
Protocol Verification in Nuprl

Amy P. Felty 1, Douglas J. Howe 1, and Frank A. Stomp 2

1 Bell Labs, Murray Hill, NJ 07974, USA. {felty,ho~e}@bell-labs.com
2 Dept. of Comp. Sci., UC Davis, Davis, CA 95616, USA. stomp@cs.ucdavis.edu

Abs t rac t . This paper presents work directed toward making the Nuprl
interactive theorem prover a more effective tool for protocol verification
while retaining existing advantages of the system , and describes appli-
cation of the prover to verifying the SCI cache coherence protocol. The
verification is based, in part, on formal mathematics imported from an-
other theorem-proving system, exploiting a connection we implemented
between Nuprl and HOL. We have designed and implemented a type
annotation scheme for Nuprl's logic that allows type information to be
effectively applied by the system's automated reasoning facilities. This is
significant because Nuprl's powerful constructive type theory buys much
of its expressive power and flexibility at the cost of giving up the more
manageable kinds of type system found in other logics.

1 Introduct ion

Nuprl [2] is an interactive theorem-proving system in the lineage of LCF. One
of its main distinguishing characteristics is its highly expressive formal logic, a
constructive type theory whose classical variant has expressive power equivalent
to conventional set theory (ZFC) [12,6].

Nuprl has been extensively applied, and its expressive power has been shown
to be a substantial advantage in a variety of domains, but little work has been
specifically directed toward effectiveness for the kind of large-scale practical ap-
plications where the bulk of the formal mathematics is highly complicated, but
shallow and representationally simple.

This paper describes our work in this direction, and features an application
of Nuprl to prove safety properties of the SCI cache coherence protocol [8].

We chose SCI as an example part ly because its complexity is representative
of the scale of algorithms which can be currently handled by mechanized tools.
Model checking systems that have been applied to the protocol suffer from state
explosion at a small number of processors, though even so some bugs have been
found [11]. A second reason for choosing it is that a proof method and supported
invariants have already been worked out [3].

Our work has been to improve Nuprl for these kinds of applications without
compromising existing advantages of the system by, e.g., adding restrictions to
the logic. There are three parts to this work.

Imported mathematics. Verification using an interactive theorem-prover re-
quires a great deal of basic formal mathematics about elementary data structures

429

and models. Building it is time-consuming, and is largely duplication of effort
since these basic facts tend to be similar across systems. To avoid doing this
ourselves, we import some basic mathematics from HOL [5], a system that has,
over the years, accumulated a large corpus of mathematics of the kind useful
for software/hardware verification. The paper [7] gives the basic design of the
connection between HOL and Nuprl, and [4] gives an extension to it and an
application to a moderately difficult problem in metamathematics. Our work,
though just a first step, establishes that sharing mathematics can be useful in
software/hardware verification.

Type Annotation. Nuprl buys its expressive power at the cost of some tra-
ditional aspects of type systems. In particular, the type theory's flexibility is in
large part due to the fact that terms are untyped in the sense that one cannot de-
termine from the syntax of an expression what, if any, type it is a member of. In
this way, Nuprl is similar to set theory, with types being analogous to sets. This
is a problem for automation for two reasons. First, it is often important for terms
to come with their types; for example, in term rewriting, type information can
enable a useful form of conditional rewriting. Second, typing properties require
proof, so, for example, every time a lemma is instantiated, the instantiating ob-
jects must be proved to have the right types. We have designed and implemented
an annotation scheme where terms are decorated with types in such a way that
types can (almost always) be efficiently maintained during inference, but no new
syntactic restrictions are placed on the logic. We have obtained roughly a factor
of 10 speedup in term rewriting (the main workhorse in Nuprl proofs). Unfor-
tunately, the implementation wasn't completed until part-way through the SCI
effort, so a good deal of work was done without its benefit.

Tactic support. We represent the protocol and its specification using a familiar
kind of embedding of a Unity-like language. We used Nuprl's tactic mechanism
to implement a suite of automated reasoners specialized to this model.

One might ask why not just use ttOL (for example)? The answer is that we
are aiming to make Nuprl an effective tool for a wide range of formal problems
related to protocol verification. For example, we want to be able to reason about
abstraction and refinement methods (see [1] for an example), an area where
expressive power can be a great advantage. Of course, there are verification
tasks, such as checking that the atomic state transitions of a system preserve a
property, where expressive power may be less important and where the speed and
effectiveness of basic inference mechanisms, such as term rewriting, is crucial.
One goal of our work is to enhance the second kind of reasoning without imposing
restrictions that affect the first kind.

Our proof is completely constructive (by choice). While we don't see much
application for this fact in this particular case, it is noteworthy that constructiv-
ity has not gotten in the way. It may be possible to engineer constructive proofs
of protocols from which one can synthesize, for example, programs that track
simulations of the protocol and produce interesting data about the current state.

In the rest of the paper we describe the SCI correctness proof and the im-
provements we made to Nuprl. The proof is not yet finished, though it is nearing

430

completion. A description of what remains to be done is included later in the
paper. Details of the completed formalization will be available on the web at
www.cs.bell-labs.com/~felty/sci/.

2 SCI Cache Coherence and Its Formalization in Nuprl

This section gives an overview of the SCI cache coherence protocol and its formal-
ization in Nuprl. Before proceeding to the overview, we give a brief description
of Nuprl. FormM mathematics in Nuprl is organized in a single library, which is
broken into files simulating a theory structure. Library objects can be definitions,
display forms, theorems, comments or objects containing ML code. Definitions
define new operators, possibly with binding structure, in terms of existing Nuprl
terms and previously defined operators. Display forms provide notations for de-
fined and primitive operators. These notations need not be parsable since Nuprl
uses structure editors. Theorems have tree structured proofs, possibly incom-
plete. Each node has a sequent, and represents an inference step. The step is
justified either by a primitive rule, or by a laclic. Nuprl's notion of tactic is
derived from that of LCF, as is HOL's.

Nuprl's type theory has a rich set of type constructors. The following are
some example types: Hn E N . B n ---+ B n,

{ x E N l i s t l x C n i l } , ~ n E N . B ~, (x , y) : Z × N + l / (x t y 2 = y l x 2) .

The first of these can be thought of as the type of functions mapping an n and
an n-ary bit-vector to an n-ary bit-vector. The second is the type of nonempty
list of natural numbers, the third is the collection of pairs (n, b) such that b
is an n-ary bit-vector, and the last is a quotient type representing the rational
numbers represented as pairs of integers with the usual equivalence relation.

2.1 S C I C a c h e C o h e r e n c e

The SCI protocol is an IEEE standard for specifying communication between
multiprocessors in a shared memory model [8]. Due to the space limitations we
present a very high-level description of our model of the cache coherence part of
that protocol. A detailed description of our model can be found in [3],

Processors which try to access the store form a doubly linked list. This list
can be thought of as prioritizing processors so that read and write conflicts do not
arise. The protocol is distributed; there is no global cache or global data structure
for the linked list. Instead each processor p has a set of local variables which keeps
track of, for instance, its view of the cache (cvp), knowledge of whether or not its
view is valid (csp), and its current successor (succp) and predecessor (predp) on
the linked list, if any. All communication is via point-to-point message passing.
Since a very large number of processors could be on the network, a huge amount
of concurrency is present, complicating the understanding of the protocol. (The
IEEE standard specifies an upper bound of 64,000 processors. The proof we are
formalizing proves the correctness for an arbitrary finite number of processors.)

431

The protocol is specified as a set of guarded actions. For example, the fol-
lowing is an action executed by the memory controller m.

bur [m]? read_cache_fresh Q(p)
i f status,,, = Gone t h e n buf [p]!read_cache_fresh R(m, headm, cvm, gone)
else buf [p]!read_caehe_freshR(rn, head~, cvm, ok) fi;
headm := p; i f statusm = Home t hen statusm := Fresh fi

Here, the guard indicates tha t this action can be executed if the first message
in bur[m] (m's message buffer) has type read_caehe_freshQ which indicates that
processor p wants to read. The message is removed from the queue (received) and
the body is executed. A message read_cache_freshR(m, headm, cvm, gone) is sent
to processor p, if some processor on the list had issued a write query (indicated by
the argument gone). Otherwise, response read_caehe_freshR(m, headm, CVm, ok) is
sent to p. (Argument ok indicates that no processors are on the list which have
requested to modify the store.) Local variable statUSm is used by m to record
whether some processor is on the list which has issued a write query - - its value
is then Gone; or whether processors on the list have issued read queries only - -
its value is then Fresh; or if no such queries have been issued and hence the list
is empty - - its value is then Home. Finally, local variable head,~ is maintained
by m to record the head of the list. As shown by this example, bodies can
contain assignments, conditionals, and sends. In addition to receives, guards can
be boolean conditions.

The protocol is represented as 21 actions: 4 for memory including the one
above and 17 for each processor. Communicat ion is via 14 types of messages,
made up of 7 pairs of query (Q) and response (R) messages. In addition to the
above action, memory has two actions responding to write requests, one from a
processor tha t is already on the doubly linked list because it is reading, and one
from a processor tha t is not yet on the list. It also has an action responding to a
processor tha t wants to go off the list. The 17 actions for each processor include
one read request, two write requests, actions for requesting to go on the list or
to go off the list (for example, after it has "accessed" the store), an action for
purging others off the list when it has been given permission to write the store
and decided tha t it is indeed going to do so, actions for modifying the cache,
as well as actions tha t respond to each kind of request from another processor.
This high degree of communicat ion is a main complicating factor in the protocol.
Several rounds of messages must be exchanged before a processor is on the list
with succp and predp properly set. Thus, the doubly linked list is constantly
modified and consti tutes an abstract ion of the structure which arises during an
actual computat ion. A variable statusp keeps track of a processor p 's s tate with
respect to the list and can take on one of 8 possible values.

2.2 Formal izat ion in Nuprl

Our formalizat ion of correctness follows closely the proof in [3]. Our embedding
of the semantics of s tate transition systems in Nuprt is fairly straightforward.
We define a s tate as a pair where the first component is the usual mapping from

432

identifiers to values. The second component is a history variable that records
the sequence of messages that have been sent and received during the entire
execution. This history variable is important for reasoning about the program's
communication behavior. The Nuprl definitions of the components of state are
given below. Booleans (B), atoms, integers (Z), and lists are defined in the stan-
dard Nuprl libraries.

PId == {k:Z[k _> 0 } hist_el == B X PId × Z × mesg

id == Atom X PId hist == hist_el List

mesg == Z X Z List state == (id --* Z) X hist

For simplicity, the values of all identifiers (id) are assumed to be integers. The
first component of an identifier is its name (type Atom) and the second is the
process identifier (type PId) to which the variable belongs. The first component
of a history element (h i s t _ e l) is a boolean value indicating whether the message
is a send (t t) or a receive (f f) . The remaining components are the sender,
receiver, and message (type mesg). Message types such as read_cachc_freshQ are
encoded as integers as the first component of a message. The second component
encodes the arguments.

Expressions and commands are defined as functions on state. As an example,
we give the definition of the assignment command.

corn == s t a t e ~ s t a t e

x:=e == As.<Ay.if (x = y) then (e.s) else (y.s), s.h>

Nuprl's display forms are used to define := and • as infix operators. The dot
is used for evaluation in a state and is overloaded. Here e.s is expression eval-
uation defined as (e s) and (y . s) maps identifiers to values and is defined as
(s . 1 y) (where . 1 denotes the projection of the first element of a pair). Other
commands are defined similarly. Note that the assignment statement updates the
first component of the state. The send command updates the second component
by simply adding a history element to the front of the history with t t as its first
component and the new message as its last component. (Histories and buffers
are represented in reverse order.) The receive command also adds a history el-
ement to the front of the history, but is more complicated because it computes
this element from the contents of the current history ix. It uses an operation
queue(p;h) which filters out those history elements that contain messages that
have been sent and not yet received by process p. It then chooses the last (oldest)
element and creates a new copy whose first component is f f . The message buffer
of a process p in state s, denoted (bur [p])-s, is also computed using queue.
In this case, the message components of the elements of list q u e u e (p ; s . 2) are
projected out.

A program is defined as a pair containing a list of commands and an initial
condition which is a predicate on state (of type s t a t e ---* P1 where P~ is the
type of Nuprl propositions). In our model, a command is enabled if it changes the
state when applied. Thus commands whose guards are true but do not change
the state are considered disabled. A trace is defined in the usual way as a function
from natural numbers to states such that for any n, there is an action (enabled
or not) such that when applied to state n results in state n + 1.

433

The correctness of the SCI cache coherence protocol is stated as five linear
temporal logic formulas. The first, for example, expresses that there is always a
unique cache owner. The notion of cache owner is fairly complex because of the
distributed nature of the protocol. If no processor has requested to write to the
cache, then memory is the owner. Otherwise, the owner roughly corresponds to
the processor p whose variable csp has value dirty. However, there are various
cases where 0 or more than 1 processor has this value. In such cases there is a
always a message in some processor's buffer that will cause it to set its value ofcsp
to dirty or to something else making it or some other processor the unique owner.
In order to show that this uniqueness property and the other four properties
hold, we prove a series of complex invariants from which these properties follow.
These invariants are expressed as 14 lemmas (spanning several pages in [3]),
each with several interdependent clauses. There are also many auxiliary concepts
that appear in the invariants. For example, there are 6 predicates on processors
indicating their degree of progress in getting on or off the doubly linked list. The
most complex concept is a function called rank whose value reflects how close a
process is to getting permission to write.

In related work, Stern and Dill [11] use Mur¢, a verification system that
employs explicit state enumeration, to analyze SCI cache coherence. Their largest
example included three processors with one cache line each, one memory with
one address and two data values, and they reported finding several errors using a
smaller example. The model they used was extracted from the C code describing
the protocol in [8], whereas our model has been constructed from the informal
English explanation. By abstracting at this level, inconsistencies in the lower-
level description were removed. Our model also differs from theirs (and from
the SCI protocol standard) in that we have assumed that messages sent from
one processor to another processor are always received in the order sent. Stern
and Dill check for certain safety properties, two of which are formulated as
invariants. One of their invariants corresponds to one of our five correctness
properties stating that processors in a certain state have a consistent view of the
cache. The other is essentially the same as an invariant in one of our supporting
lemmas stating at what point a processor is at the head of the linked list.

In [10], Park and Dill use PVS to verify the FLASH cache coherence protocol.
Because the protocol uses directories instead of the distributed list of SCI, it
seems simpler, and also it seems that the abstraction method they employ may
not be applicable to SCI.

3 Imported Mathematics

In this section we describe the connection between HOL and Nuprl, and sum-
marize how it was used in our proof.

3.1 The Importat ion Mechanism

We believe that much of the mathematics used in practical verification is highly
sharable, including theories of basic data types, and also a good deal of the

434

mathematics related to software modeling and semantic connections to external
tools. We have taken a first step toward this kind of sharing by borrowing some
of the mathematics we needed for our verification from HOL.

Importation of mathematics from HOL into Nuprl is done at the theory
level. An HOL theory consists of some type and individual constants, some
axioms (usually definitional) constraining the constants, and a set of theorems
following from the axioms (and the axioms of ancestor theories). To import a
theory, one interprets the type constants with Nuprl types and the term constants
with members of the appropriate types, and then proves the axioms. When this
is done, the theorems can then all be accepted immediately as Nuprl theorems.
Typechecking is undecidable in Nuprl, so the well-typedness of interpreting terms
must be proven explicitly.

Theorems directly imported from HOL are usually of a form that makes them
useless for direct application in Nuprl proofs. It turns out that massaging the
theorems into the desired form is possible, and is largely automatable.

To illustrate what kind of transformations are needed on directly imported
mathematics, consider an example from list theory. The following is a raw im-
port of a HOL theorem stating that a non-empty list is a cons. Because Nuprl
currently has a single flat namespace, the names of all imported constants have
an "h" prepended to avoid conflicts with Nuprl objects. The outermost quanti-
fier quantifies over the type S of all (small) non-empty types (this quantifier is
implicit in HOL).

V'a:S T(hall (Al:hlist('a).
himplies (hnot (knull i))

(heqnal (boons (hhd i) (htl I)) i)))

Apart from the outermost quantifier, the logical connectives themse]ves are im-
ported constants. The transformed, "Nuprl-friendly" theorem generated from
the above is

V'a:S. Vl:'a List. ~mt(1) ::~ hd(1)::tl(1) = i.

The logical connectives in HOL are all boolean-valued functions, possibly taking
functional arguments, as in the case of the quantifiers. The interpretations of
these connectives use boolean logic defined within Nuprl. The boolean connec-
tives are rewritten in the second theorem to Nuprl's normal logical connectives,
which are defined using a propositions-as-types correspondence. The operator
~" in the imported theorem coerces a boolean into a Nuprl proposition. The
imported list type is interpreted as Nuprl's list type, and the imported tail func-
tion is interpreted as Nuprl's tail function. Note however that h t l is applied, as a
function, to its argument, while the Nuprl t l is a defined operator with a single
operand (Nuprl also has an operator for function application, of course). We
have used a notational device to suppress type arguments in the (pre-rewrite)
imported theorem. Each of the imported constants in the theorem actually has
at least one type argument. In the rewritten theorem, there are no hidden type
arguments (the Nuprl operations are "implicitly polymorphic").

435

The most interesting point in this translation is the function for head of a
list. In HOL, this is a total function on lists. When we import it into Nuprl,
we must prove that the interpretation returns a value on every list, empty or
not. Since hhd is polymorphic, given an arbitrary type and the empty list as an
argument, it must choose some arbitrary member of the type as output. Thus
we must give hhd a noncomputable definition in Nuprl. However, we can prove
that this function is the same as Nuprl's hd when the list is non-empty. This
gives us a conditional rewrite which goes through for this example theorem.

3.2 H O L M a t h U s e d in t h e S C I V e r i f i c a t i o n

The main source of HOL theorems used in the SCI verification is a large body
of theorems about lists. Lists are important in two central areas of the proof.
First, the definition and proof of properties about the contents of buffers require
sophisticated list manipulation since, as mentioned, ~hey are computed from the
history component of a state. For example, from the definition of buffer, it fairly
is straightforward to prove that when a message H is sent to process p in state s,
its buffer becomes M: : ((b u r [p]) . s) where : : is the cons operator. The proof
that but_last_el((buf[p]).s) is the contents of p's buffer after p receives a
message is significantly more complex. The operator b u t _ l a s t e l is defined in
an HOL library in terms of the l a s t n operator (the operation which extracts the
last n elements of a list) which is also defined in HOL. The snoc operator, which
is the opposite of cons (in particular, the property s n o c (x ; 1) = 1 © (x: : [3)
holds, where © is the append operator), is also defined in HOL and is useful for
reasoning about these operators. The existing HOL theorems about these and a
variety of other operators were directly usable in this and other proofs.

The above two theorems are examples of lemmas used as rewrite rules. Nuprl
provides powerful automation for the application of rewrite lemmas and good
use of this machinery is essential for a large proof such as the SCI verification.
We proved and make extensive use of numerous other rewrite lemmas involving
histories and buffers. A variety of other theorems about histories and buffers
have also been proved and used as support for other kinds of rewrite lemmas.

One invariant (part of Lemma 9 [3]) states that any processor has at most
one outstanding message. In particular, for any Q / R pair, there is at mo s t o n e
Q message for which a processor is waiting for the corresponding R message.
This means that there is either 0 or 1 Q messages from a processor p in some
q's buffer, or there is 0 or 1 R messages in p's buffer, but not both. Our rewrite
lemmas along with various other list operators and properties from HOL play a
central role in proving this fact.

The second area of the proof in which lists are important is in defining the
notion of rank. Rank roughly corresponds to the order in which processors have
requested to read or write to the cache. It is only defined for active processors,
a property of processors that are on or "mostly on" the doubly linked list. An
important property is the fact that for any processor, its rank does not increase.
This property insures that the list does not contain circularities. As long as a
process stays active (and a few other properties hold) its rank will decrease until

436

it becomes 0 at which point it is allowed to write if it has requested to do so. Rank
is defined by filtering from the history all read and write requests that memory
has received, projecting out the sender, and keeping only the first occurrence of
each active processor in the resulting list. The first occurrence corresponds to a
processor's most recent request. We prove a variety of lemmas describing how a
processor's rank changes with changes in the state. These lemmas are also used
as rewrite rules in proving invariants.

4 A T y p e A n n o t a t i o n S c h e m e f o r N u p r l

Our type annotation scheme is a way of attaching type expressions, which we
call annotations, to all (or only some) of the subterms of a term. Our scheme
meets the following goals.

1. Annotations are optional. Terms that do not have annotations attached to
them are treated as before by Nuprl's tactics.

2. If a term t is introduced into a proof as a member of a type T, and t oc-
curs somewhere in the current goal with a compatible annotation, then the
requirement to prove t E T is eliminated.

3. Annotations justify rewriting, so that a subterm with an annotation A can be
replaced by an equal term (qua member of A) without further justification.

4. There are no heuristics in the scheme per se. Although type inference and
checking are highly heuristic in Nuprl, this is independent of the annotation
scheme. Annotations for terms are generated by examining the results of
applying Nuprl's existing machinery.

5. Annotations can be effectively maintained. In principal, it is possible for
annotations to be lost during inference. For example, the generalized term
in the induction rule needs to reannotated (or left without annotations).
However, such inference steps form a tiny fraction in practice. For example,
annotations are almost never lost during equational rewriting.

6. There are no global tables. We retain the tree-structuring of proofs, with
independence of proof branches, that allows us, among other things, to do
dependency-directed backtracking, and selective replay of subproofs.

7. Soundness depends only on a fixed set of primitive inference rules that all
proofs must reduce to.

8. The scheme is almost entirely invisible to users.

The type theory of the PVS system [9] has some similarities to Nuprl, such
as subtypes, (a limited form of) dependent types, and undecidable typechecking.
PVS uses a typing discipline that achieves most of the goals above, but it would
only be applicable to an insufficiently small subtheory of Nuprl. Some complicat-
ing aspects of Nuprl, which aren't present in PVS, are: universe polymorphism;
type-indexed equality, so that two terms may both be in two types, but be equal
in one type and not in the other; contravariant subtyping, where a function type
is enlarged when its domain is shrunk; and general dependent types. In addition,
the PVS scheme does not address 7 above.

437

Nuprl terms have the form 0(~1. e l ; . . . ;En. en) where 0 is an operator and in
each operand ~i.e~, each of the variables in the sequence El binds in ei. Note that
no types are associated with the variables in this syntax. An annotated term has
the form

0(.. . ;~i. el: [¢i]Ai;...) : B

where the ei are also annotated terms. The expressions [¢i]Ai are the suban-
notations of the term, and can be thought of as the expected types for the
operands, and B is the annotation type of the term. Informally, ei : [¢i]Ai can
be thought of as meaning that under assumption ¢i, ei has type Ai. The ¢i can
refer to the variables in xi, and can contain, for example, assertions of the form
x e T. Examples of annotated terms are fact((3: Z) : [true]N): N, where fact,
N and Z are factorial, the natural numbers and the integers respectively, and
if(b:B; el:[blA; e2:[-,b]A): A.

One of the key points is how the annotation type of a term relates to its
subannotat ions and to the subannotations of an immediately surrounding term.
We chose the minimal requirement that supports rewriting as described above,
and so we require only respect for equality. For example, in 0((e: d) : [¢]A') : B,
where the operand e : A is itself an annotated term, we require, first, that for
all x e A', if x = e e A' then 0(x) = O(e) e B, and, second, that for all x e A,
if z = e E A then x = e E A'. The generalization of this requirement to the
presence of binding variables is straightforward.

As with ordinary typing in Nuprl, the validity of an annotation of a term is
undecidable, and must be proven. One possibility would be to generate "type
checking conditions" as PVS does, which are side conditions generated whenever
a new term is introduced. This is not workable for Nuprl because tactics work
by putt ing together appropriate primitive inference rules, and need an oppor-
tuni ty to assemble proofs of annotat ion validity at the same time as the proofs
justifying the main inference. Rewriting works, for example, by taking a term
and producing a rewritten term along with a proof of equality. For annotated
terms, it is natural to modify rewriting to take an annotated term, and produce
a new term, an equality proof, and also a proof that the new term's annotations
are correct. We therefore have two kinds of annotations: one kind we can assume
are valid during the course of a proof, and the other must be proved to be valid.

The annotat ion scheme is justified semantically, and requires a re-interpretation
of the semantics of sequents. A full report is in preparation.

5 The Correctness Proof in Nuprl

The definition below encodes the formula DP from linear temporal logic and
is central in proving invariants. A state s is in an execution of program prg,
denoted i n e x e c (s ;p rg) , if s occurs in some trace of prg.

i n v (p r g ; s . I [s]) = = V s : s t a t e . in_exec(prg;s) ::* I [s]

In a proof of this magnitude, it was essential to provide a high degree of automa-
tion. Our automation falls roughly into two categories: tactics that decompose

438

reasoning modularly, and properties expressing equality and equivalence that can
be used by Nuprl's rewriting machinery such as those mentioned in Sect. 3.2.
Both the decomposition properties and rewrite theorems include general theo-
rems and theorems specific to SCI. The rewrites for message buffers discussed in
Sect. 3.2, for example, are not specific to SCI, while the notion of rank is. The
decomposition tactics rely on lemmas that we have proven, such as one stating
that to show that i n v (p r g ; s . I [s]) holds, it suffices to consider one case for
each action of the program and to show that the initial condition holds in the
initial state. From this general lemma, we proved decomposition lemmas for SCI
which decompose reasoning into 21 cases, one for each memory action and one
for each processor action for some arbitrary processor p. We chose to further de-
compose conditional statements into cases so that each case contains only send,
receive, and assignment statements. Rewriting operates on these simplified cases.
Although these decomposition properties are specific to SCI, we automated the
generation of their statements - - as well as a variety of other properties specific
to SCI - - from the definitions of the actions. Their proofs were often largely
automatic also. We also automated the application of many of these lemmas by
writing tactics which apply them and solve various subgoals automatically.

Of the 14 lemmas expressing invariants, the first 8 (roughly 2.5 pages in [3])
are fairly simple and express properties about the values that various variables
can take on during execution. For example, we prove:

read_cache_fresh R(p, r, cv , ar g) E buf [p] =~

Here P (n) denotes the set of processors involved in the protocol, with process
identifiers 1 , . . . , n.

The 9 th lemma contains five statements which together express the property
of outstanding messages described in Sect. 3.2 as well as eight statements ex-
pressing which kind of outstanding message a processor p has depending on the
value of s ta tus v. Lemmas 10 and 11 express a variety of properties of the form
D(P W Q) (where W is the weak until operator). We proved a general decom-
position theorem for formulas of this form which makes the structure of these
proofs similar to those for the other invariants. Lemma 12 expresses some basic
properties about rank including two which follow directly from the definition
(which is slightly different but equivalent to the one given in [3]) and two which
must be proven as invariants. While the invariants up to this point are large
and detailed, they are fairly straightforward to prove. The main difficulty in the
proof is found in the 13 th and 14 th lemmas. Lemma 13 has 17 clauses and one
assumption which later gets discharged and Lemma 14 has 7 clauses. They state
the complex invariants about rank that are required to prove correctness of the
protocol.

The proofs up through and including Lemma 11 are completed, as well as
the two properties of Lemma 12 that follow from the definition of rank. We have
also proven 5 and nearly completed 2 more of the 17 clauses of Lemma 13. For
example, we have proven the invariant:

439

where visiting processors are a subset of the active ones. In doing so, we have de-
veloped all of the rewrite lemmas about the rank function and all other auxilliary
predicates that we need to complete the remainder of Lemmas 12, 13, and 14.
The reasoning needed to complete the proof by showing that the desired safety
properties follow from these invariants will be detailed but straightforward.

Because we started from a proof of correctness [3], we did not expect to find
errors in the protocol. However, we have found two errors in the proof. Two of
the conjuncts of the first clause of Lemma 13 could not be proved using the
assertions we had formulated, although they are true. To prove these conjuncts,
we had to add and prove some additional clauses. One is an invariant explicitly
stating that two particular messages sent from one processor to another are
received in the order sent.

References

1. C.-T. Chou and D. Peled. Verifying a model-checking algorithm. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 1055 of Lecture
Notes in Computer Science, pages 241-257. Springer-Verlag, 1996.

2. R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof Develop-
ment System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

3. A. Felty and F. Stomp. A correctness proof of a cache coherence protocol. 1997.
Available at www.cs.bell-labs.com/,~felty/sci/. An earlier version appears in Pro-
ceedings of the 11th Annual Conference on Computer Assurance, 1996.

4. A. P. Felty and D. J. Howe. Hybrid interactive theorem proving using Nuprl and
HOL. In Fourteenth International Conference on Automated Deduction, volume
1249 of Lecture Notes in Computer Science, pages 351-365. Springer-Verlag, 1997.

5. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

6. D. J. Howe. On computational open-endedness in Martin-LSf's type theory. In
Proceedings of the Sixth Annual Symposium on Logic in Computer Science, pages
162-172. IEEE Computer Society, 1991.

7. D. J. Howe. Importing mathematics from HOL into Nuprl. In Theorem Proving
in Higher Order Logics, volume 1125 of Lecture Notes in Computer Science, pages
267-281. Springer-Verlag, 1996.

8. IEEE-P1596-05Nov90-doc197-iii. Part ILIA: SCI Coherence Overview, 1990. Un-
approved Draft. Approved standard is described in IEEE Std. 1596-1992 "The
Scalable Coherent Interface".

9. S. Owre and N. Shankar. The formal semantics of PVS. Technical report, SRI,
August 1997.

10. S. Park and D. L. Dill. Verification of FLASH cache coherence protocol by aggre-
gation of distributed transactions. In 8th A CM Symposium on Parallel Algorithms
and Architectures, t996.

11. U. Stern and D. L. Dill. Automatic verification of the SCI cache coherence protocol.
In Correct Hardware Design and Verification Methods, 1995.

12. B. Werner. Sets in types, types in sets. In InternationalSymposium on Theoretical
Aspects of Computer Software, volume 1281 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

