
Structural Symmetry and Model Checking

Gurmeet Singh Manku 1 and Ramin Hojati 2 and Robert Brayton a

1 IBM Almaden Research Center (raankuOalmaden. ibm. cora)
2 University of California at Berkeley and HDAC Inc. (hoj agiOhdac , tom)

3 University of California at Berkeley (b r ay ton O i c . b e r k e l e y . edu)

Abstract. A fully automatic framework is presented for identifying symmetries
in structural descriptions of digital circuits and CTL* formulas and using them in
a model checker. The set of sub-formulas of a formula is partitioned into equiv-
alence classes so that truth values for only one sub-formula in any class need
be evaluated for model checking. Structural symmetries in net-list descriptions
of digital circuits and CTL* formulas are formally defined and their relationship
with the corresponding Kripke structures is described. A technique for automatic
identification of structural symmetries is described that requires computation of
the automorphism group of a suitable labeled directed graph. A novel fast algo-
rithm for this problem is presented. Finally, experimental results are reported for
BLIF-MV net-lists derived from Verilog.

1 Introduction

Temporal model checking algorithms [CES86,BCL+94] typically explore the states
of a non-deterministic finite state machine that represents the system under scrutiny.
A major bottleneck is the exponential number of states that need be explored. This
is commonly known as State Space Explosion. Among the techniques being devel-
oped for countering this problem are partial order methods, abstraction, compositional
approaches, and symmetry reductions. Symmetries abound in hardware circuits, dis-
tributed algorithms and concurrent programs.

Emerson and Sistla [ES96] and Clarke et al [CEFJ96] show how symmetries in
Kripke structures and CTL* formulas allow the construction of a smaller sized quotient
structure such that the formula need be verified only for the quotient. In both works,
symmetries are specified by hand by the designer. Emerson and Sistla [ES95] have de-
veloped theory for using symmetries with fairness constraints. Gyuris and Sistla [GS97]
have developed an on-the-fly model checker that utilizes symmetries under fairness.
Emerson, Jha and Peled [EJP97] have combined partial orders and symmetries. Sym-
metries have also been shown to speedup transistor-level verification [PB97].

Ip and Dill [ID96] use symmetries for speeding up verification of safety properties
using explicit techniques for designs specified in a guarded command language. They
propose augmentation of the language itself by introducing a new data type with syntac-
tic constraints for sets of fully symmetric variables called scalarsets. A major drawback
of scalarsets is that important and standard specification languages such as Verilog and
VHDL cannot be modified easily.

Our work is distinguished from previous work on several counts. First, we provide a
framework for identifying symmetries automatically. Second, we formalize the notion

160

of structural symmetries in net-list descriptions, show how they relate to those in Kripke
structures and present effective algorithms for automatically identifying them. Third,
we show how symmetries in the formula itself can be used with or without quotient
structures to expedite model checking.

2 Preliminaries

Kripke Structures: Let A P be a set of atomic propositions. A Kripke structure
over A P is a triple M = (S, R, K) , where S is a finite set of states, R C_ S x S is a
transition relation that is total, i.e. (Vs E S)(3t E S)((s, t) G R), and K : S -~ 2 AP
is a labeling function. Let states in S be encoded such that there is a 1-1 mapping from
S into 2 L for some L. Then K is a multi-output boolean function K : 2 L --+ 2 AP.

Temporal Logic CTL* is the set of strings ,S generated by the two productions
S --+ (AP) I ~ S I S V S [E(79) and 7 9 ~ S I -~P [79 V 79 I X79 1 79U79, where (AP)
denotes any proposition p 6 AP, S denotes a set of state formulas, and 79 denotes a set
of path formulas. I f M = (S, R, K) is a Kripke structure, (M, s ~ f) denotes that the
state formula f is true for state s 6 S. Similarly, (M, ~ ~ g) denotes that path formula
g is true for path ¢. See [CEFJ96] for a formal definition of ~ using this notation.

We say that two CTL* formulas are logically equivalent if their truth values are
identical for every state in any Kripke structure. We say that two CTL* formulas are
structurally equivalent if they also have isomorphic parse trees. Intuitively, the second
formula is the same as the first one written in a structurally different way due to the
commutativity of some operators.

Model Checking Problem: Given a set of atomic propositions AP, a Kripke struc-
ture M = (S, R, K), a CTL* formula f and a set of initial states I C_ S, does every
state in I satisfy f ? Clarke, Emerson and Sistla [CES86] presented the first algorithm
for CTL model checking using explicit state space exploration. A Binary Decision Di-
agrams based symbolic model checker that can handle more than 10 12° states on some
pipelined circuits has been described by Burch et al [BCL+94].

Permutation Groups: A permutation 7r is a bijective mapping 7r : S -+ S defined
over a finite non-empty set S. We denote the action oflr on an element s E S by 7rs. We
use H _< G to denote that H is a subgroup of G. We denote the intersection of G1 and
G2 by G1 Iq G2, which itself is a group. For a set T C_ S, we define 7rT = {s I s = 7rt
where t E T}. This overloads operator 7r but buys us notational convenience. For a set
X C_ S, such that 7rX = X, we use 7r<x> : X --+ X to denote the restriction of Tr to X .

Definition of ~ Opera tor : Let G denote a permutation group over $1 U Sz such
that (VTr E G) ((7rS1 = S1) A (71$2 : $2)) . Let H denote a permutation group over $2 U
Sz similarly. Then G N H is defined to be a permutation group over $1 USa such that
7r E G ~ H if and only if there exist g E G and h E H such that (Vs E $1) (gs = 7rs),
(Ys E S3)(hs = 7rs) and (Ys G S2)(gs = hs).

3 Symmetric Sub-formulas

Let M = (S, R, K) be a Kripke structure with 2 L states. Let 7r : E --~ L be a
permutation. It induces a pe rmuta t ion / / : 2 z ~ 2 z naturally. Let ~r be such that / - / i s

161

an automorphism of the directed unlabeled graph (S, R). The set of all such Ir forms a
group, which we denote by AutM L. Later, we consider a Kripke structure M having
additional labels drawn from a set X D_ AP . The new labels can be looked upon as a
mapping K ' : 2 L -~ 2 x . When X = A P , K ' = K .

Consider a permutation 7r : L U X -~ L U X such that (TrL = L) and (Tr<L> 6
AutM L) and (Vx 6 2L)(Vy 6 2AP)((K' (x) = y) ¢~ (K'(Trx) = Try)). The set of all
such permutations 7r forms a group which we denote by AutM L • X .

For s E S and 7r 6 AUtM L • AP , let 7rs denote the state obtained by applying 7r
to the encoding of s. For any path ¢ in M, let 7r¢ denote the path obtained by applying
7r to every state in ¢. For a CTL* formula f defined on AP, let 7rf denote the formula
obtained by replacing every occurrence o f p 6 A P by 7rp.

Theorem 1. For a Kripke structure M = (S, R, K) and a permutation 7r 6 Au tM L .
AP, ((M, s ~ f) ¢~ (M, r s ~ 7r f)) and ((M, ¢ ~ g) ¢~ (M, 7r¢ ~ 7rg)) for any
state s E S, any path ¢ in M, any CTL * state formula f and any CTL * path formula
g. []

Theorem 1 can be proved by induction using the identities (Tr(-~f) = ~(Trf)),
(Tr(f V g) = 7rf V Try), (Tr(Xf) -- X(Trf)), (Tr(Eg) = E(rcg)) and (Tr(glUg2) =
7rglUTrg~). A detailed proof can be found in [Man97]. For a Kripke structure M and
CTL* formula f defined on A P , let S F denote the set of all sub-formulas of f , includ-
ing any atomic propositions in A P that occur in f . Recall the definitions of logical and
structural equivalence from Section 2. For a subgroup G < AutM L . A P , we define a
relation ~o C_ S F x S F as (Vfl , f2 E S F) ((f l ~G f2) <:~ (STr 6 G)(Trfl and f2 are
logically equivalent)). We also define a relation ,.~s O the same way as ..~G but replacing
logical equivalence by structural. The following theorem is immediate.

Theorem 2. For G <_ Au tM L . AP , the relations ~ 0 and ~ 0 are equivalence rela-
tions, with ~G inducing a partition coarser than that induced by ,,~G []

~ 8 °

3.1 Applications

First, consider two sub-formulas 9 and h in the same equivalence class. Let 7r 6
AutM L • A P be a witness that transforms h into g- If the truth value of h has been
evaluated for all states in S, the truth value for 9 is immediately available. In a symbolic
technique, the BDD for g can be computed from that for h by variable substitution
corresponding to 7r. Second, having proved the correctness of a CTL* formula f , one
can use Theorem 1 to generate new formulas whose truth value is already known by
producing a non-trivial a- 6 G and constructing 7rf. A model checker can present new
formulas to a designer in a controlled fashion using an interactive user interface. Third,
it will be clear that identification of symmetric sub-formulas contributed to savings on
top of quotient structures that we describe in Section 4.

3.2 Computing Equivalence Classes

Given G <_ Au tM L . A P and a CTL * formula f , how do we find two sub-formulas
g and h such that g .,~G h? This is a computationally hard problem even if f is a

162

simple boolean formula without path operators or temporal quantifiers [AT96]. If we
replace ~G by ~G the problem is as hard as graph isomorphism [Man97]. We outline a 8

technique that can identify symmetric sub-formulas if the symmetry in the specification
is reflected in the formula as well, which is true in practice.

For a CTL* formula f , let S F denote the set of sub-formulas of f , including all
atomic propositions that occur in f . Consider the group consisting of permutations 7r :
A P --+ A P such that f and 7rf are structurally equivalent. Every permutation in this
group implicitly defines a permutation on the set A P U S F . We denote this group by
A u t f A P . SF . Let G < Au tM L . AP . Let H < A u t f A P . S F . Recall the definition
of ~4 from Section 2. We see that the group G t~ H is well defined. We define a relation
~Gt~Hc S F x S F as ('v'fl, f2 E S F) ((f l ~s--GMH f2) ¢:> (~Tr E G t~ H)(Trfi and
f2 are structurally equivalent)). This is an equivalence relation. In general, the partition
induced by "~s'~Gt~g is finer than that induced by ,,~s c for G = AutM L . AP .

In Section 5, we will show how G < AutM L . A P , H < A u t f A P . S F and G t~ H
can all be computed automatically. The representation for G t~ H would allow us to
easily identify the partitions induced by , . , v~ r and produce witnesses that transform
one sub-formula into another.

4 Quotient Structures

We now develop a theory of symmetries for Kripke structures, extending those de-
veloped by Clarke et al [CEFJ96] and Emerson and Sistla [ES96]. Let M = (S, R, K)
be a Kripke structure with 2 z states. Let G < AutM L • X for some set of labels
X D AP . Let two states s and t in S be related if there exists 7r E G such that 7rs = t.
This defines an equivalence relation, partitioning S into equivalent sets called orbits.
We denote the orbit of a state s E S by Is] G. We pick a state from each orbit to obtain a
set of representatives and define a function ~G : S --+ S such that each state is mapped
to the representative of the orbit it belongs to. ~c is not unique. The results in this paper
hold for any ~G- For a Kripke structure M = (S, R, K) and G < Au tM L . X for
some set of labels X, the quotient structure is defined as MG ---- (SG, RG, BIG), where
Sa = {[s]G I s e S}, RG ----- {(Is]G, I t] c) I (s, t) e R} and KG([a]G) = K(~G(S)).
The fundamental result in [CEFJ96] is captured by the following theorem:

Theorem 3. [CEFJ96] For a Kripke structure M = (S, R, K) and a group G <
AutM L . AP, if (VTr 6 G)(Vp 6 AP)(Trp = p), then for any CTL* formula f , it is
true that (Vs 6 S) ((M, s ~ f) ¢¢, (MG, [s]G ~ f)) . []

Application of Theorem 3 requires that the truth value of every atomic proposition
be invariant under every permutation in G. In the extreme case, we could have A P = L,
giving each state a unique label and making G trivial. Emerson and Sistla [ES96]
present a generalization of Theorem 3. However, their theory is built for Kripke struc-
tures derived from systems of communicating isomorphic processes, the set of atomic
propositions being the set of shared variables. In our terminology, it amounts to assum-
ing A P = L and a single initial state. We now develop a generalization of their result
so that it is applicable to Kripke structures derived from net-list descriptions.

163

For a CTL* formula f , let M P S be the set of its maximal propositional sub-
formulas. Let fMPS be the multi-output boolean function 2 AP -9" 2 MPS. We define
Auty A P : M P S = {Tr : A P U M P S ~ A P U M P S I Tr is a permutation, 7rAP = A P ,
r M P S = M P S , (Vy E M P S) (r y = y) and (Vx E 2AP)(fMpS(X) = fMps(Trx)}.
This set forms a group. For G < Au tM L • A P and H < A u t I A P . M P S , the group
G t~ H is well defined.

Theorem 4. For G <_ Au tM L • A P and H < Au t I A P • M P S , it is true that
(Vs 6 S) ((M , s ~ f) ¢~ (Ma~H, [s]C~H ~ f))

Proof The crux lies in showing that G • H < Au tM L . X , where X = M P S . Then
replacing labels of M by labels corresponding to evaluations of sub-formulas in M P S
allows a straightforward application of Theorem 3 to get the desired result. []

To construct the quotient, we require G t~ H , for which we present an automatic
procedure in the next section. Once we have constructed G t~ H , how do we use it
to expedite model checking? A detailed exposition can be found in [ES96,CEFJ96].
Briefly, we need to compute the canonical state function (C~H and modify the model
checker so that it canonicalizes every state encountered during state space traversal.
See [Man97] for a summary of known results for computing ~aNH. Theorem 4 can
be further extended along the lines of Auto f in [ES96] by introducing an additional
set of labels corresponding to all sub-formulas that have E, X or U as the topmost
operator. Although we omit the theorem from this paper, we note that computation of
the corresponding G t~ H can still be automated.

5 S t r u c t u r a l S y m m e t r i e s

In Section 3.2, we saw how knowledge of groups G < Au tM L • A P and H <
A u t f A P . S F would help us partition sub-formulas of a CTL* formula f into equiva-
lence classes. In Section 4, we saw how knowledge of the same group G but a different
H < Au t I A P • M P S would allow us to construct quotient structures. In both the
cases, we need to compute G ~ H . We now describe how G, H and G t~ H can
be computed automatically from net-lists of digital circuits and CTL* formulas, with
no assistance from the designer. We have chosen BLIF-MV [B+91] as a representative
structural hardware description language.

5.1 Characterizing a BLIF-MV Circuit

We model a BLIF-MV circuit as a five tuple C = (77, O, / : , 7", S), consisting of a
set of primary input ports Z, a set of primary output ports (9, a set of latches/: , a set
of tables 7" and a set of interconnection signals ,5. Intuitively, C is a big black-box with
I/O ports (primary inputs and outputs) consisting of smaller black boxes (tables and
latches) whose I/O ports are interconnected with signals.

A table T E 7" has input ports z I'T, z2.T,. .. and output ports o iT, o2T,.... With each
output o T, we associate a function f i T that takes the ordered tuple .T .T (~i , % , " -) as its

164

argument. In general, f s is non-deterministic, as allowed by BLIF-MV. See the figure
below for a BLIF-MV table description. A latch L 6 £ has two input ports .z .z z 1 , % and
one output port o~. The second input port specifies the initial value for the latch.

Let e s i n k : T L T _ "T "T L _ "L U Pi . U O, where Pin - UT67" {'1, ' 2 , " "}, - U .6£ {,1 }-
Let Psource = T L T _ T 7" ~ _ P~ut U PJout U E, where Pout - UTeT { ° 1 , 0 2 , ' " "} and PJout -
ULe£ {o~}. Thus Psi,~k is the set of primary outputs and input ports of tables and
latches, except those for initial values for latches. And Pso~,rce is the set of all primary
inputs and all output ports of tables and latches.

Each port is associated with a domain. Let dora(p)
denote the domain of any port p 6 Psink U Pso~,rce.

.table a b c -> ~ a ~ For o T 6 PoTt, let the function f f (i T , iT , . . .) be the .default 0

x - ~ boolean function specified in its table that corresponds
1 - 1 1

- 1 1 1 to the output produced at o T. This function takes an or-
dered list of input ports as its arguments. It could be
non-deterministic. The interconnection signals S sim-

ply define a relation Sext C_ Psou~ce x Psi,~k. Also define Sint = UTeT ({ iT, iT, .. "} x
T T {°1, ° 2 , ' " "}) Uze," (iL, oZ). ThUS Sint captures the internal dependencies of input

and output ports within a latch or a table. And Sext captures the external dependencies
between primary inputs, primary outputs and I/O ports of tables and latches.

A structural symmetry of C is an automorphism 7r : P~i,~k U Psou~ce ~ Ps~,k U
Pso~,~c, of the directed unlabeled graph (P~i,~a U Psou~**, S i n t U S e x t) that satisfies

T T the following constraints: (a) (VX 6 {Pin, Pdut, p L , poZut,Z, O}) (TrA' = X), (b)
T T "T (Vp 6 P~i,~kUPsource)(dom~p) = dom(Trp)), and (c) (Vo T • Pdut)(f] (~1, iT, .. ") =

fT ' T' T' T' "T' "T' (il, , i 2 , , . . .)) where (oj, = roT) , (h ' = t iT) , (Z2' = 7tiT), "" "" It follows from
the first two conditions that vertices corresponding to a table get mapped to vertices of
another table with the same number of I/O ports such that their domains match. Condi-
tion (c) stipulates that even the functionality of the two tables should match modulo ~r.
It may be verified that the set of structural symmetries forms a group.

How are structural symmetries in C related to symmetries in some Kripke structure
M ? For a circuit C, there exists a Kripke structure M = (S, R, K) with 2 L states
and the set of atomic propositions AP. The set L corresponds to the latches. The set
A P corresponds to outputs in O. The function K represents the boolean predicate on
latches that generate outputs. We assume that the outputs in C do not depend on the
inputs i.e. C defines a Moore machine. However, we note that the basic ideas developed
in this paper can be extended to Mealy machines also. For a structural symmetry 7r, let
7rc : L U A P -4 L U A P denote the permutation naturally induced by 7r. Let Autc L . A P
denote the set of all such permutations. Autc L . A P forms a group.

T h e o r e m 5. Autc L . A P < AutM L . AP. []

Although we used BLIF-MV terminology to formalize the notion of structural sym-
metries, we believe that our definition is general enough to be applicable to gate level
descriptions like those expressible in EDIF, Verilog and VHDL.

165

5.2 Graphs for BLIF-MV Circuits

One problem with the definition of structural symmetries in the previous section is
that the third condition cannot be expressed in purely graph theoretic terms. However,
we can augment the graph so that there is a 1-1 correspondence between structural
symmetries and automorphisms of the graph. This allows us to leverage results from
computational group theory developed for identifying graph automorphisms.

First, label each vertex in Psink U Pso~rce
with its domain. Next, substitute each subgraph
corresponding to a table by a graph similar to
the one shown in the adjoining figure. The new
nodes are internal to the table and are labeled
with the corresponding table entries.

Let Ac denote the labeled directed graph so
constructed. For an automorphism 7r of Ac, let
7ra : L U A P -~ L U A P denote the 1-1 mapping
naturally defined by rr. Let Autc L - A P denote
the set of all such permutations. It can be verified
that Theorem 5 still holds. A detailed proof can

Copy

Subsol
And

Output

be found in [Man97], which also shows how multiple-output tables, the "=" construct
[B+91], pseudo inputs and other special cases can be handled. The size of the graph is
linear in the size of the flattened BLIF-MV description.

Here are two interesting theoretical questions: First, is every group possible? Let
G C_ AutM L . AP. Computation of the canonical state requires G<L>, the restriction
of G to L, as input. Is there any group G<L> that does not correspond to any BLIF-
MV circuit? If so, we can focus on the remaining groups to solve the canonical state
problem. However, the answer is negative [Man97]. Second, how hard is it to identify
scalarsets? A scalarset is an automorphism of the graph Ac such that the automorphism
can be written as a product of disjoint transpositions. Note that Ac is not an arbitrary
directed graph. It has been derived from a valid BLIF-MV circuit. See [Man97] for a
simple proof that the problem is as hard as graph isomorphism.

5.3 Graphs for CTL* Formulas

To compute H < Aut f A P . SF, draw the parse tree for the formula f . Label each
internal node with the operator it represents. The leaf nodes correspond to propositions
in AP. For each internal node labeled Until, introduce two new nodes labeled Left and
Right. Replace the edge between Until and its left operand by two edges: one from
Until to Left and one from Left to the left operand. Replace the edge between Until
and its right operand similarly. Collapse all leaf nodes representing tha same p C A P
into a single node. Label these nodes with a common color, say White. Introduce a
new set of nodes, one for every p E AP, labeled identically with a new color, say
Black. Draw an edge from a White node to a Black node if they correspond to the same
atomic proposition. Let Af denote the graph we constructed. It is clear that the nodes
of A f , except those labeled Left or Right, are in 1-1 correspondence with elements of
A P U SF. For every automorphism of the graph A, let 7r denote its restriction to nodes

166

corresponding to A P tO S F . The set of all such 7r forms a group, which we denote by
AutAj A P . S F .

Theorem 6. AurA s A P . S F < Aut$ A P . SF . []

To compute H < Auty A P . M P S , first identify M P S , the set of maximal propo-
sitional sub-formulas of f . For each g E M P S , construct its parse tree. Label each
internal node with the operator it corresponds to. Collapse all leaf nodes which corre-
spond to the same p E A P into a single node. Label them identically with a new color,
say White. Introduce a new node for every proposition p E A P , all labeled identically
with a new color, say Black. Draw an edge from every White node to a Black node if they
correspond to the same atomic proposition p. Re-label each root node corresponding to
some g E M P S , with a distinct new color. Let .~f denote the graph we constructed.
Let 7r : A P U M P S ~ A P U M P S denote the permutation corresponding to the
restriction of some automorphism of AS to vertices corresponding to A P and M P S .

The labels of Af ensure that 7rAP = A P and (V9 E M P S) (Tr 9 = g). The set of all
such 7r forms a group, which we denote by Autos A P • M P S .

Theorem 7. Autos A P . M P S <_ A u t f A P . M P S . []

5.4 Computing G M H

One approach is to compute the groups G and H separately and then compute
G t~ H using group-theoretic algorithms. G need be computed only once for a given cir-
cuit. However, computing group intersections is as hard as graph isomorphism [Hof80],
though polynomial time algorithms do exist for special cases.

A simpler approach is to join the two graphs corresponding to G and H together by
drawing an edge between every pair of vertices that correspond to the same p E A P in
both the graphs. The key to correctness lies in the fact that the sets of labels in the two
graphs, except for the vertices corresponding to A P , are mutually exclusive.

5.5 The Big Picture

Given a BLIF-MV circuit C, a CTL* formula f and a set of initial states I, we
first compute sets of symmetric sub-formulas of f , as defined in Section 3, by con-
structing the graphs Ac and A f, described in Section 5.2 and Section 5.3 respec-
tively, joining them as described in Section 5.4 and solving the graph automorphism
problem for the resulting graph. The data structure for representing graph automor-
phisms allows identification of partitions of sub-formulas of f easily. We then compute
H <_ A u t f A P • M P S by constructing the graph i]y described in Section 5.3, joining
it with Ae as described in Section 5.4 and solving the graph automorphism problem for
the resulting graph. This would give us generators for the group G ~ H, from which we
compute ~cNn. Finally, we feed the sets of symmetric sub-formulas and the function
~GNH tO a modified model checker that canonicalizes states during state space traversal
and uses Theorem 2 to avoid computing truth values for all sub-formulas. After hav-
ing evaluated the truth value of f for all initial states, the modified model checker can
start offering new formulas to the designer, whose truth value can easily be deduced, as
described in Section 3.1.

167

6 Computing Automorphisms

Let us first breeze through a ~et of definitions. Consider a directed labeled graph
A = (V, E) with n vertices and rn edges. A bipartition P defined over V is a set of
ordered pairs Ul<i<k{(Vi, Wi)}, where (a) t-Jl<i<kVi = Ol<i<kWi = V, (b) (Vi.1 <
i _< k)(IV~l -- IW~l # 0), and (c)(Vj.1 < i < j < k)(ViMVj = W~fqWj = ¢). The set
of edges of a graph or its labeling function play no role in the definition. A bipartition
P is a unipartition if (ViA < i < k)(Vi = Wi). It is simply a partition of the set
of vertices V into disjoint non-empty sets. A bipartition Q = Ul<i<q{Vi Q, W~} is a
refinement of another bipartition P = Ul<_i<p{Vi P, Wi P } if they are defined over the
same set of vertices V and (ViA < i < q)(Vj.1 < j < p)((Vi Q M Vje = ¢) V (V~ O" C_

Vje A W ff C_ Wff)). We denote this relationship by Q ~ P. We also say that P is
coarser than Q and that Q is finer than P. The relation 4 is reflexive and transitive. Two
bipartitions P = Ul<i<p{(Vi P, w P) } and Q = U a < i _ < q { (V / Q , W?)} are compatible
if (Vi.1 < i < p)(Vj.1 < j < q)(lV/P M V?I = I WP fq W?I). The intersection
of two compatible bipartitions P and Q is defined as P .k Q = Ul<_i<p,l<j<q{(Wi Q N
Vj P, W~ fq WjP)} - {(¢, ¢)}, which itself is a bipartition. Let A = (V, E) be a directed
labeled graph with labeling function e. A bipartition P is an automorphism of A if (a)
(vi.1 < i < k)(lY~l = IW, I = 1), (b) (Vv, w E V)(Vi.1 < i < k)((v E V~ A w E
Wi) ==~ (c(v) = c(w))), and (c) (Vv, v ' , w , w ' E V)(Vi.1 < i < k)(Vj.1 < j <
k)((v, v') E E ¢v (w, w') e E). The set of all automorphisms of A forms a group.
We denote it by Aut A. A bipartition P is consistent with an automorphism if there
exists an automorphism P ' of A such that P ' ~ P. For notational convenience, we will
denote both a vertex v E V and a singleton set {v} by simply v. This allows us to write
a set like {({u}, {v})} as (u, v). The following lemmas are immediate:

Lemma 1. I f P, Q and R are bipartitions of A such that P ~ Q and P ~ R, then Q
and R are compatible and P ~ Q). R.

Lemma 2. Let Urea= be a unipartition such that two vertices of A lie in the same set
iff they have the same label Then, Uma~ is consistent with every automorphism of A.

Lemma 3. Let Umin
set if and only if (37r
morphism of A and is

be a unipartition such that two vertices u and v lie in the same
E Aut A)(Tru = v). Then, Umin is consistent with every auto-
the finest such unipartition.

Lemma 4. I f P is a bipartition such that P E Aut A and (u, v) E P, then P
{ (succ(u), succ(v)), (V - s u c c (u) , V - s u c c (v)) }, where succ(x) = {y i (x ,y) E E}.

Lemma 5. I f P is a bipartition such that P E Au t A and (u, v) E P, then P
{(pred(u) ,pred(v)) , (V - w e d (u) , V - p r e d (v)) } , wherepred(x) = {y I (Y, x) e E}.

We tackle the following problem: Given a bipartition P for a directed labeled graph
A = (V, E), produce an automorphism of A consistent with P, if one exists.

168

SBARCH..AUTOMORPHISM(Graph A, Bipartition P)
Compute Umo=;
U = REFIr~E (U~..);
If(COMPATIBLE (P, V))

P = P) . U ;
else return 0;
return BRANCH.AND-BOUND(A, P, ~);

BRANCH-AND.BOUND (Graph A, Bipartition P, PairSet S)
white ((3~,v e v)((~, v) ¢ P ^ (~,v) ¢ S))

S = S u (u,v);
O = (s~_c(u), s~cc(v)) u (v - s,,cc(n), v - succ(v));

if (COMPATIBLE (Q, P))
P = P . k Q ;

else return 0;

Q = (pred(u),pred(v)) U (V - pred(u), V - pred(v));

if(COMPATIBLE (O, P))
P = P X Q ;

else return 0;
i f (S ET-COMPLETE(A, 8))

return 1;

(V, W) = CHOOSE_VICTIM (P);
foreach (u, E W)

P' =P-(v,w) u(,,,w)u(v-v,w-w)
S' =S;
i f BRANCH-AND-BOUND (A~ P'~ S')

return 1;
return 0;

Fig. 1. Algorithm for finding an automorphism, given graph A and bipartition P.

6.1 Branch and Bound Algor i thm

Pseudo-code for the algorithm is given in Figure 1. We start with Umax, as defined
in Lemma 2, since Umax is consistent with every automorphism of A. Ideally, we should
start with Umin, a s it is the finest such partition. However, computing Umin itself is as
hard as graph isomorphism [vL90]. Therefore, we compute an approximation U such
that Umi~ ~ U ~ Um~H using REFINE, which we describe in detail in Section 6.2. U
is consistent with every automorphism of A. Having computed U, we check whether
P and U are compatible. If not, then from Lemma 1, P is not consistent with any
automorphism of A; the algorithm terminates. If P and U are compatible, we compute
their intersection P & U. From Lemma 1, any automorphism consistent with P and U
has to be consistent with P & U. Finally, we invoke BRANCH_AND_BOUND.

The Bounding Step is the while loop in BRANCH_AND_BOUND is the bounding
step. From Lemma 4, we conclude that if (u, v) E P and if an automorphism is
consistent w i t h P , then it has to be consistent with Q = {(succ(u), succ(v)), (V -
succ(u), V - succ(v))} as well. From Lemma 1, we conclude that P and Q must be
compatible and that the automorphism must be consistent with P .k Q as well. A similar
argument holds for Q = { (pred(u), pred(v)), (V - pred(u), v - pred(v))} also. If P
and Q are non-compatible, BRANCH_AND_BOUND terminates.

The bounding step also helps to refine P by computing P X Q, which in turn might
generate new singleton pairs (u, v) C P. Intuitively, the implications of mapping u
to v are getting propagated. The set S remembers such pairs (u, v), thereby avoiding
duplicate work. The while loop terminates when no such pairs remain. At this point,
all pairs in P which have size one, lie in S. The function SET_COMPLETE checks
whether all vertices in V have found their way into S. If so, we have discovered an
automorphism. Otherwise, it is time to branch.

The Branching Step: CHOOSE_VICTIM first selects a pair (If, W) in P such that
IV[# i using some heuristic. It then selects a vertex v E V using another heuristic and
returns (v, W). The choice of v and W is important for at least two reasons. First, small

169

sized W implies fewer branches to explore. Second, branches that lead to dead ends
need be avoided. Our implementation is not fancy: we simply choose the smallest sized
W available, breaking ties arbitrarily; our choice o fv E V is also arbitrary. Having cho-
sen v and W, we try to discover w E W such that v maps to w in some automorphism
of A. To this end, we compute P ' = P - (V, W) U (v, w) U (V - v, W - w) and in-
voke BRANCH_AND_BOUND. Clearly, if all choices of w fail, there is no automorphism
consistent with P and the function terminates unsuccessfully.

L e m m a 6. For a directed graph A = (V, E), a bipartition P = UI<i<,~{(V/, Wi)}
is an automorphism of A if and only if(a)(Vi.1 < i < n)(IV~ I = IWfl = x), (b)
P ~ U , ~ , and(c)(ViA < i < n)(Vv, w E V)((v E V~ A w E W~) ~ (P

(v - v - []

Proof of Correctness: Condition (a) is verified by SET_COMPLETE before termina-
tion. Condition (b) is true because SEARCH_AUTOMORPHISM computes P & U where
U ~ U , ~ . Condition (c) is checked for each vertex pair in the while loop. The entire
algorithm simply verifies Condition 3 for vertex pairs generated by the branching step.

Time Complexity: Testing compatibility and computing intersection of two bipar-
titions require O(n) time. Computing Um~x is trivial. From Figure 1, it might appear
that each level of recursion is required to store its own copy of P and S. However,
this can be obviated by remembering set boundaries at each recursion level and quickly
merging subsets when backtracking. Our implementation uses only nine arrays of size
n, apart from the usual adjacency lists for edges. If we never backtrack and if the size of
sets returned by CHOOSE_VICTIM is bounded by a constant, our implementation runs
in O(ra + n) time.

6.2 Refinement

REFINE computes a unipartition U such that fmin ~ U ~ Umax. Why is refine-
ment useful? First, it might generate singleton pairs whose implications can be prop-
agated immediately in the bounding step. Second, by shrinking the sizes of pairs of
sets, fewer branches may have to be explored later. Ideally, if a graph has no non-trivial
automorphisms, all sets in U should be singleton.

A unipartition U can also be looked upon as a function that computes the same value
for two vertices if they lie in the same set. Some such functions that satisfy Umin ~ U
are easy to compute. The intersection of two such functions U1 X U2 is also guaranteed
to be at least as coarse as Umin. Such functions are called vertex invariants [FH+83].
Some vertex invariants that can be computed in O(m + n) time are the in-degree and
out-degree of vertices, the set of degrees of vertices incident at a vertex and the set
of degrees of vertices which a vertex is incident upon. See [Man97] for references to
articles that describe other vertex invariants that are more expensive to compute.

An important trick is to treat a unipartition U as a labeling function and use it to
refine itself. For a vertex v, let U' compute the set of labels of vertices incident upon
v. Then U' is a vertex invariant such that Um~n ~ U' [FH+83]. U can be refined by
computing U), U' in O(ra + n) time repeatedly. At most n - 1 iterations are required.
In practice, a few iterations suffice.

170

6.3 The Automorphism Group

It is possible to produce all the automorphisms by continuing the search even after
discovering the first one. Since their total number could be exponential in n, we need a
succinct representation of Aut A. A detailed description of an algorithm for computing
Aut A, that draws ideas from computational group theory and uses the algorithm in
Figure 1 as a backbone, is given in [Man97]. We omit its discussion from this paper as
it is yet to be implemented.

We initially experimented with a software package called GAP [Gap], which offers
a graph automorphism program called nauti [McK90] based on one of the earliest such
programs written by McKay [McK81]. It is natural to ask: Why write another graph
automorphism program? Existing packages are general purpose and carry around a lot
of baggage. We found GAP to be slow. We can exploit a lot of structure in the graphs we
construct. For a detailed description of several other motivating reasons see [Man97].

7 Experimental Results

We implemented the algorithm in Figure 1 to convince ourselves that our modeling
of the circuit is sufficient to allow discovering symmetries. As it stands, it is useful
when a circuit verifier suspects that certain symmetries exist in the circuit at hand. She
can ratify it by providing a bipartition using her intuition and running our algorithm.

Starting with a Verilog description, we ob-
I Examp le II ~1 mllClCllC=l Oylliterl

ctlp20 4920 67413 15 34 51 246 7
~ing-pong 288 378 11 25 39 144 7

z4ml 527 929 5 14 19 108 4
4-arbit 3158 4000 19 52 105 3110 60

[Example [[back-tracklmaxsetlnumchoicesl

ping-pong I
z4ml 21

tain a BLIF-MV description using a compiler
called vl2mv written by Cheng [CYB93]. The
BLIF-MV description is flattened using a stan-
dard VIS command. The flattened circuit along
with a bipartition is fed to our program which
first generates a suitable labeled directed graph,
then refines the labels and finally runs the branch
and bound algorithm. We identified symmetries
in all the examples in the second table, c t l p 2 0

solves the dining philosophers problem for 20 philosophers. It has a cyclic group.
p i n g - p o n g has a fully symmetric system of size 2. z4ral is a combinational cir-
cuit whose inputs constitute three sets of fully symmetric variables. We tabulate n, m
and C, the number of vertices, edges and colors respectively, in the initial graph. Since
refinement impacts the running time of the algorithm greatly, we also tabulate the num-
ber of colors after successive refinement steps. 6'1 denotes the number of colors after
the in-degree and out-degrees have been used as vertex invariants. C2 denotes the num-
ber of colors after the set of in-degrees of fan out vertices and the set of out-degrees
of fan out vertices have been used as vertex invariants. C I denotes the final number of
colors after iterative refinement. The number of iterations is listed under iter. We also
list the number of times our branch and bound algorithm had to backtrack, the number
of times CHOOSE_VICTIM w a s invoked and the maximum size of the set returned by
this routine. Our algorithm runs in linear time if we never backtrack and if the size of
sets returned by CHOOSE_VICTIM is bounded. The table shows that the two conditions
are almost satisfied.

171

References

[AT96] M. AGRAWAL AND T. THIERAUF. The Boolean Isomorphism Problem. In Proc.
Symp. on Foundations of Computer Science, pp. 422-430, October 1996.

[B+91] R.K. BRAYTON ET AL. BLIF-MV: An Interchange Format for Design Verification
and Synthesis. Technical Report UCB/ERL M91/97, UC Berkeley, November 1991.

[BCL+94] J. R. BURCH, E. M. CLARKE, D. E. LONG, K. L. MCMILLAN, AND D. L. DILL.
Symbolic Model Checking for Sequential Circuit Verification. IEEE Tran. on Comp.
Aided Design of Integrated Circuits and Sys., 13(4):401-424, April 1994.

[CEFJ96] E. M. CLARKE, R. ENDERS, T. FILKORN, AND S. JHA. Exploiting Symmetry in
Temporal Logic Model Checking. Formal Meth. in 8ys. Design, 9(1/2):77-104, 1996.

[CES86] E.M. CLARKE, E. A. EMERSON, AND A. P. SISTLA. Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications. ACM Trans-
actions on Programming Languages and Systems, 8(2):244-263, 1986.

[CYB93] S.-T. CHENG, G. YORK, AND R. K. BRAYTON. VL2MV: A Compiler from Verilog
to BLIF-MV, October 1993.

[EJP97] E.A. EMERSON, S. JHA, AND D. PELED. Combining Partial Order and Symmetry
Reductions. In Proc. TACAS 97, pp. 19-34, April 1997.

[ES95] E.A. EMERSON AND A. P. SISTLA. Utilizing Symmetry when Model Checking
under Fairness Assumptions: An Automata-theoretic Approach. In Proc. CAV95, pp.
309-324, July 1995.

[ES96] E.A. EMERSON AND A. P. SISTLA. Symmetry and Model Checking. Formal Meth.
in Sys. Design, 9(1/2): 105-131, 1996.

[FH+83] G. FOWLER, R. HARALICK, ET AL. Efficient Graph Automorphism by Vertex Parti-
tioning. Aritificial Intelligence, 21:245-269, 1983.

[Gap] GAP: Groups, Algorithms and Programs, Version 3, Release 4. Available via ftp from
ftp. math. rwth-aachen, de, directory/pub/gap.

[GS97] V. GYURIS AND A. P. SISTLA. On-the-Fly Model Checking under Fairness that
Exploits Symmetry. In Proc. CAV 97, Haifa, Israel, June 1997, pp. 232-243, 1997.

[Hof80] C.M. HOFFMAN. On the Complexity of Intersecting Permutation Groups and its
Relationship with Graph Isomorphism. Technical Report 4/80, Instit~t for Informatik
und Praktische Mathematik, Christian-Albrechts-Universit~it Kiel, 1980.

[ID96] C.N. IP AND D. L. DILL. Better Verification Through Symmetry. Formal Meth. in
Sys. Design, 9(1/2):41-76, 1996.

[Man97] GURMEET SINGH MANKU. Structural Symmetries and Model Checking. Master's
thesis UCB/ERL M97/92, University of California at Berkeley, 1997. Available as
http : //www-cad. eecs. berkeley, edu/~manku/papers/ms, ps. gz.

[McK81] B. D. MCKAY. Practical Graph Isomorphism. In Proc. Tenth Manitoba Conf. on
Numerical Math. and Computing, Winnepeg, 1980, vol 1, pp. 45-87, 1981.

[McK90] B. D. MCKAY. Nauty Users Guide (Version 1.5). Technical Report TR-CS-90-02,
Computer Science Department, Australian National University, Australia, 1990.

[PB97] M. PANDEY AND E. BRYANT. Exploiting Symmetry when Verifying Transistor-
Level Circuits by Symbolic Trajectory Evaluation. In Proc. CAV 97, Haifa, Israel,
June 1997, pp. 244-255, 1997.

[vL90] J. VAN LEEUWEN. Graph Algorithms. In Algorithms and Complexity, volume A of
Handbook of Theoretical Computer Science, pp. 525-631. Elsevier Science, 1990.

