
Using Magnetic Disk Instead of Main Memory in the
Mur Verifier

Ulrich Stern and David L. Dill

Computer Science Department, Stanford University,
Stanford, CA 94305

{uli, dill}@cs, stanford, edu

A b s t r a c t . In verification by explicit state enumeration a randomly ac-
cessed state table is maintained. In practice, the total main memory
available for this state table is a major limiting factor in verification. We
describe a version of the explicit state enumeration verifier Mur~ that al-
lows the use of magnetic disk instead of main memory for storing almost
all of the state table. The algorithm avoids costly random accesses to
disk and amortizes the cost of linearly reading the state table from disk
over all states in a given breadth-first level. The remaining runtime over-
head for accessing the disk is greatly reduced by combining the scheme
with hash compaction. We show how to do this combination efficiently
and analyze the resulting algorithm. In experiments with three complex
cache coherence protocols, the new algorithm achieves memory savings
factors of one to two orders of magnitude with a runtime overhead of
typically only around 15%.

1 Introduct ion

Modern digital systems often have components tha t run concurrently. Interac-
tions among these components are a notorious source of design errors. Conven-
tional verification methods based on hand-generated test vectors and pseudo-
random simulation are not capable in practice of finding all of these problems.
Programs tha t exhaustively enumerate all reachable states of a par t of the sys-
t em (or an abstract ion of the system), however, have been shown to be very
effective at detecting bugs tha t are missed by other means. The reachability
analysis in these formal verification tools can be performed using two different
methods: the states can be explicitly enumerated, by storing them individually
in a table, or a symbolic method can be used, such as representing the reachable
s tate space with a binary decision diagram (BDD) [1].

In many applications, such as directory-based cache coherence protocols,
BDD-based reachability analysis exhibits close to worst-case behavior. In such
situations, reasonably efficient explicit enumerat ion can save a factor of 50 or
more in space, because the size of the s ta te table is the product of the num-
ber of reachable states and the number of bits to represent each state, while
a BDD requires almost one node per bit per reachable state, and each node is
approximate ly 20 bytes.

173

Recently, several techniques have been developed that allow significantly
more complex systems to be handled using explicit state enumeration, espe-
cially when the techniques are used in combination. These techniques follow two
different approaches. First, state reduction methods have been developed that
aim at reducing the size of the reachability graph while ensuring that system
errors will still be detected. Examples are exploiting symmetries, utilizing re-
versible rules, and employing repetition constructors [8], as well as partial order
techniques [11]. These methods directly tackle the main problem in teachability
analysis: the very large number of reachable states of most systems. The second
approach aims at exploring a given reachability graph in the most efficient man-
ner, minimizing memory usage and runtime (both of which are limiting factors
in verification). Examples are bitstate hashing [5], hash compaction [17, 14], and
parallelizing the state space search [16].

In this paper, we describe a technique that reduces the main memory require-
ments of the state table maintained in explicit state enumeration. The state table
eventually holds all reachable states of the system being verified unless an error
is detected. In addition, the state table is typically randomly accessed, in which
case the use of magnetic disk for this table incurs a huge runtime penalty and
hence main memory is required to store this table. In practice, the total main
memory available for the state table is a major limiting factor in verification.

We describe a version of the explicit state verifier Mur~ [4] that allows the
use of magnetic disk instead of main memory for storing almost all of the state
table, at the cost of only a small runtime overhead. The algorithm is based on
the observation that when a breadth-first search is used to enumerate the state
space, a newly generated state does not need to be checked against the state
table immediately; in fact, one can postpone the checking until an entire level
of the breadth-first search has been explored and then check all states in that
level together by linearly reading the table from disk. This scheme avoids costly
random accesses to disk and amortizes the time for accessing the full table on
disk over all states in a given search level.

The remaining runtime overhead for accessing the disk can be greatly reduced
by combining the new scheme with hash compaction. Hash compaction stores
only hash signatures instead of full state descriptors in the state table. The
resulting memory savings of typically two orders of magnitude and the resulting
reduced disk access times come at a certain price; there is now a small probability
that the verifier misses the error states of the system and incorrectly claims that
an erroneous system is correct (i.e., produces a false positive). We derive an
upper bound on this probability in the combined scheme and show that, e.g.,
6-byte signatures are typically sufficient to reduce the bound to 0.1%.

One might be concerned about the reliability of a "probabilistic verifier"
that can miss errors with a small probability. For several reasons, however, this
concern is unjustified. First, the probability of missing an error due to hash com-
paction should not be confused with the probability of the very same error not
occurring when running or simulating the system for a long time. The former
probability is guaranteed to be very small even in situations where the latter is

174

high. Second, it is typically necessary to scale down or simplify a system of indus-
trial size to make it amenable to formal verification, which also results in some
probability of missed errors. In comparison to this probability, which cannot
even be approximated, the probability of missed errors due to hash compaction
seems negligible. Third, when re-running a probabilistic verifier with indepen-
dent hash functions, the resulting probability of missed errors is the product of
the probabilities in the two runs, which allows making the probability of missed
errors arbitrarily small. For a more detailed explanation of why it is safe to use
a probabilistic verifier see Sect. 1.3.1. in [13].

We ran experiments using the new scheme on three complex cache coherence
protocols (SCI [7], DASH [10], and FLASH [9]), varying the ratio of the number
of states stored on disk to the states in main memory. We call this ratio the
memory savings factor. (The additional memory savings due to hash compaction
are not taken into account here.) For example, with a memory savings factor of
50, the new scheme slowed down verification by an average of only 20% on an SGI
Indy and an average of only 29% on a Sun UltraSPARC. In fact, the algorithm is
shown to work well if the reachability graph of the system under verification has
a small diameter, which is true for virtually all systems that have been studied
with Murk.

The algorithm presented in this paper was inspired by a scheme devised by
Roscoe that allows the use of magnetic disk in explicit state enumeration [12]. His
scheme seems more complicated than ours since it is based on an algorithm for
sorting without randomly accessing memory. Also, one can show with a simple
analysis that his scheme would induce a high runtime overhead. (He has not
reported any empirical data about his scheme.) In addition, the file merging
used in his scheme doubles the memory requirements of the state table on disk.
A detailed comparison of the two algorithms is given in [13].

This paper is organized as follows. Section 2 provides background on explicit
state enumeration and magnetic disk speed. The new algorithm that enables
the use of magnetic disk instead of main memory for storing almost all of the
state table is described and analyzed in Sect. 3. Results running the algorithm
are reported in Sect. 4. Finally, Sect. 5 gives some concluding remarks.

2 B a c k g r o u n d

2.1 Explic i t State Enumerat ion

In explicit state enumeration, the automatic verifier tries to examine all reachable
states from a set of possible start states. Either breadth-first or depth-first search
can be employed for the state enumeration process. Both the breadth-first and
the depth-first algorithms are straightforward.

Two data structures are needed for performing the state enumeration. First,
a state table stores all the states that have been examined so far and is used
to decide whether a newly-reached state is old (has been visited before) or new
(has not been visited before). Besides the state table, a state queue holds all

175

active states (states whose successors still need to be generated). Depending on
the organization of this queue, the verifier does a breadth-first or a depth-first
search.

2.2 Magnetic Disk Speed

The speed of a magnetic disk depends strongly on the way it is accessed. When
linearly accessing a large file on disk, we have measured a read transfer rate
of typically 3 MB/s and a write transfer rate of typically 1 .5-2MB/s. The seek
t ime for a random access, however, is typically 10 ms. Thus, to read, say, a single
word randomly from disk requires almost four orders of magnitude more time
than to read one in the course of a linear access.

3 Explicit State Enumeration Using Magnetic Disk

3.1 The Basic Algorithm

The basic algorithm for explicit state enumeration using magnetic disk is given
in Figure 1 and is described in the following paragraph. Note that the algorithm
maintains two state tables: one in main memory and one on disk. The state
queue and the disk table will be accessed only sequentially; the main memory
table will be accessed randomly.

The state enumeration is s tarted by calling SEARCH(). First, the startstates
are generated and inserted into the main memory table by calling INSERT().
The search loop generates the successors for all states in the state queue and
also inserts these successors into the main memory table. When the state queue
becomes empty, the algorithm calls CHECKTABLE0, which determines those
states in the main memory table that are new and inserts them into the state
queue. Note that CHECKTABLE 0 linearly reads the disk table to sort out old
states, and eventually clears the main memory table. Further note tha t if there is
sufficient space in the main memory table, the algorithm will call CHECKTABLE 0
exactly once for each breadth-first level of the search; otherwise, if the main
memory table fills up (because some breadth-first levels have too many states),
CHECKTABLE 0 will also be called from within the INSERT() routine.

3.2 Est imating the Overhead

We now estimate the runtime overhead incurred by accessing the magnetic disk
in our algorithm. Let ki denote the number of states in the disk table when it
is read for the i th time and assume that it is read a total of t t imes during the
state space search. Note that kl = 0 since the disk table is empty the first t ime

t it is read. The total number of states read from disk is ~"~i=l ki. This sum has
its smallest possible value if the main memory table never fills up completely, as
in this case the disk table is read exactly once for each breadth-first level (plus
once for the successors of the states in the last level). In this case, t = d + 2,

176

var / / g l o b a l variables
M: hash table; / / m a i n memory table
D: file; / / d i s k table
Q: FIFO queue; / / s t a t e queue

SEARCh 0 / / main routine
begin

M:=~; D:=O; Q:=O;
for each sta~tstate so do

INSERT(s0);
end
do

while Q # 0 do
s := dequeue(Q);
for all s ~ E successors(s) do

INSERT(S');
end

end
CHECKTABLE0;

while Q ¢ 0;
end

/ / ini t ia l izat ion
/ / s t a r t s t a t e generation

/ / s e a r c h loop

INSERT(S: state) / / insert state s in main memory table
begin

if s ~ M then begin
insert s in M;
if full(M) then

CHECKTABLE0;
end

end

CHECKTABLE 0
begin

for all s E D do
if s E M then

M := M - {s};
end
for all s E M do

insert s in Q;
append s to D;
M := M - {s};

end
end

/ / d o old/new check for main memory table

/ / r e m o v e old states from main memory table

//handle remaining (new) states

Fig. 1. Explicit State Enumeration Using Magnetic Disk

177

where d denotes the diameter of the reachability graph. Since this diameter is
typically quite small, the disk table will only be read a small number of times.
(We shall see the diameters of some complex example protocols in Sect. 4.)

In an instance of the SCI protocol, for example, the (minimum) total number
of states read from disk is 2.64. l0 T. With 124 bytes per state and a disk bulk
transfer rate of 3 MB/s, this would result in a runtime overhead of at least
1091 s. Comparing this value to the verification time (723 s) of the conventional
algorithm on, for example, an UltraSPARC, yields a runtime overhead of at least
151%. This overhead, however, can be reduced by combining the new algorithm
with hash compaction.

Note that if a conventional verifier with randomly accessed state table runs
out of main memory and is forced to do swapping, each checking of a newly
generated state might require a seek. In fact, if the state table is much larger
than the available main memory, we can assume that each checking does require
a seek. For the above instance of the SCI protocol, 2.97-106 such seeks would be
performed, resulting in a runtime overhead of 2.97- 104 s, or 4108 %, assuming
10 ms per seek and verification on the above UltraSPARC.

3.3 Combining with Hash Compact ion

Hash compaction reduces the memory requirements of the state table by storing
(only) hash signatures instead of full state descriptors in this table. The result-
ing memory savings come at the price of a small probability, say, 0.1%, that
the verifier incorrectly claims that an erroneous system is correct. For complex
verification problems, hash compaction has achieved memory reduction factors
of two orders of magnitude. Note that by reducing the number of bytes stored
per state, hash compaction also reduces the time to read the disk table.

Figure 2 shows the new INSERT() and CHECKTABLE 0 routines when using
hash compaction. Note that signatures are used for both main memory table M
and disk table D; full state descriptors, however, need to be stored in the state
queue Q, since successors cannot be generated from a signature. In the INSERT()
routine, first the signature is calculated from the state descriptor with a hash
function. Then, state descriptor and signature are stored in the state queue,
while only the signature is stored in the main memory table. The state queue
will hold two types of states: unchecked states (i.e., states for which it has not
yet been checked whether they are 'old' or 'new') and states that are known to
be 'new.' The two types of states partition the state queue into two parts and
thus an implementation need only store the position of the border between the
two parts.

The CHECKTABLE() routine first deletes all 'old' states from the main mem-
ory table, and then checks for all unchecked states in the queue whether they are
'old' or 'new.' While the 'old' states are deleted from the queue, the 'new' ones
are appended to the disk table. Note that the checking of the state queue can
be done by linearly reading the unchecked part of the queue. When storing the
signatures separately from the state descriptors in a second queue, the algorithm
need only (linearly) read the unchecked part of this small second queue. This

178

INSERT(S: state) / / insert s in main memory table and state queue
begin

h := hash(s); / /ca lcula te signature
if h ~ M then begin

insert h in M;
insert (s, h) in Q;
if full(M) then

CHECKTABLE0;
end

end

CHECKTABLE 0
begin

for all h E D do
if h E M then

M := M - {h};
end
for all unchecked (s, h) E Q do

if h E M then
append h to D;
M := M - {h};

else
Q := Q - {(s,h)};

end
end

/ / d o old/new check for main memory table

/ / r e m o v e old states from main memory table

/ / r e m o v e old states from state queue
/ / a n d add new states to disk table

Fig. 2. INSERT() and CHECKTABLE o routines when using hash compaction

results in a significant improvement, because as shown in [13], the s tate queue
can become quite large in practice.

The new algorithm has another nice property: s tates are inserted into the disk
table in the order of their exploration. This proper ty enables using the scheme
proposed in [15] to store the information needed for error trace generation in a
file, which contains for each reachable s tate a record with two elements - the
s ta te ' s signature and the position (in the file) of the record of the s ta te 's pre-
decessor. Since the disk table already contains each s tate 's signature, additional
storage is only required for the values for the positions of each s ta te ' s predeces-
sor. These values can be stored in a separate file to avoid slowing down accesses
to the disk table.

3.4 A n a l y s i s o f t h e C o m b i n e d S c h e m e

The following analysis yields an upper bound on the probabil i ty of false positives,
i.e., on the probabil i ty tha t the verifier incorrectly claims tha t an erroneous
system is correct. This probabil i ty will be denoted by Pom-

179

As in [15], one can show that

t

Pore _< 1 - YIpk,-1 ,

i = 2

where Pk denotes the probability that there is no omission (identical signature)
when inserting a new state into a state table with a total of k states in main
memory and on disk, and ki denotes the number of states in the disk table
when it is read for the i th time. We assume that the hash function yields sig-
natures distributed uniformly over {0 , . . . , l - 1}. (Universal hashing [2], used
in Murk, can be shown to distribute at least as well as uniformly. In addition,
by choosing the hash function at random when the verifier is started, universal
hashing distributes well i n d e p e n d e n t l y of the system under verification.) Thus,
the probability Pk can be bounded as pk ~_ 1 - k / l . Hence,

t

Pom < 1 _ g (1 __ k { - 1) ~ . (1)
i = 2

This formula can be used by the verification tool to calculate (and report) a
bound on the probability of false positives.

Next, we derive a formula for an approximate bound on the probability of
false positives, in order to estimate the number of bits needed for the signatures.
For pore to become small, it has to hold that ~-~=2 ki << I. Then, using e x ~ l + x
for I x I<< 1, one can approximate the right-hand side of (1) as ~-~ti=2(ki - 1) /1 .
Assuming linear growth of the disk table, i.e., ki ~ n i / t , where n denotes the
number of reachable states, and a moderately large t, an approximate bound P~m
on the probability of false positives can be derived, namely

n t

Table 1 gives values for P~m assuming n = 109 reachable states while varying
the number of bits b for the signatures (l = 2 b) and the number of times t the
disk table is read. The diameters of the systems we examined were typically quite
small (less than 100) and similarly were the numbers of times the disk table was
read. Note that 6-byte signatures yield an approximate bound P~m on the order
of 0.1% for the chosen values of n and t.

In comparison to the main memory version of hash compaction [15], the disk
version needs approximately two times the number of bits b for the signatures.
This increase is due to the fact that in the disk version a newly reached state is
compared against almost all of the states in the state table, while in the main
memory version it is compared against only a few of the states in the table.
Since the memory savings factor achievable with the new scheme is typically one
or two orders of magnitude, however, the doubling of the size of the signatures
amounts to an insignificant penalty.

180

Table 1. Approximate bounds POre on the probabilities of false positives for n = 109

b li ' l b 200 I 500 J 1000

48 0.036% 0.089% 0.18%

4 R e s u l t s o n S a m p l e P r o t o c o l s

Figures 3 and 4 show the measured slowdown of the new scheme on an Indy
and on an UltraSPARC, for instances of the SCI, DASH, and FLASH protocols.
Some parameters of these instances are shown in Table 2. The protocols were
scaled to provide interesting data and yet prevent the process of running the
examples from becoming too time-consuming. The slowdown graphs show that
the main memory requirements of the MurT verifier can be reduced by one or
two orders of magnitude with only a small increase in runtime.

Table 2. Example protocols

re ch b,e I bytesJ I ooa, schomesruoti o
protocol states state diameter UltraSPARC

SCI 1179 942 124 46 1437s 723s
DASH 254 937 532 64 2429s 1287s

FLASH 1021 464 136 45 2739s 2500s

The slowdown for the new algorithm was calculated relative to the most re-
cent release (3.0) of Murk, which was optimized for running in main memory. In
fact, the disk version of Mur~ is based on this main memory version of Murk,
which also contains symmetry reduction (which was employed in the above ex-
periments). We have only partially optimized the disk version; in particular, the
code for the main memory table, which is used much more often in the disk
version than in the main memory version, could probably be optimized.

For our slowdown measurements, we did not reduce the size of the main
memory; instead, we reduced the size of the main memory table to yield the
desired memory savings factors. There was usually main memory left for the
Unix file system buffer cache, which had not been disabled, since it turned out
to not be feasible to disable it. Thus, the measured slowdowns might actually
be smaller than the slowdown in the case when the verifier is really running out
of main memory. Estimating the minimum slowdown from the amount of data
read from disk, however, shows that the measured slowdown is typically higher
than this minimum slowdown. Hence, the effect of the buffer cache cannot have
had a dominating impact on our measurements.

181

/
f

25 /-"

.~. . °
2 0 /

~ f o - "

o
. , , , , t , , , , t , , , , t , , , , 5 t O

0 i0 20 30 40

memory savings factor

Fig . 3. Slowdown for the SCI (dotted), DASH (solid), and FLASH (dashed) protocols,
calculated from the average runtime over three runs on an Indy

o

40 °,•

~30 ,,''''""
O "~
,--I
ul o . "

10 •" ~

t

o
0 1 0 2 0 ' ' ' ' 3 1 0 ' ' ' ' ~Ot , , , , 5 0 1

memory savings factor

Fig. 4. Slowdown for the SCI (dotted), DASH (solid), and FLASH (dashed) protocols,
calculated from the average runtime over eight runs on an UltraSPARC

182

5 C o n c l u s i o n s a n d F u t u r e R e s e a r c h

This paper describes a version of the explicit state enumeration verifier Mur~
that allows the use of magnetic disk instead of main memory for storing almost
all of the state table, at the cost of a small runtime overhead. The algorithm
avoids slow random accesses to disk and amortizes the time for linearly reading
the state table from disk over all states in a given breadth-first level. The re-
maining runtime overhead for accessing the disk is greatly reduced by combining
the scheme with hash compaction. In experiments with three complex cache co-
herence protocols, the new algorithm achieved memory savings factors of one to
two orders of magnitude with a runtime overhead of typically only around 15%.
Hence, the algorithm can be used to tackle more complex problems or to run
large verification jobs on a local workstation instead of a dedicated verification
machine with a huge main memory.

The algorithm described could also be used in other explicit state verification
tools like SPIN [6]. In addition, the algorithm is compatible with all three state
reduction techniques in Murqo [8], with hash compaction, and with the parallel
version of Mur~ [16]. The algorithm is also compatible with Peled's partial order
method [11], which had been assumed to require depth-first search, but was
recently shown to also work with breadth-first search [3], on which the new
scheme is based. This recent finding suggests that other partial order methods
might also work with breadth-first search.

For checking liveness properties, all currently known efficient algorithms re-
quire a (modified) depth-first search of the state space. Hence, the new scheme is
not directly compatible with these algorithms. Two other recent techniques that
allow bigger state spaces, the most advanced version of hash compaction [15] and
the parallel version of Mur~ [16], however, also require a breadth-first search.
Hence, checking liveness properties with a breadth-first style algorithm seems to
be an interesting area for future research.

A c k n o w l e d g m e n t s

We would like to thank Ben Verghese for explaining some details of the Unix file
system buffer cache to us and Ravi Soundararajan for his comments on a draft
of this paper.

This work was supported in part by the Defense Advanced Research Projects
Agency through NASA contract NAG-2-891 and a scholarship from the Ger-
man Academic Exchange Service (DAAD-Doktorandenstipendium HSP-II). The
views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency, NASA, or the US
Government.

183

References

1. J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit ver-
ification using symbolic model checking. In 27th ACM/IEEE Design Automation
Conference, pages 46-51, 1990.

2. J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of
Computer and System Sciences, 18(2):143 54, 1979.

3. C.-T. Chou and D. Peled. Formal verification of a partial-order reduction technique
for model checking. In Tools and Algorithms for the Construction and Analysis of
Systems. 2nd International Workshop, pages 241-57, 1996.

4. D. L. Dill. The Murqa verification system. In Computer Aided Verification. 8th
International Conference~ pages 390-3, 1996.

5. G. 3. Holzmann. On limits and possibilities of automated protocol analysis. In Pro-
tocol Specification, Testing, and Verification. 7th International Conference, pages
339-44, 1987.

6. G. J. Holzmann and D. Peled. The state of SPIN. In Computer Aided Verification.
8th International Conference, pages 385-9, 1996.

7. IEEE Std 1596-1992, IEEE Standard for Scalable Coherent Interface (SCI).
8. C. N. Ip. State Reduction Methods for Automatic Formal Verification. PhD thesis,

Stanford University, 1996.
9. J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Cha-

pin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hen-
nessy. The Stanford FLASH multiprocessor. In 21st Annual International Sympo-
sium on Computer Architecture, pages 302-13, 1994.
D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. S. Lain. The Stanford DASH multiprocessor. Computer,
25(3):63-79, 1992.
D. Peled. Combining partial order reductions with on-the-fly model-checking. In
Computer Aided Verification. 6th International Conference, pages 377-90, 1994.
A. W. Roscoe. Model-checking CSP. In A Classical Mind, Essays in Honour of
C. A. R. Hoare. Prentice-Hall, 1994.
U. Stern. Algorithmic Techniques in Verification by Explicit State Enumeration.
PhD thesis, Technical University of Munich, 1997.
U. Stern and D. L. Dill. Improved probabilistic verification by hash compaction.
In Advanced Research Working Conference on Correct Hardware Design and Ver-
ification Methods, pages 206-24, 1995.
U. Stern and D. L. Dill. A new scheme for memory-efficient probabilistic ver-
ification. In Joint International Conference on Formal Description Techniques
for Distributed Systems and Communication Protocols, and Protocol Specification,
Testing, and Verification, pages 333-48, 1996.
U. Stern and D. L. Dill. Parallelizing the Mur~ verifier. In Computer Aided
Verification. 9th International Conference, pages 256-67, 1997.
P. Wolper and D. Leroy. Reliable hashing without collision detection. In Computer
Aided Verification. 5th International Conference, pages 59-70, 1993.

10.

11.

12.

13.

14.

15.

16.

17.

