) := res; 

} 

where h i s t  is the array of auxiliary variables, and st_choice is the reservation 
station to which the arriving instruction is assigned. Because these are auxiliary 
variables, we cannot refer to them in the implementation. However, we can use 
them in refinement maps that specify components of the implementation state. 

Ref inement  maps  The first refinement map states that if a given implementa- 
tion register holds a value (and not a tag), then that value must equal the "real" 
register value in the specification machine. In SMV, we write: 

layer map1 : 
forall(i in REG) 

if('ir[i].resvd) ir[i].val := rill; 

where i r  is the implementation register file, and resvd is a bit indicating that 
the register holds a tag. The second maps states that, if a register holds a tag, 
the actual register value must equal the result of the indicated RS (an auxiliary 
variable): 

forall(i in REG) 
layer map2[i] : 

forall(j in TAG) 
if(ir[i].resvd & ir[i].tag = j){ 

st[j].valid := 1; 
hist[j].res := r[±]; 

} 

Here, s t  is the RS array, v a l i d  is a bit indicating the station is full. The third 
map defines the "producer/consumer" relation between RS's. It states that if 
station j holds an operand value, then that value is the actual operand value. 
Otherwise, if station j is waiting for an operand from station k, then the result 
value of k is the actual operand value of j. This is the statement in SMV for the 
"a" operand (the "b" operand is similar): 

forall(j in TAG) 
layer map3a[j] : 

if (st [j]. valid) { 
if (st [j] . opr_a, valid) st [j]. opr_a.val : = hist [j]. opt_a; 
else hist[st[j].opr_a.taE].res := hist[j].opr_a; 

} 

1 The implementation and part of the proof text are omitted here for space reasons. 
See ht tp: / /w~-cad,  eecs.berkeley, edu/~kenmcmil for their complete text. 
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Note here that opr_a, the "a" operand field of the RS, has three subfields: v a l i d  
indicates that the value is available, val  is the value, and otherwise, t ag  is the 
tag. The final map states that, if a value returns on the result bus with a tag j ,  
then it must be the actual result of RS j: 

fora11 (j in TAG) 
layer map4[j] : 

if(pout.tag = j & pou~.valid) pout.val := hist[j].res; 

Here, pout is the result bus, which has three fields: va l id ,  indicating a result is 
present, tag, indicating a reservation station, and val,  the result value. 

Compos i t iona l  p r o o f  Now we give the environment for proving each of the 
above maps. The compositional system allows us to use any map as an assump- 
tion when proving another, even in an apparently circular manner, while ensuring 
that the proof is inductively sound. The flow of this proof roughly follows the 
progress of an instruction through the machine, as follows: 

1. map2: For each pair i , j  if register i contains tag j ,  then the result of RS j 
must be the actual value of register i. This is verified using only the imple- 
mentations of register i and RS j. 

2. map3 ("else" case): For each pair j, k, if RS j holds tag k as an operand, then 
the result value of k is the operand value of j.  This is verified using map2 
and the implementations of RS's j and k. 

3. map3 ("if" case): The operand values obtained by RS j are always correct. 
Since operand values may come from the register file or the result bus, we 
need to assume both mapl (for all registers) and map4. Since map4 gives the 
result bus value in terms of the RS results, we also need map3 for each RS 
result. We also use the implementation of RS j.  

4. map4: Result bus values tagged j match RS j 's  result. To guarantee the 
operands used are correct we use map3. We also use the execution pipeline, 
RS j (including auxiliary vars) and the specification ALU. 

5. mapl: Values in implementation register i are correct. We use map4 and map3 
(for each RS result) to prove this. 

Note, for example, the circularity in steps 3-5. Also note that, with other re- 
finement maps as the "environment", each of the maps is verified using the 
implementations of at most two registers or RS's, leaving the others as free vari- 
ables. This addresses the state explosion problem and makes the verification by 
model checking tractable. The general principle is to break the proof down into 
lemmas relating pairs of array elements, rather than considering entire arrays. 

As an example, consider the producer/consumer lemma (map3). We want to 
show that when RS j holds tag k as an operand, the result value of k must be 
the operand value of j .  Suppose that an instruction is loaded into RS j,  with 
register i as its source operand, and suppose that register i holds tag k. Now, 
map2 states that the result of station k (h i s t  [k]. res) is in fact the correct value 
for register i (r [ i]) .  It follows that at the next time the operand of j will be 
equal to the result of k (which is what we are trying to prove). The behavior of 
the reservation stations guarantees that this will continue to be true as long as 
station j holds tag k, since neither station can change until a result value for 
tag k returns on the result bus. 
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We don' t  need to spell out the above reasoning, however. To verify the lemma, 
we just apply model checking, assuming map2 holds between RS k and all regis- 
ters i. In SMV, this is expressed as follows (for the "a" operand): 

using hist [k].res//map2 [i] prove hist [k] .res//map3a [j] ; 

If there are n registers, then in checking the ]emma we are actually using 
a simultaneous conjunction of n ÷ 1 assignments to h i s t [k ] . r e s .  One is the 
definition of this signal as an auxiliary variable and the others are maps that  
give its value as a function of each specification register. This allows us to prove 
the correctness of station k relative to each register i as a separate case, then to 
combine these cases to prove our lemma. The ability to use multiple assignments 
to the same signal in the environment is thus key to the tractabil i ty of the proof. 

V e r i f i c a t i o n  b y  m o d e l  check ing  As mentioned earlier, the SMV system trans- 
lates each refinement map verification problem into a symbolic model checking 
problem. BDD-based methods are then used to either verify the map or produce 
a counterexample. A counterexample can indicate either that  the map doesn't  
hold, or tha t  insufficient environment assumptions were used. 

Note that ,  using model checking, we can only verify a fixed finite configura- 
tion of the processor. For example, with 32-bit data, 16 registers, 16 RS's, and 
one four-stage execution pipeline with one operation (integer addition) the total 
model checking t ime (to verify all the refinement maps and the unit outputs) 
is 92 seconds, running on a 266MHz Pent ium II processor, and a total  of 52454 
OBDD nodes used. 2 

Several factors make the verification tractable. First, by stating refinement 
maps and choosing environments appropriately, the number of state variables is 
reduced to a tractable level. One important  factor in this process is "bit slicing". 
Tha t  is, for most of the data-related refinement maps, we t reat  each bit of the 
data  path  separately. This is done automatically by SMV, which prunes away 
those parts of the model which have no influence on the property being verified. 
The only exception is the verification of the execution pipeline, in which there 
are clearly dependencies between data  bits. 

4 E x p l o i t i n g  s y m m e t r y  

The final important  factor is the exploitation of symmetry. Notice that  several of 
the refinement maps have an instance for each register/stat ion or s ta t ion/s ta t ion 
pair (and also for each bit of the data  path, if we use bit slicing). The number 
of lemmas to be proved is thus on the order of R × S × B or S x S × B, where R 
is the number of registers, S is the number of stations and B is the number of 
bits. However, by exploiting symmetry we can reduce this to a small number of 
representative cases. Space allows only a brief synopsis of this technique here. 

2 In fact, the verification of the processor as described here fails, due to a design error. 
A register bypass is needed to handle the case when an instruction arrives exactly 
at the moment one of its operands is returning on the result bus. This requires 
the addition of a one-line refinement map, not described here. The verification time 
given is for the corrected version. Note also that if floating point arithmetic were 
used, more elaborate techniques would be required to verify the arithmetic at the 
bit level. Arithmetic verification, however, is beyond the scope of this work. 
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S c a l a r s e t s  in  S M V  To express symmetries ,  the SMV language has been aug- 
mented with scalarset types,  as used in the Murphi  language [ID96]. A scalarset 
is a finite type,  whose use is restricted such tha t  a p rogram's  semantics is invari- 
ant under permuta t ions  of elements of the type. A scalarset type is introduced 
by a declaration such as: 

s c a l a r s e t  TAG 0 . . 1 5 ;  

which creates a type called TAG with 16 values. Although these values are nom- 
inally in the range 0..15, no constants of a scalarset type  may  occur in the 
program.  Values of scalarset type may  appear  only in certain symmetr ic  con- 
structions: 

1. Two expressions of the same scalarset type may be compared for equality. 
2. The index type of an array may be a scalarset. Subscripts applied to the 

array must  be of the same type. For example,  if x is of type  TAG and z of 
type  a r r a y  TAG of  boo lean ,  then  one could write z [x] ,  but  not z [0].  

3. In a f o r a l l  s ta tement  of the form: 

forall ( i  i n  type) { <statements> } 

the t y p e  may  be a scalarset. The semantics of this s ta tement  is the conjunc- 
t ion of s t a t e m e n t s  for all i in t ype .  3 

4. Any commutat ive /associa t ive  operator  may  be applied as a "reduction op- 
erator" over a scalarset type.  For example we can take the conjunction of 
the elements of z as follows: 

[ z [ i ]  : i i n  TAG] 

Similarly, a "comprehension expression" can be formed over a scalarset type. 
For example,  this expression {i  : i i n  TAG, z [ i ]  } denotes the set of val- 
ues i in the type  TAG such tha t  z [±] is true. 

S y m m e t r y  r e d u c t i o n  t e c h n i q u e  The meaning of each of the above constructs 
is unchanged if we exchange the roles of any pair of elements of a scalarset 
type.  As a result, the overall p rogram semantics is invariant. So, if we have 
two assertions pl  and p2, such tha t  one is obtained from the other by some 
permuta t ion  of scaiarset values, then Pl holds iff P2 holds. Hence we need only 
verify Pl. SMV uses this fact in the following way: given a parameter ized class of 
assertions to prove, SMV chooses a representat ive set of instances of the class, 
such tha t  any instance can be reduced to one in the set by permut ing scalarset 
values. For example,  suppose tha t  an arbi ter  is to acknowledge exactly one user 
of a resource, and tha t  type "user" is a scalarset. The  assertion m u t e x [ i ]  [ j ]  
s tates tha t  users i and j are not acknowledged at  the same time, if i ~ j .  Here, 
two representat ive cases, mutex[0][0] and mutex [0] [1],  suffice. All cases where 
i = j reduce to the former, while all cases where i ~ j reduce to the latter.  In 
general, if we have k parameters  of a given scalarset type,  then no more than  k! 
instances are required, regardless of the type ' s  size. 

In the case of Tomasulo 's  algorithm, we have three scalarset types: REG, TAG 
and BIT, corresponding to registers, RS's, and bits of the da ta  path,  respectively. 
The  "producer /consumer"  lemma,  for example,  is a class of proof  obligations of 
the form: 

3 As an aside for those familiar with Murphi, the use of a fora11 construct rather 
than an iterative fo r  loop as in Murphi simplifies the rules for scalarsets~ since there 
is no need to check for possible "side effects" between loop iterations. 
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hist  [k] .res [i]//map3a [j] 

where j and k are tags, and i is a bit index, stating that when RS j points to 
RS k, bit i of k's result is bit i of j ' s  operand. There are R 2 × B instances to 
prove, which reduce to two representatives: h i s t  [0] . r e s [0 ] / /map3a[0]  and 
h i s t  [1] . r e s [0 ] / /map3a[0] .  If there are 16 RS's and 32 bits, then a factor 
of 8192/2 in run time is saved. 

S y m m e t r y  b reak ing  In the case of Tomasulo's algorithm, the symmetry of 
the scalarset types is broken in several places. For example, the arithmetic unit 
breaks the symmetry of the data path bits, and the logic that selects an RS 
for the arriving instruction breaks the tag symmetry. Assignments that break 
the symmetry of a scalarset can be introduced with a declaration such as the 
following: 

breaking (BIT) 
res := opr_a + opr_b; 

which defines the adder function in the specification. The system ensures that 
a symmetry reduction over a given scalarset type is not performed when an 
assignment breaking that type's symmetry is used in the "environment". This 
allows us to localize the effect of symmetry breaking. For example, since the 
"producer/consumer" lemma does not depend on the adder function, we can 
still make use of the bit symmetry when proving it. 

5 C o n c l u s i o n  

We have seen that it is possible using compositional model checking methods to 
formally verify an out-of-order processor. This was done by a direct refinement 
from specification to implementation, without need of an infinite-state inter- 
mediate abstraction or reasoning about partial orders. This refutes the claim 
in [DP97] that such an intermediate level is needed to give a concise statement 
of the refinement relation. In fact, the proof was possible even though the pro- 
cesses in the compositional system are not only finite-state, but are not even 
first-order expressive (much less regular-language expressive). 

The proof itself is not automatic. Substantial human insight was required to 
decompose the proof into lemmas about small collections of state components. 
However, we note that the proof is at least textually short - substantia/y shorter 
than the implementation - and that the refinement maps are a fairly natural 
representation of the function of the various machine components. Also note 
that other processor architectures (such as "in-order-completion" machines) are 
strictly more deterministic in their scheduling than Tomasulo's algorithm. Thus, 
it might be possible to reuse the present proof by refining Tomasulo's algorithm 
to various other architectures, and thereby save the effort of verifying them "from 
scratch". 

There are several areas in which the present work could be extended or 
improved. First, the processor is unrealistic in that it has no provision for "ex- 
ceptions" (caused, for example by, interrupts, arithmetic errors, or mispredicted 
branches). It would be useful to know, for example, if one could use a simi- 
lar technique to verify a processor using "snapshots" or some other technique 
to roll back the processor state after an exception. Second, the verification of 
Tomasulo's algorithm should in principle be independent of the actual arith- 
metic functions used, since they have no effect on the scheduling of instructions. 
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If the present techniques were integrated with the uninterpreted function cal- 
culus techniques of [BD94], then the arithmetic unit might be modeled by an 
uninterpreted function symbol, allowing the problem of arithmetic verification 
to be separated. Third, note that  this work and [DP97] only deal with the issue 
of safety and not of liveness (i.e., a processor that  always stalls would meet the 
specification). The compositional framework presented here cannot handle live- 
ness properties (in fact, Abadi and Lamport  [AL93] show that  liveness assertions 
cannot be used as cyclic environment assumptions). The proof could, perhaps, 
be undertaken using assume/guarantee style temporal reasoning, which is also 
supported by SMV. 
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