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A b s t r a c t .  In verification by explicit state enumeration a randomly ac- 
cessed state table is maintained. In practice, the total main memory 
available for this state table is a major limiting factor in verification. We 
describe a version of the explicit state enumeration verifier Mur~ that al- 
lows the use of magnetic disk instead of main memory for storing almost 
all of the state table. The algorithm avoids costly random accesses to 
disk and amortizes the cost of linearly reading the state table from disk 
over all states in a given breadth-first level. The remaining runtime over- 
head for accessing the disk is greatly reduced by combining the scheme 
with hash compaction. We show how to do this combination efficiently 
and analyze the resulting algorithm. In experiments with three complex 
cache coherence protocols, the new algorithm achieves memory savings 
factors of one to two orders of magnitude with a runtime overhead of 
typically only around 15%. 

1 Introduct ion 

Modern digital systems often have components  tha t  run concurrently. Interac- 
tions among these components  are a notorious source of design errors. Conven- 
tional verification methods based on hand-generated test  vectors and pseudo- 
random simulation are not capable in practice of finding all of these problems. 
Programs tha t  exhaustively enumerate  all reachable states of a par t  of the sys- 
t em (or an abstract ion of the system),  however, have been shown to be very 
effective at  detecting bugs tha t  are missed by other means. The reachability 
analysis in these formal verification tools can be performed using two different 
methods:  the states can be explicitly enumerated,  by storing them individually 
in a table, or a symbolic method can be used, such as representing the reachable 
s tate  space with a binary decision diagram (BDD) [1]. 

In many  applications, such as directory-based cache coherence protocols, 
BDD-based reachability analysis exhibits close to worst-case behavior. In such 
situations, reasonably efficient explicit enumerat ion can save a factor of 50 or 
more in space, because the size of the s ta te  table  is the product  of the num- 
ber of reachable states and the number  of bits to represent each state, while 
a BDD requires almost one node per bit per reachable state, and each node is 
approximate ly  20 bytes. 
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Recently, several techniques have been developed that allow significantly 
more complex systems to be handled using explicit state enumeration, espe- 
cially when the techniques are used in combination. These techniques follow two 
different approaches. First, state reduction methods have been developed that 
aim at reducing the size of the reachability graph while ensuring that system 
errors will still be detected. Examples are exploiting symmetries, utilizing re- 
versible rules, and employing repetition constructors [8], as well as partial order 
techniques [11]. These methods directly tackle the main problem in teachability 
analysis: the very large number of reachable states of most systems. The second 
approach aims at exploring a given reachability graph in the most efficient man- 
ner, minimizing memory usage and runtime (both of which are limiting factors 
in verification). Examples are bitstate hashing [5], hash compaction [17, 14], and 
parallelizing the state space search [16]. 

In this paper, we describe a technique that reduces the main memory require- 
ments of the state table maintained in explicit state enumeration. The state table 
eventually holds all reachable states of the system being verified unless an error 
is detected. In addition, the state table is typically randomly accessed, in which 
case the use of magnetic disk for this table incurs a huge runtime penalty and 
hence main memory is required to store this table. In practice, the total main 
memory available for the state table is a major limiting factor in verification. 

We describe a version of the explicit state verifier Mur~ [4] that allows the 
use of magnetic disk instead of main memory for storing almost all of the state 
table, at the cost of only a small runtime overhead. The algorithm is based on 
the observation that when a breadth-first search is used to enumerate the state 
space, a newly generated state does not need to be checked against the state 
table immediately; in fact, one can postpone the checking until an entire level 
of the breadth-first search has been explored and then check all states in that 
level together by linearly reading the table from disk. This scheme avoids costly 
random accesses to disk and amortizes the time for accessing the full table on 
disk over all states in a given search level. 

The remaining runtime overhead for accessing the disk can be greatly reduced 
by combining the new scheme with hash compaction. Hash compaction stores 
only hash signatures instead of full state descriptors in the state table. The 
resulting memory savings of typically two orders of magnitude and the resulting 
reduced disk access times come at a certain price; there is now a small probability 
that the verifier misses the error states of the system and incorrectly claims that 
an erroneous system is correct (i.e., produces a false positive). We derive an 
upper bound on this probability in the combined scheme and show that, e.g., 
6-byte signatures are typically sufficient to reduce the bound to 0.1%. 

One might be concerned about the reliability of a "probabilistic verifier" 
that can miss errors with a small probability. For several reasons, however, this 
concern is unjustified. First, the probability of missing an error due to hash com- 
paction should not be confused with the probability of the very same error not 
occurring when running or simulating the system for a long time. The former 
probability is guaranteed to be very small even in situations where the latter is 
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high. Second, it is typically necessary to scale down or simplify a system of indus- 
trial size to make it amenable to formal verification, which also results in some 
probability of missed errors. In comparison to this probability, which cannot 
even be approximated, the probability of missed errors due to hash compaction 
seems negligible. Third, when re-running a probabilistic verifier with indepen- 
dent hash functions, the resulting probability of missed errors is the product of 
the probabilities in the two runs, which allows making the probability of missed 
errors arbitrarily small. For a more detailed explanation of why it is safe to use 
a probabilistic verifier see Sect. 1.3.1. in [13]. 

We ran experiments using the new scheme on three complex cache coherence 
protocols (SCI [7], DASH [10], and FLASH [9]), varying the ratio of the number 
of states stored on disk to the states in main memory. We call this ratio the 
memory savings factor. (The additional memory savings due to hash compaction 
are not taken into account here.) For example, with a memory savings factor of 
50, the new scheme slowed down verification by an average of only 20% on an SGI 
Indy and an average of only 29% on a Sun UltraSPARC. In fact, the algorithm is 
shown to work well if the reachability graph of the system under verification has 
a small diameter, which is true for virtually all systems that  have been studied 
with Murk. 

The algorithm presented in this paper was inspired by a scheme devised by 
Roscoe that  allows the use of magnetic disk in explicit state enumeration [12]. His 
scheme seems more complicated than ours since it is based on an algorithm for 
sorting without randomly accessing memory. Also, one can show with a simple 
analysis that  his scheme would induce a high runtime overhead. (He has not 
reported any empirical data  about his scheme.) In addition, the file merging 
used in his scheme doubles the memory requirements of the state table on disk. 
A detailed comparison of the two algorithms is given in [13]. 

This paper is organized as follows. Section 2 provides background on explicit 
state enumeration and magnetic disk speed. The new algorithm that  enables 
the use of magnetic disk instead of main memory for storing almost all of the 
state table is described and analyzed in Sect. 3. Results running the algorithm 
are reported in Sect. 4. Finally, Sect. 5 gives some concluding remarks. 

2 B a c k g r o u n d  

2.1 Explic i t  State  Enumerat ion  

In explicit state enumeration, the automatic verifier tries to examine all reachable 
states from a set of possible start  states. Either breadth-first or depth-first search 
can be employed for the state enumeration process. Both the breadth-first and 
the depth-first algorithms are straightforward. 

Two data  structures are needed for performing the state enumeration. First, 
a state table stores all the states that  have been examined so far and is used 
to decide whether a newly-reached state is old (has been visited before) or new 
(has not been visited before). Besides the state table, a state queue holds all 
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active states (states whose successors still need to be generated). Depending on 
the organization of this queue, the verifier does a breadth-first or a depth-first 
search. 

2.2 Magnetic  Disk Speed 

The speed of a magnetic disk depends strongly on the way it is accessed. When 
linearly accessing a large file on disk, we have measured a read transfer rate 
of typically 3 MB/s  and a write transfer rate of typically 1 .5-2MB/s.  The seek 
t ime for a random access, however, is typically 10 ms. Thus, to read, say, a single 
word randomly from disk requires almost four orders of magnitude more time 
than to read one in the course of a linear access. 

3 Explicit State Enumeration Using Magnetic Disk 

3.1 The Basic Algorithm 

The basic algorithm for explicit state enumeration using magnetic disk is given 
in Figure 1 and is described in the following paragraph. Note that  the algorithm 
maintains two state tables: one in main memory and one on disk. The state 
queue and the disk table will be accessed only sequentially; the main memory 
table will be accessed randomly. 

The state enumeration is s tarted by calling SEARCH(). First, the startstates 
are generated and inserted into the main memory table by calling INSERT(). 
The search loop generates the successors for all states in the state queue and 
also inserts these successors into the main memory table. When the state queue 
becomes empty, the algorithm calls CHECKTABLE0, which determines those 
states in the main memory table that  are new and inserts them into the state 
queue. Note that  CHECKTABLE 0 linearly reads the disk table to sort out old 
states, and eventually clears the main memory table. Further note tha t  if there is 
sufficient space in the main memory table, the algorithm will call CHECKTABLE 0 
exactly once for each breadth-first level of the search; otherwise, if the main 
memory table fills up (because some breadth-first levels have too many states), 
CHECKTABLE 0 will also be called from within the INSERT() routine. 

3.2 Est imating the Overhead 

We now estimate the runtime overhead incurred by accessing the magnetic disk 
in our algorithm. Let ki denote the number of states in the disk table when it 
is read for the i th time and assume that  it is read a total  of t t imes during the 
state space search. Note that  kl = 0 since the disk table is empty the first t ime 

t it is read. The total  number of states read from disk is ~"~i=l ki. This sum has 
its smallest possible value if the main memory table never fills up completely, as 
in this case the disk table is read exactly once for each breadth-first level (plus 
once for the successors of the states in the last level). In this case, t = d + 2, 
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var / / g l o b a l  variables 
M: hash table; / / m a i n  memory table 
D: file; / / d i s k  table 
Q: FIFO queue; / / s t a t e  queue 

SEARCh 0 / /  main routine 
begin 

M:=~; D:=O; Q:=O; 
for each sta~tstate so do 

INSERT(s0); 
end 
do 

while Q # 0 do 
s := dequeue(Q); 
for all s ~ E successors(s) do 

INSERT(S'); 
end 

end 
CHECKTABLE0; 

while Q ¢ 0; 
end 

/ / ini t ia l izat ion 
/ / s t a r t s t a t e  generation 

/ / s e a r c h  loop 

INSERT(S: state) / /  insert state s in main memory table 
begin 

if s ~ M then begin 
insert s in M; 
if full(M) then 

CHECKTABLE0; 
end 

end 

CHECKTABLE 0 
begin 

for all s E D do 
if s E M then 

M := M - {s}; 
end 
for all s E M do 

insert s in Q; 
append s to D; 
M := M - {s}; 

end 
end 

/ / d o  old/new check for main memory table 

/ / r e m o v e  old states from main memory table 

//handle remaining (new) states 

Fig.  1. Explicit State Enumeration Using Magnetic Disk 
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where d denotes the diameter of the reachability graph. Since this diameter is 
typically quite small, the disk table will only be read a small number of times. 
(We shall see the diameters of some complex example protocols in Sect. 4.) 

In an instance of the SCI protocol, for example, the (minimum) total number 
of states read from disk is 2.64. l0 T. With 124 bytes per state and a disk bulk 
transfer rate of 3 MB/s, this would result in a runtime overhead of at least 
1091 s. Comparing this value to the verification time (723 s) of the conventional 
algorithm on, for example, an UltraSPARC, yields a runtime overhead of at least 
151%. This overhead, however, can be reduced by combining the new algorithm 
with hash compaction. 

Note that if a conventional verifier with randomly accessed state table runs 
out of main memory and is forced to do swapping, each checking of a newly 
generated state might require a seek. In fact, if the state table is much larger 
than the available main memory, we can assume that each checking does require 
a seek. For the above instance of the SCI protocol, 2.97-106 such seeks would be 
performed, resulting in a runtime overhead of 2.97- 104 s, or 4108 %, assuming 
10 ms per seek and verification on the above UltraSPARC. 

3.3 Combining with  Hash Compact ion 

Hash compaction reduces the memory requirements of the state table by storing 
(only) hash signatures instead of full state descriptors in this table. The result- 
ing memory savings come at the price of a small probability, say, 0.1%, that 
the verifier incorrectly claims that an erroneous system is correct. For complex 
verification problems, hash compaction has achieved memory reduction factors 
of two orders of magnitude. Note that by reducing the number of bytes stored 
per state, hash compaction also reduces the time to read the disk table. 

Figure 2 shows the new INSERT() and CHECKTABLE 0 routines when using 
hash compaction. Note that signatures are used for both main memory table M 
and disk table D; full state descriptors, however, need to be stored in the state 
queue Q, since successors cannot be generated from a signature. In the INSERT() 
routine, first the signature is calculated from the state descriptor with a hash 
function. Then, state descriptor and signature are stored in the state queue, 
while only the signature is stored in the main memory table. The state queue 
will hold two types of states: unchecked states (i.e., states for which it has not 
yet been checked whether they are 'old' or 'new') and states that are known to 
be 'new.' The two types of states partition the state queue into two parts and 
thus an implementation need only store the position of the border between the 
two parts. 

The CHECKTABLE() routine first deletes all 'old' states from the main mem- 
ory table, and then checks for all unchecked states in the queue whether they are 
'old' or 'new.' While the 'old' states are deleted from the queue, the 'new' ones 
are appended to the disk table. Note that the checking of the state queue can 
be done by linearly reading the unchecked part of the queue. When storing the 
signatures separately from the state descriptors in a second queue, the algorithm 
need only (linearly) read the unchecked part of this small second queue. This 
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INSERT(S: state) / /  insert s in main memory table and state queue 
begin 

h := hash(s); / /ca lcula te  signature 
if h ~ M then begin 

insert h in M; 
insert (s, h) in Q; 
if full(M) then 

CHECKTABLE0; 
end 

end 

CHECKTABLE 0 
begin 

for all h E D do 
if h E M then 

M := M - {h}; 
end 
for all unchecked (s, h) E Q do 

if h E M then 
append h to D; 
M := M -  {h}; 

else 
Q := Q -  {(s,h)}; 

end 
end 

/ / d o  old/new check for main memory table 

/ / r e m o v e  old states from main memory table 

/ / r e m o v e  old states from state queue 
/ / a n d  add new states to disk table 

Fig. 2. INSERT() and CHECKTABLE o routines when using hash compaction 

results in a significant improvement,  because as shown in [13], the s tate  queue 
can become quite large in practice. 

The new algorithm has another  nice property:  s tates are inserted into the disk 
table in the order of their  exploration. This proper ty  enables using the scheme 
proposed in [15] to store the information needed for error trace generation in a 
file, which contains for each reachable s tate  a record with two elements - the 
s ta te ' s  signature and the position (in the file) of the record of the s ta te 's  pre- 
decessor. Since the disk table already contains each s tate 's  signature, additional 
storage is only required for the values for the positions of each s ta te ' s  predeces- 
sor. These values can be stored in a separate  file to avoid slowing down accesses 
to the disk table. 

3.4 A n a l y s i s  o f  t h e  C o m b i n e d  S c h e m e  

The  following analysis yields an upper  bound on the probabil i ty of false positives, 
i.e., on the probabil i ty tha t  the verifier incorrectly claims tha t  an erroneous 
system is correct. This probabil i ty will be denoted by Pom- 
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As in [15], one can show that  

t 

Pore _< 1 - YIpk,-1 , 

i = 2  

where Pk denotes the probability that  there is no omission (identical signature) 
when inserting a new state into a state table with a total  of k states in main 
memory and on disk, and ki denotes the number of states in the disk table 
when it is read for the i th time. We assume that  the hash function yields sig- 
natures distributed uniformly over {0 , . . . ,  l - 1}. (Universal hashing [2], used 
in Murk,  can be shown to distribute at least as well as uniformly. In addition, 
by choosing the hash function at random when the verifier is started, universal 
hashing distributes well i n d e p e n d e n t l y  of the system under verification.) Thus, 
the probability Pk can be bounded as pk  ~_ 1 - k / l .  Hence, 

t 

Pom < 1 _  g ( 1  __ k { - 1 )  ~ . (1) 
i = 2  

This formula can be used by the verification tool to calculate (and report)  a 
bound on the probability of false positives. 

Next, we derive a formula for an approximate bound on the probability of 
false positives, in order to estimate the number of bits needed for the signatures. 
For pore to become small, it has to hold that  ~-~=2 ki << I. Then, using e x ~ l + x  
for I x I<< 1, one can approximate the right-hand side of (1) as ~-~ti=2(ki - 1) /1 .  
Assuming linear growth of the disk table, i.e., ki  ~ n i / t ,  where n denotes the 
number of reachable states, and a moderately large t, an approximate bound P~m 
on the probability of false positives can be derived, namely 

n t  

Table 1 gives values for P~m assuming n = 109 reachable states while varying 
the number of bits b for the signatures (l = 2 b) and the number of times t the 
disk table is read. The diameters of the systems we examined were typically quite 
small (less than 100) and similarly were the numbers of times the disk table was 
read. Note that  6-byte signatures yield an approximate bound P~m on the order 
of 0.1% for the chosen values of n and t. 

In comparison to the main memory version of hash compaction [15], the disk 
version needs approximately two times the number of bits b for the signatures. 
This increase is due to the fact that  in the disk version a newly reached state is 
compared against almost all of the states in the state table, while in the main 
memory version it is compared against only a few of the states in the table. 
Since the memory savings factor achievable with the new scheme is typically one 
or two orders of magnitude, however, the doubling of the size of the signatures 
amounts to an insignificant penalty. 
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Table 1. Approximate bounds POre on the probabilities of false positives for n = 109 

b li ' l b 200 I 500 J 1000 

48 0.036% 0.089% 0.18% 

4 R e s u l t s  o n  S a m p l e  P r o t o c o l s  

Figures 3 and 4 show the measured slowdown of the new scheme on an Indy 
and on an UltraSPARC, for instances of the SCI, DASH, and FLASH protocols. 
Some parameters of these instances are shown in Table 2. The protocols were 
scaled to provide interesting data  and yet prevent the process of running the 
examples from becoming too time-consuming. The slowdown graphs show that  
the main memory requirements of the MurT verifier can be reduced by one or 
two orders of magnitude with only a small increase in runtime. 

Table  2. Example protocols 

re ch b,e I bytesJ I  ooa, schomesruoti o 
protocol states state diameter UltraSPARC 

SCI 1179 942 124 46 1437s 723s 
DASH 254 937 532 64 2429s 1287s 

FLASH 1021 464 136 45 2739s 2500s 

The slowdown for the new algorithm was calculated relative to the most re- 
cent release (3.0) of Murk,  which was optimized for running in main memory. In 
fact, the disk version of Mur~ is based on this main memory version of Murk,  
which also contains symmetry  reduction (which was employed in the above ex- 
periments). We have only partially optimized the disk version; in particular, the 
code for the main memory table, which is used much more often in the disk 
version than in the main memory version, could probably be optimized. 

For our slowdown measurements, we did not reduce the size of the main 
memory; instead, we reduced the size of the main memory table to yield the 
desired memory savings factors. There was usually main memory left for the 
Unix file system buffer cache, which had not been disabled, since it turned out 
to not be feasible to disable it. Thus, the measured slowdowns might actually 
be smaller than the slowdown in the case when the verifier is really running out 
of main memory. Estimating the minimum slowdown from the amount  of data  
read from disk, however, shows that  the measured slowdown is typically higher 
than this minimum slowdown. Hence, the effect of the buffer cache cannot have 
had a dominating impact on our measurements. 
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5 C o n c l u s i o n s  a n d  F u t u r e  R e s e a r c h  

This paper describes a version of the explicit state enumeration verifier Mur~ 
that allows the use of magnetic disk instead of main memory for storing almost 
all of the state table, at the cost of a small runtime overhead. The algorithm 
avoids slow random accesses to disk and amortizes the time for linearly reading 
the state table from disk over all states in a given breadth-first level. The re- 
maining runtime overhead for accessing the disk is greatly reduced by combining 
the scheme with hash compaction. In experiments with three complex cache co- 
herence protocols, the new algorithm achieved memory savings factors of one to 
two orders of magnitude with a runtime overhead of typically only around 15%. 
Hence, the algorithm can be used to tackle more complex problems or to run 
large verification jobs on a local workstation instead of a dedicated verification 
machine with a huge main memory. 

The algorithm described could also be used in other explicit state verification 
tools like SPIN [6]. In addition, the algorithm is compatible with all three state 
reduction techniques in Murqo [8], with hash compaction, and with the parallel 
version of Mur~ [16]. The algorithm is also compatible with Peled's partial order 
method [11], which had been assumed to require depth-first search, but was 
recently shown to also work with breadth-first search [3], on which the new 
scheme is based. This recent finding suggests that other partial order methods 
might also work with breadth-first search. 

For checking liveness properties, all currently known efficient algorithms re- 
quire a (modified) depth-first search of the state space. Hence, the new scheme is 
not directly compatible with these algorithms. Two other recent techniques that 
allow bigger state spaces, the most advanced version of hash compaction [15] and 
the parallel version of Mur~ [16], however, also require a breadth-first search. 
Hence, checking liveness properties with a breadth-first style algorithm seems to 
be an interesting area for future research. 
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