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Abstract. Assume-guarantee reasoning has long been advertised as an important method 
for decomposing proof obligations in system verification. Refinement mappings (homo- 
morphisms) have long been advertised as an important method for solving the language- 
inclusion problem in practice. When confronted with large verification problems, we there- 
fore attempted to make use of both techniques. We soon found that rather than offering 
instant solutions, the success of assume-guarantee reasoning depends critically on the con- 
struction of suitable abstraction modules, and the success of relinemcnt checking depends 
critically on the co.stmction of suitable witness modules. Moreover, as abstractions need 
to be witnessed, and witnesses abstracted, the process must be iterated. We present here 
the Inai. lessons we learned from our exl)e,iments, in forln of a systematic and structured 
discipline lot the compositional verification of reactive modules. An infrastructure to sup- 
port this discipline, and automate parts of the verification, has been implemented in the tool 
MOCHA. 

1 Introduction 

Formal verification is a systematic approach for detecting logical errors in designs. The designer 
uses a language with mathematical semantics to describe the design, which is then analyzed 
for correctness with respect to a specification. We refer to the design being analyzed as the 
implementation. The verilication problem is called refinement checking when the specification 
is a more abstract design. For a trace semantics, the refinement-checking problem is PSPACE- 
hard in the size of the implementation description and in the state space of the specification. Not 
surprisingly, algorithms for refinement checking are exponential in the size of the implementation 
description and doubly exponential in the size of the specification description. 

There are two general classes of techniques for combating this state-explosion problem. 
Type- I techniques focus on improving algorithms, often developing heuristics that target specilic 
application domains, such as symbolic methods for synchronous hardware designs, and partial- 
order methods for asynchronous communication protocols. Type-2 techniques focus on dividing 
tile verilication task at ha.d into simpler tasks, often making use of the co,npositional structure 
of both implementation and specification, such as assume-guarantee methods for proof decotu- 
position. While type-I techniques can be applied fully automatically and improve the efficiency 
of formal verification, they need to be complemented by type-2 techniques in order to make the 
approach fully scalable. Type-2 techniques, however, require substantial assistance from human 
verification experts, and their systematic application in nontrivial situations remains somewhat 
of a black art. 

We are developing a formal-verification tool, called MOCHA [AHM+98], which is based on 
the system description language of reactive modules [AH96]. Reactive modules permit the mod- 
ular and hierarchical description of heterogeneous systems, and have been designed explicitly 
to support type-2 techniques such as assume-guarantee reasoning. In this paper, we present the 
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cxpcricnccs and rcsuits of our attcmpts to makc use of type-2 techniques within MOCHA in a dis- 
ciplined and systematic way. We report on a methodology that has led us to success in verifying 
a hardware circuit that implements Tomasulo's algorithm, and a sliding-window communication 
protocol. Since the description of these examples would require more space than is available in 
these proceedings, we illustrate our methodology, instead, on a circuit that implements a simple 
three-stage pipeline. 

We now briefly outline our methodology, which approaches a refinement-checking problem 
of the form Pl II/'= __5_ q (where --< is the trace-containment relation) by introducing abstraction 
and witness modules. Suppose that tbe state space of the implementation P1 lIP2 is too large to 
be handled by exhaustive search algorithms. A naive compositional approach would attempt to 
prove both Pc "< Q and P2 "< Q, and then conclude PIlIP2 ----< Q. Though sound, the naive 
approach often fails in practice, because P1 usually refines Q only in a suitable constraining 
environment, and so does P2. Hence we construct a suitable constraining environment A2 for P1, 
and similarly Ai for Dz. Since At describes the aspects of Pi that are relevant to constraining P2, 
and similarly As is an abstract description of P'z, the two new modules AI and A~ are called 
abstractimz modules. By assume-guarantee reasoning, we conclude Pt [IP',~ '< Q from the two 
proof obligations PI IIA2 "< AI IIQ and Ai 11/2 _-< QIIA~. 

Traditionally, the size of the implementation has been viewed as the main source of complex- 
ity for the refinement-checking problem. In our approach, we shift the focus to the size of the gap 
between the implementation and the specification. As an extreme case, if we are given two iden- 
tical copies of a design, we ought to be able to verify that one is a valid refinement of the other, 
no matter how large the designs. We want the success rate of our methodology to increase if the 
designer invests effort in structuring the implementation and specification so as to expose more 
commonality between them. Abstraction modules form an intermediate layer between the imple- 
mentation and the specification, and thus provide a systematic way of reducing the gap. In our 
case studies, we found that abstraction modules generally take the form of abstract definitions for 
hidden implementation variables. When composed with the original specilication, which often 
specifies only relationships between primary inputs and outputs, the abstraction modules yield a 
richer specification that is closer to the implementation. Constructing good abstraction modules 
requires manual effort. Once constructed, our methodology automatically makes effective use of 
the abstraction modules to decompose the refinement check. 

Even if the state space of the implementation becomes manageable as a result of proof decom- 
position, each remaining refinement check, say P '  = PI IIA2 _'_< At IIO = q ' ,  is still PSPACE- 
hard in the size of the specification state space. However, for the special case that all variables 
of Q~ are also present in P '  (in this case, we say that Q' is projection refinable by P ' ) ,  the re- 
finement check reduces to a transition-invariant check, which verifies that every move of P~ can 
be mimicked by Q'. The complexity of this procedure is linear on the state spaces of both p t  
and Q~. If Q~ is not projection refinable by P ' ,  our methodology advocates the introduction of a 
witness module W, which makes explicit how the hidden variables of the specification Q~ depend 
on the state of the implementation pr. Then Q~ is projection refinable by P'llW, and it suffices 
to prove P'llW "< q' in order to conclude P' -< Q'. The construction of witness modules also 
requires manual effort, but whenever the specification Q~ simulates the implementation P~, a 
suitable witness can be found. 

Related work. The individual pieces of our methodology are not new; we simply advocate 
their disciplined use within the framework of reactive modules. In particular, assume-guarantee 
rules for various formalisms can be found in [stag5,CLM89,GL94,AL95,McM97]; the rule 
used in this paper has been taken from [AH96]. Witnesses have appeared in various guises 
and forms (homomorphisms, refinement mappings, simulation relations, etc.) in different works 
[Lam83,LT87,AL91,BBLS92,CGL92,Kur94,LV95,McM97]. Also our choice of case studies is 
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not new. Other correctness proofs for Tomasulo's algorithm can be found in [DP97,McM98]; the 
sliding-window protocol is taken from [Tan92]. 

2 A Verification Problem 

Reactive modules. Reactive modules is a formalism for the modular description of systems with 
heterogeneous components. The definition of reactive modules can be found in [AH96]; here we 
give only a brief introduction. The state of a reactive module is determined by the values of three 
kinds of variables: the external variables are updated by the environment and can be read by 
the module; the hltetface variables are updated by the module and can be read by the environ- 
ment; the private variables are updated by the module and cannot be read by the environment. 
The external and interface variables are called observable; the interface and private variables, 
controlled. 

The state of a reactive module changes in a sequence of rounds. The first round is called the 
initial round, and determines initial values for all variables. Each subsequent round is called an 
update raund, and determines new values for all variables. For external variables, the values in the 
initial and update rounds are left unspecified (i.e., chosen nondeterministically). For controlled 
variables, the values in the initial and update rounds are spccilied hy (possibly nondeterministic) 
guarded commands. In each update round, the new value of a controlled variable may depend on 
the (latched) values of some variables from the previous round. In addition, in each round, the 
initial (or new) value of a controlled variable may depend on the initial (or new) values of some 
other variables from the same round; such a dependency between the values of variables within 
a single round is called an await dependency. In order to avoid inconsistent specifications, the 
await dependencies must be acyclic. In reactive modules, the acyclicity restriction is enforced 
statically, by partitioning the controlled variables into atoms that can be ordered such that in each 
round, the initial (or new) values lbr all variables of an atom can be determined simultaneously 
from the initial (or new) values of the external variables and the variables of earlier atoms. 

Each round, thereh}r/:, consists of several subrounds--one lot the external variables, and one 
per atom. Each atom has an hfftial command, which specifies the possible initial values for the 
variables of the atom, and an update command, which specifies the possible new values for the 
variables of the atom within each update round. In the update command, unprimed occurrences 
of variables refer to the latched values from the previous round; in both the initial and update 
commands, primed occurrences of variables refer to the initial (or new) values from the same 
round. 

Example 1. Consider the simple instruction set architecture detined by the reactive module ISA 
of Figure 1. The module 1SA has five external variables (inputs)---the operation op, the immedi- 
ate operand inp, the source registers srel and src~, and the destination register dest. There are 
two interface variables (oulputs)--the value out of a STORE inslruction, and a boolean variable 
stall, which indicates if the current inputs have been accepted. If the value of stall is true in a 
round, then no instruction is processed in that round, and the environment is supposed to produce 
the same instruction again in the next round. Finally, there is one private variable--the register 
file isaRegFile. 

A round of the module ISA consists of four subrounds. In the first subround of each update 
round, the environment chooses an operation, operands, and a destination, by assigning values to 
the external variables. In the second subround, the atom ISAStall decides nondeterministically 
if the current inputs arc processed, by setting stall to true or false. Thc third subround behmgs 
to the atom ISA RegFile. If the updated value of stall is false, then the current instruction is pro- 
ccssed appropriately. If the operation is AND or OR, it is performed on the source registers and 
the result is placed into the dcstination register. If the operation is LOAD. the immediate operand 
is assigned to the destination register. The fourth subround belongs to the atom lrSAOut. If the 
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module ISA 
external op, inp, srel , sre~, dest 
interface out, stall 
private isaRegFile 
atom ISAStall controls stall 

inlt update 
[] true ~ stall' := nondet 

atom ISA RegFile controls isaRegFile 
init 

true --+ forail i do isaRegFile'[i] := 0 
update 

[] ".stall' A op' = LOAD ~ isaRegFile'[dest'] := inp' 
[] ",stall' A op' = AND --r isaRegFile'[dest'] := isaRegFile[srcl'] A isaRegFile[src~'] 
[] -~stall' A op' = OR ~ isaRegFile'[dest'] := isaRegFile[srcl'] V isanezFile[sree'] 

atom ISA Out controls out 
inlt update 

[] --,stall' A op' = STORE .--r out' := isaRegFile[dest'] 

Fig. 1. Instruction set architecture 

updated value of stall is false and the current operation is S T O R E ,  then out is updated to the 
contents of the destination register from the previous round. Since both atoms ISARegFile and 
ISAOut  wait, in each update round, for the new value of stall, they must be executed after the 
atom ISAStall,  which produces the new value of stall. However, there are no await dependen- 
cies between the atoms ISARegFile and ISA Out, and therefore tile third and fourth subrounds 
of  each update round can be interchanged. D 

Parallel  composition. The composition operation combines two reactive modules into a single 
module whose behavior captures the interaction between the two component modules. Two mod- 
ules P and Q are compatible if (I)  the controlled variables of P and Q are disjoint, and (2) the 
await dependencies between the variables of P and Q are acyclic. If P and Q are two compatible 
modules, then the composition PIIQ is tim module whose atoms are the (disjoint) union of tile 
atoms from P and Q. The interface variables of PIiQ are the (disjoint) union of the interface 
variables of P and Q, and the private variables of PIIQ are the (disjoint) union of the private 
variables of P and Q. The external variables of PIIQ consist of the external variables of P that 
are not interface variables of Q, and the external variables of Q that are not interface variables 
of P .  

Example 2. The module ISA from Figure 1 can be seen as the parallel composition of three 
modules. The module ISAStall  has the interface variable .stall; the module ISARegFile has the 
external variables op, inp, srel ,  sre2, dest, and stall, and the interface variable isaRegFile; 
the module ISAOut  has the external variables op, dest, stall, and isaRegFile, and the interface 
variable out. The operation hide makes the interface variable isaRegFile private: 

ISA = h ide  isaRegFile in ISAStalII]ISARegFileIIISA Out [3 

Refinement. The notion that two reactive modules describe the same system at different levels 
of detail is captured by the relinement relation between modules. We define refinement as trace 
containment. A state of a module P is a valuation for the variables (external, interface, and 
private) of P .  A state is initial if it can be obtained at the end of the initial round. Given two 
states s and t, we write s --+p t if when the state at the beginning of an update round is s, 
then the state at the end of the update round may be t. A trajectory of P is a finite sequence 
s o , . . .  , s ,  of states such that (!)  so is an initial state of P ,  and (2) for i E {0, 1 , . . .  , n -- 1}, 
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module Oprl 
interface oprl 
external stall, pipel .op, pipe2.op, pipel .inp, wbReg, regFile, srcl 
atom Oprl controls oprl 

update 
".stall' -+ oprl' :---- 

if srcl' = pipel.dest A pipel.op ~ NOP A pipel.op ~ STORE 
then if pipe1 .op = LOAD then pipe1 .inp else aluOut' 
elseif srel' = pipee.dest ^ pipe2.op ~ NOP A pipe~.op ~ STORE 

then wb Reg else regFile[srcl '] 

module Opre 
interface opr~ 
external stall, pipe1 .op, pipe2.op, pipel .inp, tobReg, regFile, src~ 
"Same as Oprl with srel replaced by steP," 

module Pipel 
Interface pipe l . op , pipe l . inp , pipe1 .des, 
external stall, inp, op, des, 
atom Pipe1 controls pipel .op, pipe1 .des,, pipel .inp 

init 
true --} pipe1 .op' := NOP 

update 
true --~ pipel.op' := if stall' then NOP else opt; 

pipel .des,' := dest'; pipe1 .inp' := inp ~ 

Fig.2. Pipeline stage 1 

we have si ---}p si+l .  The states that lie on trajectories are called reachable. An observation of 
P is a valuation for the observable variables (external and interface) of P .  If s is a valuation to 
a set of variables, we use [s]p to denote the set of valuations from s restricted to the observable 
variables of P .  For a state sequence ~ = so , . . .  , sn, we write [~]p = [ s o ] p , . . . ,  [sn]p for the 
corresponding observation sequence. If ~ is a trajectory of P ,  then the projection [~]p is called 
a trace of P .  The module Q is refinable by module P if (!) every interface variable of Q is an 
interface variable of P ,  and (2) every external variable of Q is an observable variable of P .  The 
module P refines the module Q, written P --< Q, if (1) Q is relinable by P ,  and (2) for every 
trajectory ~ of P ,  the projection [~]q is a trace of Q. 

Example 3. Consider the three-stage pipeline defined by the reactive module PIPELINE shown 
in Figures 2 and 3. In the first stage of the pipeline, the operands are fetched; in the second stage, 
the opcrations arc performed; in the third stage, the result is written into the register file. The 
PIPELINE module is the parallel composition of seven modules. The first stage consists of 
the modules Pipel,  Oprl,  and Opr2. Forwarding logic in Oprl and Opr~ ensures that correct 
values are given to the second stage, even if the value in question has not yet been written into 
the register file. The second stage consists of the module Pipe2, which has an ALU atom that 
processes arithmetic operations using the opcrands from the first stage and writes the results into 
a write-back register called wbReg. The third stage is consists of the module RegFile, which 
copies wbRe9 into the appropriate iegister. The PipeOut module outputs a register value in 
response to a STORE instruction. The Stall module controls the stall signal, which is set to 
true whenever a STORE instruction cannot be accepted due to data dependencies. 
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Our goal is to show that PIPELINE is a correct implementation of the instruction set ar- 
chitecture ISA. This is the case if every sequence of instructions given to PIPELINE produces 
a sequence of outputs (and stalls) that is permitted by ISA. The module ISA is refinable by 
PIPELINE,  so it remains to be shown that every trace of PIPELINE is a trace of ISA. D 

3 O u r  M e t h o d o l o g y  

Witness modules. Tile problem of checking if P -'< Q is PSPACE-hard in the state space of Q. 
However, the relinement check is simpler in the special case in which all variables of Q are 
observable. The module Q is projection refinable by the module P if (1) Q is refinable by P,  
and (2) Q has no private variables. If Q is projection refinablc by P, then every variable of Q 
is observable in both P and Q. Therefore, checking if P ~ Q reduces to checking if for every 
trajectory :~ of P, the projection [~]q is a trajectmy of Q. According to the fidlowing proposition, 
this can be done by a transition-invariant check, whose complexity is linear in the state spaces of 
both P and Q. 

Proposition 1. [Projection refinement] Consider two modules P and Q, where Q is projection 
reJinable by P. Then P -'¢ Q iff ( I ) if .~ is m~ bfitial state of  P, then [s]Q is m~ btitial state t~ Q, 
and(2) if s is a reachable state of P and a -~1, ~, then [,s]Q --~Q [t]Q. 

We make use of this proposition as follows. Suppose that Q is refinable by P, but not projection 
refinable. This means that there are some private variables in Q. Define Qu to be the module 
obtained by making every private variable of Q an interface variable. If we compose P with a 
module W whose interface variables include the private variables of Q, then QU is projection 
relinable by the composition PIIIV. Moreover, if W does not constrain any external variables 
of P,  then PIIW ~ QU implies P --< Q (in fact, P is simulated by Q). Such a module W is 
called a witness to the refinement P ~ Q. The following proposition states that in order to check 
refinement, it is sufficient to first lind a witness module and then check projection refinement. 

Proposition 2. [Wimess modules] Consider two modules P and Q such that Q is refinable by P. 
Let W be a module such that (I) W is compatible with P, and (2) the bzterface variables of W 
h~clude the private variables of Q, and are disjoint from the external variables of P. Then (!) Qu 
is projection refinable by PII W, and (2) PllW ~_ Q~ implies P -.< Q. 

Furthermore, it can be shown that if P does not have any private variables, and P is simulated 
by Q, then a witness to the refinement P _--< Q does exist. In summary, the creativity required 
from the human verification expert is the construction of a suitable witness module, which makes 
explicit how the private state of the specification Q depends on the state of the implementation P. 

Assume-guarantee reasoning. The state space of a module may be exponential in the size of 
file module description. Consequently, even checking projection refinement may not be feasi- 
ble. However, typically both the implementation P and the specification Q consist of the parallel 
composition of several modules, in which case it may be possible to reduce the problem of check- 
ing if P --< Q to several subproblems that involve smaller state spaces. The assume-guarantee 
rule for reactive modules [AH96] allows us to conclude P ~ Q as long as each component of 
the specification Q is refined by the corresponding components of the implementation P within 
a suitable environment. The following proposition gives a slightly generalized account of the 
assume-guarantee rule. 

Proposition 3. [Assume-guarantee rule] Consider two composite modules P = P1 I t""  IIP,~ 
attd O = Q I[[. . .  IIQ., where Q is ,~efinable by P. For i E { 1 , . . .  , n}, let Pi be the composition 
of arbitrary compatible components fiom P and Q with the exception of Qi. If Fi ~_ Qifor  every 
i E {1,. . .  ,n}, then P ~_ Q. 
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module  Pipe2 
interface pipe2, op, pipe2.dest, wbReg, aluOut 
external pipel.op, pipel .inp, pipe1, des,, oprl , opt2 
atom A L U controls aluOut 

update  
H pipe1 .op = AND --+ aluOut' :=  opt1 A opr~ 

pipel .op = OR -.4 ah~Out' :=  oprl V opr~ 
atom Pipe~ controls pipe2.op, pipe~.dest 

init 
true ~ pipe~.op' :=  NOP 

update 
0 true ~ pipe~.op' := pipel.op; pipe~.dest' :=  pipel.dest 

atom WbRe9 controls wbReg 
update 

[] pipel.op = AND V pipel.op = OR ~ wbReg' :=  aluOut' 
[] pipel.op = LOAD --+ wbReg' :=  pipel.inp 

module RegFile 
interface regFile 
external  pipe~, op, pipe2.dest, wbReg, aluOut 
atom RegFile controls regFile 

init 
true --~ forall i do regFile'[i] :=  0 

update  
0 pipe~.op = AND V pipe~.op = OR V pipeH.op = LOAD --~ 

forall i do regFile'[i] :=  if pipe2.dest = i then wbReg else regFile[i] 

module  PipeOut 
interface out 
external op, regFile, des, 
atom Out controls out 

update 
-stall' A op' = STORE --+ out' :=  regFile[dest' ] 

module Stall 
interface stall 
external op, des,, pipel .op, pipe1 .des,, pipe~.op, pipe~.dest 
atom Stall controls stall 

update  
U op' = STORE A pipel.op # NOP A pipel.op ~ STORE A des,' = pipel.dest -~ 

stall' := true 
0 op' = STORE A pipe~.op ~ NOP h pipe~.op ~ STORE Ades t '  = pipeZ.dest --+ 

stall' := true 
d e f a u l t  ~ stall' :=  false 

Fig. 3. Pipeline stages 2 and 3, output, and stall 
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We make use of this proposition as follows. First we decompose the specification Q into its 
components Q1 I1"' II0,,. Then we find for each component Qi of the specification a suitable 
module/ 'i  (called an obligation module) and check that/ 'i ~ Qi. This is beneficial if the state 
space of Ui is snmller than the state space of P. The module/ 'i  is the parallel composition of 
two kinds of modules--essential modules and constrainh~g modules. The essential modules are 
chosen from the implementation 19 so that every interface variable of Qi is an interface variable 
of some essential module. There may, however, be some external variables of Qi that are not 
observable for the essential modules. In this case, to ensure that Qi is refinable by/ ' i ,  we need to 
choose constraining modules from either from the implementation P or from the specification Q 
(other than Qi). Once Qi is refinable by/ ' i ,  if the refinement check/'i _--'4 Qi goes through, then 
we are done. Typically, however, the external variables of/"i need to be constrained in order 
for the refinement check to go through. Until this is achieved, we must add further constraining 
modules to/ ' i .  

It is preferable to choose constraining modules from the specification, which is less detailed 
than the implementation and therefore gives rise to smaller state spaces (in the undesirable limit, 
if we choose Fi = P, then tile proof obligation Fi ~ Qi involves file state space of P and is 
no simpler than the original proof obligation P --< Q). Unfortunately, due to lack of detail, the 
specilication often does not supply a suilable choice of constraining modules. According to the 
Iollowing simple property of the refinement relation, however, we can arbitrarily "enrich" the 
specification by composing it with new modules. 

Proposition 4. [Abstraction modules] For all modules P, Q, and A, if P -4 QIIA and Q is 
refinable by P, then P 5 Q. 

So, before applying the assume-guarantee rule, we may add modules to the specification and 
prove P -'< QI]A1]]---I]A,~ instead of P --~ Q. The new modules AI , . . .  ,Ak are called ab- 
straction modules, as they usually give high-level descriptions for some implementation compo- 
nents, in order to provide a sufficient supply of constraining modules. In summary, the creativity 
required from tile human verification expert is Ihe construction of suitable abstraction modules, 
which on one hand, need to be as detailed as required to serve as constraining modules in assume- 
guarantee reasoning, and on the other hand, should be as abstract as possible to minimize their 
state spaces. 

While witness modules are introduced "on the left" of a refinement relation, abstraction mod- 
ules are introduced "on the right" So it may be necessary to iterate both processes, providing 
witnesses for abstractions, and abstractions for witnesses. An example of this will appear in the 
next section. 

4 O u r  S o l u t i o n  

We prove that PIPELINE ~ ISA using Propositions 1,2, 3, and 4, We note that ISA is refinable 
by PIPELINE, but not projection refinable. This is because isaRegFile in ISA is a private 
variable. We claim that the module ISARegFile is a witness module for isaRegFile. We then use 
Proposition 2 to reduce the proof obligation PIPELINE -~ ISA to 1SARegFile[IPIPELINE -~ 
1SA ~. This proof obligation can be expanded in terms of component modules to 

ISA RegFilell RegFilell Oprl II Opr~ll 
Pipe1 IIPipe2[IPipeOutllS~all ~ ISARegFilelllSAOutlllSAStall" 

Let us start by identifying ISAOut with Q1. We need to find an obligation module/'1, such that 
/'l -~ ISAOut. There is only one interface variable for ISAOut, namely out. The component of 
PIPELINE that generates out is PipeOut. Thus PipeOut is the only essential module for/-'1. 
However, the proof obligation 

I'1 = PipeOut ~_ QI = ISAOut 
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fails trivially, because ISAOut is not refinable by PipeOut. The module ISAOut has an external 
variable isaRegFile that is not present in PipeOut. To achieve refinability, we add ISARegFile, 
the module controlling isaRegFile, to/ '1 and try to prove 

Ft = ISARegFilellPipeOut ~ QI = ISAOut. 

This fails because the input ~egFile to PipeOut is not constrained. We add RcgFile to constrain 
regFile, but in vain, because the check 

1"1 = ISARegFilellRegFilellPipeOut 5 Q1 = 1SAOut 

also fails. The reason now is that the inputs to RegFile are not constrained. We add Pipe2 for 
this purpose, and then Pipe1, Oprl, OprZ, and Stall to constrain the inputs to Pipe2. At last, 
we are able to prove the proof obligation 

rt = Ia A RegFilell RegFilell Pipe l ll Pipee tI Opr l II Opre ll Stallll PipeOut ~_ Q~ = IS A Out. 

Now, according to Proposition 3, the assume-guarantee proof looks as fidlows: 

ISA RegFilel[ RegFile]lPipel I IPipee I[ 
Oprt II Opr~ II Stallll PipeOut "~ ISA Out 

ISARegFile ~_ ISARegFile 
Stall 5 ISAStall 

ISA RegFile II RegFile II Pip e III Pipe e [I 
Oprl [lOpr~llStallllPipeOut "~ ISAOutlIISARegFilelIISAStaII 

However, notice that tile biggest module on the left side above the line is exactly the same as the 
module on the left side below the line. Hence, the compositional approach did not yield much 
advantage. 

So let us return to the PIPELINE module with the intent of adding abstraction modules. 
We will add three abstraction modules--AbsOprl, AbsOpr2, and AbsRegFile, corresponding 
to Oprl, Opr2, and RegFile. Notice that whenever the required operand specified by srcl is 
currently being produced by ALU or is in wbReg, module Oprl looks ahead and finds it. Other- 
wise, it gets the operand from the register file in PIPELINE. It is observed that the specification 
variable isaRegFile[srcl~] contains the same value that will be produced by the forwarding logic. 
This observation can be used to write the following abstraction module for Oprl. 

module AbsOprl 
external isaRegFile, srel , stall 
interface opt1 
atom AbsOprl controls oprl 

update 
U ".stall' ~ opt1 ' := isaRegFile[srcl '] 

Note that the abstraction module leaves the value of opt1 unspecified if stall is true. The im- 
plementation module Oprl, on the other hand, specifies a value for opt1 in every round. Such 
incomplete specification is an essential characteristic of abstraction modules. A similar abstrac- 
tion module AbsOpr~ can be written for Opr~. 

To write an abstraction module for the implementation register file, regFile, observe that the 
value of regFile in every round must be equal to the value of isaRegFile from two rounds earlier. 
Thus, we can write the abstraction module for RegFile as AbsRegFilelllSAl-iegFiled, where 
AbsRegFile and 1SARegFiled are given below. 

module I SARegFiled 
atom ISARegFilea controls isaRegFilea 

init 
true --+ forall i do isaRegFile'a[i] :-- 0 

update 
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I] true ~ forall i do isaRegFile~[i] := isaRegFile[i] 

module AbsRegFile 
atom A bsRegFile controls regFile 

init 
[] true .-~ forall i do regFile'[i ] := 0 

update 
true -~ forali i do regF~te'[i ] := isaRegFiled[i] 

On composing AbsRegFile and ISARegFiled with ISA, we find that the new specification is 
not projection refinable by ISARegFile[IPIPELINE, because of the new specification variable 
isaRegFilea. To regain projection refinability, a witness module needs to be written for the 
abstraction module isaReqFiled, and composed with PIPELINE. A suitable witness is simply 
the module ISARegFiled. After adding the abstraction modules, according to Proposition 3, 
we obtain the following assume-guarantee proof: 

PipeOutllPipel I IPipeellStallll 
AbsRegFilelllSARegFiledlllSARegFil e ~_ ISAOut 

Opt1 IlAbsOpr$ [IPipel Ilpipe'2[[ 
AbsRegFilell1SARegFiledlllSARegFile ~_ AbsOprl 

OprellAbsOprl IIPipel IIPipeell 
AbsRegFilellISARegFiledlllSAReyFil e 5 AbsOpr~ 

AbsOprl IIAbsOpr$llPipel llPipeell 
RegFilelliSARegFiledlllSARegFilellStat I 5 AbsRegFilell1SARegFiled 

Stall -< ISAStall 
ISARegFile -~ ISARegFile 

1SARegFilellISARegFiledllRegFilell 1SARegFilellISAOutlllSAStallllAbsOprlll 
Pipel IIPipeZllOprl II OprellPipeOuttlStaU 5 AbsOprellAbsRegFilelllSARegFiled 

All proof obligations above the line satisfy projection relinability, and involve smaller state 
spaces than the conclusion of the proof. Following Proposition I, they can be discharged by 
a transition-invariant check. Let us now focus on the modules below the line. Notice that tile 
composite module on the left side is PIPELINE II ISARegFile II ISARegFiled, and the com- 
posite module on the right side is ISAUlllSARegFiledllAbsOprl]lAbsOprZllAbsRegFile. By 
Proposition 4, we can remove ISARegFiledllAbsOprl IIAbsOprellAbsRegFile from the right 
side to obtain the refinement PIPELINEIIISARegFileIIISARegFiled -< ISA u. The module 
ISARegFile II ISARegFile,t  is a witness for the refinement PIPELINE ~ ISA. Hence, by 
Proposition 2, we conclude that PIPELINE ~_ ISA. 

5 Discussion 

In the previous section, we presented an assume-guarantee proof of the fact that PIPELINE 
refines ISA. In this section, we would like to touch upon some of the issues and finer points that 
came up while we were developing this methodology. 

Projection refinability. Our definition of projection refinability is stronger than necessary. A 
variable is history-free if no atom uses the (latched) value of the variable from the previous round. 
Otherwise, the variable is said to be a latch variable. For module Q to be projection refinable by 
module P ,  it is sufficicnt to require that evcry latch variable of Q is obscrvablc in both P and Q. 

Trivial witnesses. An atom is deterministic if two distinct guards of the initial command cannot 
bc true in any given round, and the samc is true for the update command. A module is determin- 
istic if all its atoms are deterministic. If a private variable of the specification is controlled by a 
detcrministic module, and all variables on which it dcpcnds are already present in the implemen- 
tation, thcn the witness module for this variable can be easily constructed by copying the initial 
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and update commands of the controlling module. This phenomenon can be noticed in the case 
study of Section 4, where we claimed 1SARegFile as the witness for the variable isaRegFile. 
Notice also that this simplicity comes at a price. The module ISARegFile has latch variables, 
and so we have increased the number of state bits in the module over which we perform the 
transition-invariant check. Alternatively, a more complex witness for isaRe~File, which does 
not have any hitch variables, can be produced [HQR981. 

Choice of constraining modules. An important problem one faces in a compositional proof is 
the choice of a mimimal set ofconslraining modules, preferably with small state spaces. Consider 
one proof obligation ("lemma") Fi "< Qi in the compositional proof of P -'< Q using Proposi- 
tion 3. Starting from the essential modules, our implementation chooses progressively larger 
obligation modules Pi in two steps. First, sufficient constraining modules are added to make Qi 
refinable by/"i. Second, additional constraining modules are chosen according to a heuristics 
that looks at the data dependencies in the specification and implementation, until F~ refines Qi. 
The constraining modules are chosen preferably from the specification Q, rather than from the 
implementation P. Alternatively, the user can h~rce specific submodules of P or Q into Fi. 
Fairness. Though not discussed here, our methodology also supports fairness conditions on the 
specification and implementation [HQR981. 

Refinement Check[Latches I 

Monolithic 110" 
msgP, indexP 35 
msgBuffer 39 
msgC. indexC 59 
windowS 75 
IseqS 35 
seqR 59 
ackWait 15 
seqX 55 
msgX 55 
ackX 51 
busy 75 
recvd 56 
msgBufferR 68 

Refinement Check [Latches t 
Monolithic 67* 
Data Out 12 
Bus valid bit 0 
Bus value 32 
Bus tag 0 
Register[0] valid bit 4 
Register[0] tag 4 
Register[0] value 20 
Reservation Station[0] valid bit 4 
Reservation Station[0] aVal valid bit 22 
Reservation Station[0] aVal tag 10 
Reservation Station[0] aVal value 35 

Table 1. Lemmas in the proof of sliding-window protocol (left) and Tomasulo's algorithm (right) 

Other case studies.  We used the methodology outlined in Section 3 to verify implementations 
of a sliding-window protocol and of Tomasulo's algorithm. Space does not permit us to describe 
these case studies in detail; a detailed description can be found in [HQR98]. The results of our 
experiments are summarized in Table 1. The table on the left gives the results for the sliding- 
window protocol with window size 12. The table on the right gives the results for Tomasulo's 
algorithm with 4 registers and 4 reservation stations. The tables enumerate the lemmas that were 
proved to conclude that the implementation refines the specification. There is a lemma for each 
component of the specification, and a lemma for each abstraction module that is composed with 
the specification. The second colunm gives the number of boolean latch variables that encode 
the state space of the corresponding obligation module. In all proofs, most obligation modules 
contained components from the specification or abstraction modules. These components are typ- 
ically very abstract, with much nondeterminism and small state spaces. The row labeled "mono- 
lithic" refers to a noncompositional proof, where the transition-invariant check is performed on 
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the full state space of the implementation. The superscript * indicates an unsuccessful verification 
attempt. 
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