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Abstract. A fully automatic framework is presented for identifying symmetries 
in structural descriptions of digital circuits and CTL* formulas and using them in 
a model checker. The set of sub-formulas of a formula is partitioned into equiv- 
alence classes so that truth values for only one sub-formula in any class need 
be evaluated for model checking. Structural symmetries in net-list descriptions 
of digital circuits and CTL* formulas are formally defined and their relationship 
with the corresponding Kripke structures is described. A technique for automatic 
identification of structural symmetries is described that requires computation of 
the automorphism group of a suitable labeled directed graph. A novel fast algo- 
rithm for this problem is presented. Finally, experimental results are reported for 
BLIF-MV net-lists derived from Verilog. 

1 Introduction 

Temporal model checking algorithms [CES86,BCL+94] typically explore the states 
of a non-deterministic finite state machine that represents the system under scrutiny. 
A major bottleneck is the exponential number of states that need be explored. This 
is commonly known as State Space Explosion. Among the techniques being devel- 
oped for countering this problem are partial order methods, abstraction, compositional 
approaches, and symmetry reductions. Symmetries abound in hardware circuits, dis- 
tributed algorithms and concurrent programs. 

Emerson and Sistla [ES96] and Clarke et al [CEFJ96] show how symmetries in 
Kripke structures and CTL* formulas allow the construction of a smaller sized quotient 
structure such that the formula need be verified only for the quotient. In both works, 
symmetries are specified by hand by the designer. Emerson and Sistla [ES95] have de- 
veloped theory for using symmetries with fairness constraints. Gyuris and Sistla [GS97] 
have developed an on-the-fly model checker that utilizes symmetries under fairness. 
Emerson, Jha and Peled [EJP97] have combined partial orders and symmetries. Sym- 
metries have also been shown to speedup transistor-level verification [PB97]. 

Ip and Dill [ID96] use symmetries for speeding up verification of safety properties 
using explicit techniques for designs specified in a guarded command language. They 
propose augmentation of the language itself by introducing a new data type with syntac- 
tic constraints for sets of fully symmetric variables called scalarsets. A major drawback 
of scalarsets is that important and standard specification languages such as Verilog and 
VHDL cannot be modified easily. 

Our work is distinguished from previous work on several counts. First, we provide a 
framework for identifying symmetries automatically. Second, we formalize the notion 
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of structural symmetries in net-list descriptions, show how they relate to those in Kripke 
structures and present effective algorithms for automatically identifying them. Third, 
we show how symmetries in the formula itself can be used with or without quotient 
structures to expedite model checking. 

2 Preliminaries 

Kripke Structures: Let A P  be a set of atomic propositions. A Kripke structure 
over A P  is a triple M = (S, R, K) ,  where S is a finite set of states, R C_ S x S is a 
transition relation that is total, i.e. (Vs E S)(3t  E S)((s,  t) G R), and K : S -~ 2 AP 
is a labeling function. Let states in S be encoded such that there is a 1-1 mapping from 
S into 2 L for some L. Then K is a multi-output boolean function K : 2 L --+ 2 AP. 

Temporal Logic CTL* is the set of strings ,S generated by the two productions 
S --+ (AP) I ~ S  I S V S [ E(79) and 7 9 ~ S I -~P [ 79 V 79 I X79 1 79U79, where (AP)  
denotes any proposition p 6 AP,  S denotes a set of state formulas, and 79 denotes a set 
of path formulas. I f  M = (S, R, K )  is a Kripke structure, (M, s ~ f )  denotes that the 
state formula f is true for state s 6 S. Similarly, (M, ~ ~ g) denotes that path formula 
g is true for path ¢.  See [CEFJ96] for a formal definition of ~ using this notation. 

We say that two CTL* formulas are logically equivalent if their truth values are 
identical for every state in any Kripke structure. We say that two CTL* formulas are 
structurally equivalent if they also have isomorphic parse trees. Intuitively, the second 
formula is the same as the first one written in a structurally different way due to the 
commutativity of some operators. 

Model Checking Problem: Given a set of atomic propositions AP,  a Kripke struc- 
ture M = (S, R, K),  a CTL* formula f and a set of initial states I C_ S, does every 
state in I satisfy f ? Clarke, Emerson and Sistla [CES86] presented the first algorithm 
for CTL model checking using explicit state space exploration. A Binary Decision Di- 
agrams based symbolic model checker that can handle more than 10 12° states on some 
pipelined circuits has been described by Burch et al [BCL+94]. 

Permutation Groups: A permutation 7r is a bijective mapping 7r : S -+ S defined 
over a finite non-empty set S. We denote the action oflr  on an element s E S by 7rs. We 
use H _< G to denote that H is a subgroup of G. We denote the intersection of G1 and 
G2 by G1 Iq G2, which itself is a group. For a set T C_ S, we define 7rT = {s I s = 7rt 
where t E T}. This overloads operator 7r but buys us notational convenience. For a set 
X C_ S, such that 7rX = X,  we use 7r<x> : X --+ X to denote the restriction of Tr to X .  

Definition of ~ Opera tor :  Let G denote a permutation group over $1 U Sz such 
that (VTr E G) ((7rS1 = S1) A (71$2 : $2)) .  Let H denote a permutation group over $2 U 
Sz similarly. Then G N H is defined to be a permutation group over $1 USa such that 
7r E G ~ H if and only if there exist g E G and h E H such that (Vs E $1) (gs = 7rs), 
(Ys E S3)(hs = 7rs) and (Ys G S2)(gs = hs). 

3 Symmetric Sub-formulas 

Let M = (S, R, K )  be a Kripke structure with 2 L states. Let 7r : E --~ L be a 
permutation. It induces a pe rmuta t ion / / :  2 z ~ 2 z naturally. Let ~r be such that / - / i s  
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an automorphism of the directed unlabeled graph (S, R). The set of all such Ir forms a 
group, which we denote by AutM L. Later, we consider a Kripke structure M having 
additional labels drawn from a set X D_ AP .  The new labels can be looked upon as a 
mapping K '  : 2 L -~ 2 x .  When X = A P ,  K '  = K .  

Consider a permutation 7r : L U X -~ L U X such that (TrL = L) and (Tr<L> 6 
AutM L) and (Vx 6 2L)(Vy 6 2AP)((K' (x)  = y) ¢~ (K'(Trx) = Try)). The set of all 
such permutations 7r forms a group which we denote by AutM L • X .  

For s E S and 7r 6 AUtM L • AP ,  let 7rs denote the state obtained by applying 7r 
to the encoding of s. For any path ¢ in M,  let 7r¢ denote the path obtained by applying 
7r to every state in ¢.  For a CTL* formula f defined on AP,  let 7rf denote the formula 
obtained by replacing every occurrence o f p  6 A P  by 7rp. 

Theorem 1. For a Kripke structure M = (S, R,  K )  and a permutation 7r 6 Au tM L . 
AP,  ((M, s ~ f )  ¢~ (M, r s  ~ 7r f ) )  and ((M, ¢ ~ g) ¢~ (M, 7r¢ ~ 7rg)) for any 
state s E S, any path ¢ in M,  any CTL * state formula f and any CTL * path formula 
g. [] 

Theorem 1 can be proved by induction using the identities (Tr(-~f) = ~(Trf)), 
(Tr(f V g) = 7rf V Try), (Tr(Xf) -- X(Trf)),  (Tr(Eg) = E(rcg)) and (Tr(glUg2) = 
7rglUTrg~). A detailed proof can be found in [Man97]. For a Kripke structure M and 
CTL* formula f defined on A P ,  let S F  denote the set of all sub-formulas of f ,  includ- 
ing any atomic propositions in A P  that occur in f .  Recall the definitions of logical and 
structural equivalence from Section 2. For a subgroup G < AutM L .  A P ,  we define a 
relation ~o  C_ S F  x S F  as (Vfl ,  f2 E S F ) ( ( f l  ~G f2) <:~ (STr 6 G)(Trfl and f2 are 
logically equivalent)). We also define a relation ,.~s O the same way as ..~G but replacing 
logical equivalence by structural. The following theorem is immediate. 

Theorem 2. For G <_ Au tM L . AP ,  the relations ~ 0  and ~ 0  are equivalence rela- 
tions, with ~G inducing a partition coarser than that induced by ,,~G [] 

~ 8  ° 

3.1 Applications 

First, consider two sub-formulas 9 and h in the same equivalence class. Let 7r 6 
AutM L • A P  be a witness that transforms h into g- If  the truth value of h has been 
evaluated for all states in S, the truth value for 9 is immediately available. In a symbolic 
technique, the BDD for g can be computed from that for h by variable substitution 
corresponding to 7r. Second, having proved the correctness of a CTL* formula f ,  one 
can use Theorem 1 to generate new formulas whose truth value is already known by 
producing a non-trivial a- 6 G and constructing 7rf. A model checker can present new 
formulas to a designer in a controlled fashion using an interactive user interface. Third, 
it will be clear that identification of symmetric sub-formulas contributed to savings on 
top of quotient structures that we describe in Section 4. 

3.2 Computing Equivalence Classes 

Given G <_ Au tM L . A P  and a CTL * formula f ,  how do we find two sub-formulas 
g and h such that g .,~G h? This is a computationally hard problem even if f is a 
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simple boolean formula without path operators or temporal quantifiers [AT96]. If we 
replace ~G by ~G the problem is as hard as graph isomorphism [Man97]. We outline a 8 

technique that can identify symmetric sub-formulas if the symmetry in the specification 
is reflected in the formula as well, which is true in practice. 

For a CTL* formula f ,  let S F  denote the set of sub-formulas of f ,  including all 
atomic propositions that occur in f .  Consider the group consisting of permutations 7r : 
A P  --+ A P  such that f and 7rf are structurally equivalent. Every permutation in this 
group implicitly defines a permutation on the set A P  U S F .  We denote this group by 
A u t f  A P .  SF .  Let G < Au tM L . AP .  Let H < A u t f  A P .  S F .  Recall the definition 
of ~4 from Section 2. We see that the group G t~ H is well defined. We define a relation 
~Gt~Hc S F  x S F  as ('v'fl, f2 E S F ) ( ( f l  ~s--GMH f2) ¢:> (~Tr E G t~ H)(Trfi and 
f2 are structurally equivalent)). This is an equivalence relation. In general, the partition 
induced by "~s'~Gt~g is finer than that induced by ,,~s c for G = AutM L .  AP .  

In Section 5, we will show how G < AutM L . A P ,  H < A u t f  A P . S F  and G t~ H 
can all be computed automatically. The representation for G t~ H would allow us to 
easily identify the partitions induced by , . , v~ r  and produce witnesses that transform 
one sub-formula into another. 

4 Quotient Structures 

We now develop a theory of symmetries for Kripke structures, extending those de- 
veloped by Clarke et al [CEFJ96] and Emerson and Sistla [ES96]. Let M = (S, R, K )  
be a Kripke structure with 2 z states. Let G < AutM L • X for some set of labels 
X D AP .  Let two states s and t in S be related if there exists 7r E G such that 7rs = t. 
This defines an equivalence relation, partitioning S into equivalent sets called orbits. 
We denote the orbit of a state s E S by Is] G. We pick a state from each orbit to obtain a 
set of representatives and define a function ~G : S --+ S such that each state is mapped 
to the representative of the orbit it belongs to. ~c is not unique. The results in this paper 
hold for any ~G- For a Kripke structure M = (S, R, K)  and G < Au tM L .  X for 
some set of labels X, the quotient structure is defined as MG ---- (SG, RG, BIG), where 
Sa  = {[s]G I s e S}, RG ----- {(Is]G, I t ] c ) I  (s, t) e R} and KG([a]G) = K(~G(S)). 
The fundamental result in [CEFJ96] is captured by the following theorem: 

Theorem 3. [CEFJ96] For a Kripke structure M = (S, R, K)  and a group G < 
AutM L . AP,  if (VTr 6 G)(Vp 6 AP)(Trp = p), then for any CTL* formula f ,  it is 
true that (Vs 6 S ) ( (M,  s ~ f )  ¢¢, (MG, [s]G ~ f)) .  [] 

Application of Theorem 3 requires that the truth value of every atomic proposition 
be invariant under every permutation in G. In the extreme case, we could have A P  = L, 
giving each state a unique label and making G trivial. Emerson and Sistla [ES96] 
present a generalization of Theorem 3. However, their theory is built for Kripke struc- 
tures derived from systems of communicating isomorphic processes, the set of atomic 
propositions being the set of shared variables. In our terminology, it amounts to assum- 
ing A P  = L and a single initial state. We now develop a generalization of their result 
so that it is applicable to Kripke structures derived from net-list descriptions. 
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For a CTL* formula f ,  let M P S  be the set of its maximal propositional sub- 
formulas. Let fMPS  be the multi-output boolean function 2 AP -9" 2 MPS. We define 
Auty  A P : M P S  = {Tr : A P U M P S  ~ A P U M P S  I Tr is a permutation, 7rAP = A P ,  
r M P S  = M P S ,  (Vy E M P S ) ( r y  = y) and (Vx E 2AP)( fMpS(X)  = fMps(Trx)}.  
This set forms a group. For G < Au tM L • A P  and H < A u t  I A P  . M P S ,  the group 
G t~ H is well defined. 

Theorem 4. For G <_ Au tM L • A P  and H < Au t  I A P  • M P S ,  it is true that 
(Vs 6 S ) ( ( M ,  s ~ f )  ¢~ (Ma~H,  [s]C~H ~ f ) )  

Proof The crux lies in showing that G • H < Au tM L . X ,  where X = M P S .  Then 
replacing labels of M by labels corresponding to evaluations of sub-formulas in M P S  
allows a straightforward application of Theorem 3 to get the desired result. [] 

To construct the quotient, we require G t~ H ,  for which we present an automatic 
procedure in the next section. Once we have constructed G t~ H ,  how do we use it 
to expedite model checking? A detailed exposition can be found in [ES96,CEFJ96]. 
Briefly, we need to compute the canonical state function (C~H and modify the model 
checker so that it canonicalizes every state encountered during state space traversal. 
See [Man97] for a summary of known results for computing ~aNH. Theorem 4 can 
be further extended along the lines of Auto  f in [ES96] by introducing an additional 
set of labels corresponding to all sub-formulas that have E,  X or U as the topmost 
operator. Although we omit the theorem from this paper, we note that computation of 
the corresponding G t~ H can still be automated. 

5 S t r u c t u r a l  S y m m e t r i e s  

In Section 3.2, we saw how knowledge of groups G < Au tM L • A P  and H < 
A u t f  A P .  S F  would help us partition sub-formulas of a CTL* formula f into equiva- 
lence classes. In Section 4, we saw how knowledge of the same group G but a different 
H < Au t  I A P  • M P S  would allow us to construct quotient structures. In both the 
cases, we need to compute G ~ H .  We now describe how G, H and G t~ H can 
be computed automatically from net-lists of digital circuits and CTL* formulas, with 
no assistance from the designer. We have chosen BLIF-MV [B+91] as a representative 
structural hardware description language. 

5.1 Characterizing a BLIF-MV Circuit 

We model a BLIF-MV circuit as a five tuple C = (77, O, / : ,  7", S), consisting of a 
set of primary input ports Z, a set of primary output ports (9, a set of latches/: ,  a set 
of tables 7" and a set of  interconnection signals ,5. Intuitively, C is a big black-box with 
I/O ports (primary inputs and outputs) consisting of smaller black boxes (tables and 
latches) whose I/O ports are interconnected with signals. 

A table T E 7" has input ports z I'T, z2.T,. ..  and output ports o iT, o2T,.... With each 
output o T, we associate a function f i  T that takes the ordered tuple .T .T (~i , % , " - )  as its 



164 

argument. In general, f s  is non-deterministic, as allowed by BLIF-MV. See the figure 
below for a BLIF-MV table description. A latch L 6 £ has two input ports .z .z z 1 , % and 
one output port o~. The second input port specifies the initial value for the latch. 

Let e s i n k  : T L T _ "T "T L _ "L U Pi .  U O, where Pin - UT67" {'1,  ' 2 , "  "}, - U .6£ {,1 }- 
Let Psource = T L T _ T 7" ~ _ P~ut U PJout U E, where Pout - UTeT  { ° 1 , 0 2 , ' "  "} and PJout - 
ULe£ {o~}. Thus Psi,~k is the set of primary outputs and input ports of tables and 
latches, except those for initial values for latches. And Pso~,rce is the set of all primary 
inputs and all output ports of tables and latches. 

Each port is associated with a domain. Let dora(p) 
denote the domain of any port p 6 Psink U Pso~,rce. 

.table a b c -> ~ a ~  For o T 6 PoTt, let the function f f ( i T ,  iT , . . . )  be the .default 0 

x - ~ boolean function specified in its table that corresponds 
1 - 1 1 

- 1 1 1 to the output produced at o T. This function takes an or- 
dered list of input ports as its arguments. It could be 
non-deterministic. The interconnection signals S sim- 

ply define a relation Sext C_ Psou~ce x Psi,~k. Also define Sint = UTeT ({ iT, iT, .. "} x 
T T {°1, ° 2 , ' "  "}) Uze," (iL, oZ). ThUS Sint captures the internal dependencies of input 

and output ports within a latch or a table. And Sext captures the external dependencies 
between primary inputs, primary outputs and I/O ports of tables and latches. 

A structural symmetry of C is an automorphism 7r : P~i,~k U Psou~ce ~ Ps~,k U 
Pso~,~c, of the directed unlabeled graph (P~i,~a U Psou~**, S i n t  U S e x t )  that satisfies 

T T the following constraints: (a) (VX 6 {Pin, Pdut, p L ,  poZut,Z, O}) (TrA' = X), (b) 
T T "T (Vp 6 P~i,~kUPsource)(dom~p) = dom(Trp) ), and (c) (Vo T • Pdut)(f] (~1, iT, .. ") = 

fT '  T' T' T'  "T' "T' (il, , i 2 , , . .  .)) where (oj, = roT) ,  (h '  = t iT) ,  (Z2' = 7tiT), "" "" It follows from 
the first two conditions that vertices corresponding to a table get mapped to vertices of 
another table with the same number of I/O ports such that their domains match. Condi- 
tion (c) stipulates that even the functionality of the two tables should match modulo ~r. 
It may be verified that the set of structural symmetries forms a group. 

How are structural symmetries in C related to symmetries in some Kripke structure 
M ?  For a circuit C, there exists a Kripke structure M = (S, R, K)  with 2 L states 
and the set of atomic propositions AP.  The set L corresponds to the latches. The set 
A P  corresponds to outputs in O. The function K represents the boolean predicate on 
latches that generate outputs. We assume that the outputs in C do not depend on the 
inputs i.e. C defines a Moore machine. However, we note that the basic ideas developed 
in this paper can be extended to Mealy machines also. For a structural symmetry 7r, let 
7rc : L U A P  -4 L U A P  denote the permutation naturally induced by 7r. Let Autc L . A P  
denote the set of all such permutations. Autc L .  A P  forms a group. 

T h e o r e m  5. Autc  L .  A P  < AutM L .  AP. [] 

Although we used BLIF-MV terminology to formalize the notion of structural sym- 
metries, we believe that our definition is general enough to be applicable to gate level 
descriptions like those expressible in EDIF, Verilog and VHDL. 
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5.2 Graphs for BLIF-MV Circuits 

One problem with the definition of structural symmetries in the previous section is 
that the third condition cannot be expressed in purely graph theoretic terms. However, 
we can augment the graph so that there is a 1-1 correspondence between structural 
symmetries and automorphisms of the graph. This allows us to leverage results from 
computational group theory developed for identifying graph automorphisms. 

First, label each vertex in Psink U Pso~rce 
with its domain. Next, substitute each subgraph 
corresponding to a table by a graph similar to 
the one shown in the adjoining figure. The new 
nodes are internal to the table and are labeled 
with the corresponding table entries. 

Let Ac denote the labeled directed graph so 
constructed. For an automorphism 7r of Ac, let 
7ra : L U A P  -~ L U A P  denote the 1-1 mapping 
naturally defined by rr. Let Autc L -  A P  denote 
the set of all such permutations. It can be verified 
that Theorem 5 still holds. A detailed proof can 

Copy 

Subsol 
And 

Output 

be found in [Man97], which also shows how multiple-output tables, the "="  construct 
[B+91], pseudo inputs and other special cases can be handled. The size of the graph is 
linear in the size of the flattened BLIF-MV description. 

Here are two interesting theoretical questions: First, is every group possible? Let 
G C_ AutM L .  AP. Computation of the canonical state requires G<L>, the restriction 
of G to L, as input. Is there any group G<L> that does not correspond to any BLIF- 
MV circuit? If so, we can focus on the remaining groups to solve the canonical state 
problem. However, the answer is negative [Man97]. Second, how hard is it to identify 
scalarsets? A scalarset is an automorphism of the graph Ac such that the automorphism 
can be written as a product of disjoint transpositions. Note that Ac is not an arbitrary 
directed graph. It has been derived from a valid BLIF-MV circuit. See [Man97] for a 
simple proof that the problem is as hard as graph isomorphism. 

5.3 Graphs for CTL* Formulas 

To compute H < Aut f  A P .  SF,  draw the parse tree for the formula f .  Label each 
internal node with the operator it represents. The leaf nodes correspond to propositions 
in AP. For each internal node labeled Until, introduce two new nodes labeled Left and 
Right. Replace the edge between Until and its left operand by two edges: one from 
Until to Left and one from Left to the left operand. Replace the edge between Until 
and its right operand similarly. Collapse all leaf nodes representing tha same p C A P  
into a single node. Label these nodes with a common color, say White. Introduce a 
new set of nodes, one for every p E AP, labeled identically with a new color, say 
Black. Draw an edge from a White node to a Black node if they correspond to the same 
atomic proposition. Let Af denote the graph we constructed. It is clear that the nodes 
of A f ,  except those labeled Left or Right, are in 1-1 correspondence with elements of 
A P  U SF. For every automorphism of the graph A, let 7r denote its restriction to nodes 
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corresponding to A P  tO S F .  The set of all such 7r forms a group, which we denote by 
AutAj  A P .  S F .  

Theorem 6. AurA s A P  . S F  < Aut$ A P  . SF .  [] 

To compute H < Auty  A P .  M P S ,  first identify M P S ,  the set of maximal propo- 
sitional sub-formulas of f .  For each g E M P S ,  construct its parse tree. Label each 
internal node with the operator it corresponds to. Collapse all leaf nodes which corre- 
spond to the same p E A P  into a single node. Label them identically with a new color, 
say White. Introduce a new node for every proposition p E A P ,  all labeled identically 
with a new color, say Black. Draw an edge from every White node to a Black node if they 
correspond to the same atomic proposition p. Re-label each root node corresponding to 
some g E M P S ,  with a distinct new color. Let .~f denote the graph we constructed. 
Let 7r : A P  U M P S  ~ A P  U M P S  denote the permutation corresponding to the 
restriction of some automorphism of AS to vertices corresponding to A P  and M P S .  

The labels of Af ensure that 7rAP = A P  and (V9 E M P S )  (Tr 9 = g). The set of all 
such 7r forms a group, which we denote by Autos  A P  • M P S .  

Theorem 7. Autos  A P .  M P S  <_ A u t f  A P  . M P S .  [] 

5.4 Computing G M H 

One approach is to compute the groups G and H separately and then compute 
G t~ H using group-theoretic algorithms. G need be computed only once for a given cir- 
cuit. However, computing group intersections is as hard as graph isomorphism [Hof80], 
though polynomial time algorithms do exist for special cases. 

A simpler approach is to join the two graphs corresponding to G and H together by 
drawing an edge between every pair of vertices that correspond to the same p E A P  in 
both the graphs. The key to correctness lies in the fact that the sets of labels in the two 
graphs, except for the vertices corresponding to A P ,  are mutually exclusive. 

5.5 The Big Picture 

Given a BLIF-MV circuit C, a CTL* formula f and a set of initial states I, we 
first compute sets of symmetric sub-formulas of f ,  as defined in Section 3, by con- 
structing the graphs Ac and A f,  described in Section 5.2 and Section 5.3 respec- 
tively, joining them as described in Section 5.4 and solving the graph automorphism 
problem for the resulting graph. The data structure for representing graph automor- 
phisms allows identification of partitions of sub-formulas of f easily. We then compute 
H <_ A u t f  A P  • M P S  by constructing the graph i]y described in Section 5.3, joining 
it with Ae as described in Section 5.4 and solving the graph automorphism problem for 
the resulting graph. This would give us generators for the group G ~ H,  from which we 
compute ~cNn. Finally, we feed the sets of symmetric sub-formulas and the function 
~GNH tO a modified model checker that canonicalizes states during state space traversal 
and uses Theorem 2 to avoid computing truth values for all sub-formulas. After hav- 
ing evaluated the truth value of f for all initial states, the modified model checker can 
start offering new formulas to the designer, whose truth value can easily be deduced, as 
described in Section 3.1. 
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6 Computing Automorphisms 

Let us first breeze through a ~et of definitions. Consider a directed labeled graph 
A = (V, E) with n vertices and rn edges. A bipartition P defined over V is a set of 
ordered pairs Ul<i<k{(Vi, Wi)},  where (a) t-Jl<i<kVi = Ol<i<kWi = V, (b) (Vi.1 < 
i _< k)(IV~l -- IW~l # 0), and (c)(Vj.1 < i < j < k)(ViMVj = W~fqWj = ¢). The set 
of edges of a graph or its labeling function play no role in the definition. A bipartition 
P is a unipartition if (ViA < i < k)(Vi = Wi).  It is simply a partition of the set 
of vertices V into disjoint non-empty sets. A bipartition Q = Ul<i<q{Vi Q, W~} is a 
refinement of another bipartition P = Ul<_i<p{Vi P, Wi P } if they are defined over the 
same set of vertices V and (ViA < i < q)(Vj.1 < j < p)((Vi Q M Vje = ¢) V (V~ O" C_ 

Vje A W ff C_ Wff)). We denote this relationship by Q ~ P. We also say that P is 
coarser than Q and that Q is finer than P. The relation 4 is reflexive and transitive. Two 
bipartitions P = Ul<i<p{(Vi P, w P ) }  and Q = U a < i _ < q { ( V / Q ,  W?)}  are compatible 
if (Vi.1 < i < p)(Vj.1 < j < q)(lV/P M V?I = I WP fq W?I  ). The intersection 
of two compatible bipartitions P and Q is defined as P .k Q = Ul<_i<p,l<j<q{(Wi Q N 
Vj P, W~ fq WjP)} - {(¢, ¢)}, which itself is a bipartition. Let A = (V, E) be a directed 
labeled graph with labeling function e. A bipartition P is an automorphism of A if (a) 
(vi.1 < i < k)(lY~l = IW, I = 1), (b) (Vv, w E V)(Vi.1 < i < k)((v  E V~ A w E 
Wi) ==~ (c(v) = c(w))), and (c) (Vv, v ' , w , w '  E V)(Vi.1 < i < k)(Vj.1 < j < 
k)((v,  v') E E ¢v (w, w')  e E).  The set of all automorphisms of A forms a group. 
We denote it by Aut  A. A bipartition P is consistent with an automorphism if there 
exists an automorphism P '  of A such that P '  ~ P. For notational convenience, we will 
denote both a vertex v E V and a singleton set {v} by simply v. This allows us to write 
a set like {({u}, {v})} as (u, v). The following lemmas are immediate: 

Lemma 1. I f  P, Q and R are bipartitions of  A such that P ~ Q and P ~ R, then Q 
and R are compatible and P ~ Q ). R. 

Lemma 2. Let Urea= be a unipartition such that two vertices of A lie in the same set 
iff they have the same label Then, Uma~ is consistent with every automorphism of  A. 

Lemma 3. Let Umin 
set if and only if (37r 
morphism of  A and is 

be a unipartition such that two vertices u and v lie in the same 
E Aut  A)(Tru = v). Then, Umin is consistent with every auto- 
the finest such unipartition. 

Lemma 4. I f  P is a bipartition such that P E Aut  A and (u, v) E P, then P 
{ (succ(u), succ(v) ), ( V - s u c c ( u ) ,  V - s u c c ( v )  ) }, where succ(x) = {y i (x ,y)  E E}. 

Lemma 5. I f  P is a bipartition such that P E Au t  A and (u, v) E P, then P 
{(pred(u) ,pred(v)) ,  ( V - w e d ( u ) ,  V - p r e d ( v ) ) } ,  wherepred(x) = {y I (Y, x) e E}. 

We tackle the following problem: Given a bipartition P for  a directed labeled graph 
A = (V, E), produce an automorphism of  A consistent with P, if one exists. 
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SBARCH..AUTOMORPHISM(Graph A, Bipartition P) 
Compute Umo=; 
U = REFIr~E (U~..); 
If(COMPATIBLE (P, V)) 

P = P ) . U ;  
else return 0; 
return BRANCH.AND-BOUND(A, P, ~); 

BRANCH-AND.BOUND (Graph A, Bipartition P, PairSet S) 
white ((3~,v e v)((~, v) ¢ P ^ (~,v) ¢ S)) 

S = S u (u,v); 
O = (s~_c(u), s~cc(v)) u (v - s,,cc(n), v - succ(v)); 

if (COMPATIBLE (Q, P)) 
P = P . k Q ;  

else return 0; 

Q = (pred(u),pred(v)) U (V  - pred(u), V - pred(v)); 

if(COMPATIBLE (O, P)) 
P = P X Q ;  

else return 0; 
i f  (S ET-COMPLETE(A, 8)) 

return 1; 

(V, W) = CHOOSE_VICTIM (P); 
foreach (u, E W) 

P' =P-(v,w) u(,,,w)u(v-v,w-w) 
S' =S;  
i f  BRANCH-AND-BOUND (A~ P'~ S' ) 

return 1; 
return 0; 

Fig. 1. Algorithm for finding an automorphism, given graph A and bipartition P. 

6.1 Branch  and Bound Algor i thm 

Pseudo-code for the algorithm is given in Figure 1. We start with Umax, as defined 
in Lemma 2, since Umax is consistent with every automorphism of A. Ideally, we should 
start with Umin, a s  it is the finest such partition. However, computing Umin itself is as 
hard as graph isomorphism [vL90]. Therefore, we compute an approximation U such 
that Umi~ ~ U ~ Um~H using REFINE, which we describe in detail in Section 6.2. U 
is consistent with every automorphism of A. Having computed U, we check whether 
P and U are compatible. If  not, then from Lemma 1, P is not consistent with any 
automorphism of A; the algorithm terminates. If  P and U are compatible, we compute 
their intersection P & U. From Lemma 1, any automorphism consistent with P and U 
has to be consistent with P & U. Finally, we invoke BRANCH_AND_BOUND. 

The Bounding  Step is the while loop in BRANCH_AND_BOUND is the bounding 
step. From Lemma 4, we conclude that if (u, v) E P and if an automorphism is 
consistent w i t h P ,  then it has to be consistent with Q = {(succ(u), succ(v)), (V - 
succ(u), V - succ(v))} as well. From Lemma 1, we conclude that P and Q must be 
compatible and that the automorphism must be consistent with P .k  Q as well. A similar 
argument holds for Q = { (pred(u), pred(v)), (V - pred(u), v - pred(v))} also. If  P 
and Q are non-compatible, BRANCH_AND_BOUND terminates. 

The bounding step also helps to refine P by computing P X Q, which in turn might 
generate new singleton pairs (u, v) C P.  Intuitively, the implications of mapping u 
to v are getting propagated. The set S remembers such pairs (u, v), thereby avoiding 
duplicate work. The while loop terminates when no such pairs remain. At this point, 
all pairs in P which have size one, lie in S. The function SET_COMPLETE checks 
whether all vertices in V have found their way into S. If  so, we have discovered an 
automorphism. Otherwise, it is time to branch. 

The Branching  Step: CHOOSE_VICTIM first selects a pair (If, W) in P such that 
IV[ # i using some heuristic. It then selects a vertex v E V using another heuristic and 
returns (v, W). The choice of v and W is important for at least two reasons. First, small 
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sized W implies fewer branches to explore. Second, branches that lead to dead ends 
need be avoided. Our implementation is not fancy: we simply choose the smallest sized 
W available, breaking ties arbitrarily; our choice o fv  E V is also arbitrary. Having cho- 
sen v and W, we try to discover w E W such that v maps to w in some automorphism 
of A. To this end, we compute P '  = P - (V, W) U (v, w) U (V - v, W - w) and in- 
voke BRANCH_AND_BOUND. Clearly, if all choices of w fail, there is no automorphism 
consistent with P and the function terminates unsuccessfully. 

L e m m a  6. For a directed graph A = (V, E), a bipartition P = UI<i<,~{(V/, Wi)} 
is an automorphism of A if and only if(a)(Vi.1 < i < n)(IV~ I = IWfl = x), (b) 
P ~ U , ~ ,  and(c)(ViA < i < n)(Vv, w E V)((v E V~ A w E W~) ~ (P 

( v  - v - [ ]  

Proof of Correctness: Condition (a) is verified by SET_COMPLETE before termina- 
tion. Condition (b) is true because SEARCH_AUTOMORPHISM computes P & U where 
U ~ U , ~ .  Condition (c) is checked for each vertex pair in the while loop. The entire 
algorithm simply verifies Condition 3 for vertex pairs generated by the branching step. 

Time Complexity: Testing compatibility and computing intersection of two bipar- 
titions require O(n) time. Computing Um~x is trivial. From Figure 1, it might appear 
that each level of recursion is required to store its own copy of P and S. However, 
this can be obviated by remembering set boundaries at each recursion level and quickly 
merging subsets when backtracking. Our implementation uses only nine arrays of size 
n, apart from the usual adjacency lists for edges. If  we never backtrack and if the size of 
sets returned by CHOOSE_VICTIM is bounded by a constant, our implementation runs 
in O(ra + n) time. 

6.2 Refinement 

REFINE computes a unipartition U such that fmin ~ U ~ Umax. Why is refine- 
ment useful? First, it might generate singleton pairs whose implications can be prop- 
agated immediately in the bounding step. Second, by shrinking the sizes of pairs of 
sets, fewer branches may have to be explored later. Ideally, if a graph has no non-trivial 
automorphisms, all sets in U should be singleton. 

A unipartition U can also be looked upon as a function that computes the same value 
for two vertices if they lie in the same set. Some such functions that satisfy Umin ~ U 
are easy to compute. The intersection of two such functions U1 X U2 is also guaranteed 
to be at least as coarse as Umin. Such functions are called vertex invariants [FH+83]. 
Some vertex invariants that can be computed in O(m + n) time are the in-degree and 
out-degree of vertices, the set of  degrees of vertices incident at a vertex and the set 
of degrees of vertices which a vertex is incident upon. See [Man97] for references to 
articles that describe other vertex invariants that are more expensive to compute. 

An important trick is to treat a unipartition U as a labeling function and use it to 
refine itself. For a vertex v, let U'  compute the set of labels of vertices incident upon 
v. Then U'  is a vertex invariant such that Um~n ~ U' [FH+83]. U can be refined by 
computing U ), U'  in O(ra + n) time repeatedly. At most n - 1 iterations are required. 
In practice, a few iterations suffice. 
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6.3 The Automorphism Group 

It is possible to produce all the automorphisms by continuing the search even after 
discovering the first one. Since their total number could be exponential in n, we need a 
succinct representation of Aut  A. A detailed description of an algorithm for computing 
Aut  A, that draws ideas from computational group theory and uses the algorithm in 
Figure 1 as a backbone, is given in [Man97]. We omit its discussion from this paper as 
it is yet to be implemented. 

We initially experimented with a software package called GAP [Gap], which offers 
a graph automorphism program called nauti [McK90] based on one of the earliest such 
programs written by McKay [McK81]. It is natural to ask: Why write another graph 
automorphism program? Existing packages are general purpose and carry around a lot 
of baggage. We found GAP to be slow. We can exploit a lot of structure in the graphs we 
construct. For a detailed description of several other motivating reasons see [Man97]. 

7 Experimental Results 

We implemented the algorithm in Figure 1 to convince ourselves that our modeling 
of the circuit is sufficient to allow discovering symmetries. As it stands, it is useful 
when a circuit verifier suspects that certain symmetries exist in the circuit at hand. She 
can ratify it by providing a bipartition using her intuition and running our algorithm. 

Starting with a Verilog description, we ob- 
I Examp le II ~1 mllClCllC=l Oylliterl 

ctlp20 4920 67413 15 34 51 246 7 
~ing-pong 288 378 11 25 39 144 7 

z4ml 527 929 5 14 19 108 4 
4-arbit 3158 4000 19 52 105 3110 60 

[Example [[back-tracklmaxsetlnumchoicesl 

ping-pong I 
z4ml 21 

tain a BLIF-MV description using a compiler 
called vl2mv written by Cheng [CYB93]. The 
BLIF-MV description is flattened using a stan- 
dard VIS command. The flattened circuit along 
with a bipartition is fed to our program which 
first generates a suitable labeled directed graph, 
then refines the labels and finally runs the branch 
and bound algorithm. We identified symmetries 
in all the examples in the second table, c t l p 2  0 

solves the dining philosophers problem for 20 philosophers. It has a cyclic group. 
p i n g - p o n g  has a fully symmetric system of size 2. z4ral is a combinational cir- 
cuit whose inputs constitute three sets of fully symmetric variables. We tabulate n, m 
and C, the number of vertices, edges and colors respectively, in the initial graph. Since 
refinement impacts the running time of the algorithm greatly, we also tabulate the num- 
ber of colors after successive refinement steps. 6'1 denotes the number of colors after 
the in-degree and out-degrees have been used as vertex invariants. C2 denotes the num- 
ber of colors after the set of in-degrees of fan out vertices and the set of out-degrees 
of fan out vertices have been used as vertex invariants. C I denotes the final number of 
colors after iterative refinement. The number of iterations is listed under iter. We also 
list the number of times our branch and bound algorithm had to backtrack, the number 
of times CHOOSE_VICTIM w a s  invoked and the maximum size of the set returned by 
this routine. Our algorithm runs in linear time if we never backtrack and if the size of 
sets returned by CHOOSE_VICTIM is bounded. The table shows that the two conditions 
are almost satisfied. 
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