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A b s t r a c t .  Model Checking is well established as a verification technique 
for finite-state systems. Many protocols, while composed of finite-state 
processes, are parameterized by the number of such processes, hence 
Model Checking cannot be applied directly to determine correctness of 
the inherently infinite-state parameterized system. We present a case 
study on the verification of such a parameterized protocol, the SAE- 
J1850 data transfer procotol. This is a standard in the automobile in- 
dustry, where it is used to transmit data between various sensors and 
micro-controllers in an automobile. The protocol communicates data over 
a single-wire bus, and provides on-the-fly arbitration between competing 
transmissions. Our verification effort is interesting from many aspects : 
it proves correctness for arbitrary instances, is largely automated, and 
uses abstraction in an essential way. The abstractions used axe exact, in 
the sense that a property is true of the parameterized protocol if and 
only if it is true of the finite-state abstraction. 

1 I n t r o d u c t i o n  

Model Checking [CE 81] (cf. [QS 82],[CES 86]) is well established as a verifica- 
tion technique for finite-state systems. Many communication protocols, however, 
are parameterized by the number of processes, which induces an infinite family 
of (usually) finite-state instances. While Model Checking is often used to verify 
correctness of individual instances, this does not provide any guarantee of cor- 
rectness for the entire family 1. Thus an important  research task is to develop 
algorithms and semi-algorithmic procedures to verify parameterized systems. 
The general problem is known to be undecidable [AK 86]; however, algorithms 
exist for specific types of systems (cf. [GS 92], [EN 95], [EN 96]), and many 
semi-algorithmic procedures have been proposed (cf. [CG 87], [SG 89], [KM 89], 
[WL 89], [PD 95],[CGJ 95]). 

We present a case s tudy on the verification of an parameterized industrial 
s tandard protocol. The  protocol is called the SAE-J1850 protocol [SAE 92], and 

* This work was supported in part by NSF grant CCR 941-5496 and SRC Contract 
97-DP-388. The authors may be reached at ~emerson,kedar}@cs.utexas. edu. 

1 This situation is, ironically, similar to testing; verifying a few individual instances 
may help detect bugs, but can never demonstrate their absence for the entire family. 
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it is an automobile industry standard for transmitting data between various 
sensors and controllers in an automobile. The system consists of a single-wire 
bus to which several controllers (units) are attached. Since the bus is a single 
wire, symbols 0 and 1 are transmitted by encoding them by both the length and 
the value of a bus pulse. For instance, a 0 may be sent with either a long high 
or a short low pulse. 

Several units may transmit concurrently; the protocol incorporates a dis- 
tributed, on-the-fly arbitration mechanism which ensures that only the units 
transmitting the highest priority message succeed. Priority between messages 
(strings over {0, 1}) is determined by lexicographic order, given that the symbol 
0 has priority over the symbol 1. The protocol is correct if it ensures that the ar- 
bitration mechanism functions correctly. We should note here that the protocol 
as described in [SAE 92] has other higher-level functionality, which we have not 
considered in order to concentrate our attention on the core arbitration question. 
The protocol is further complicated by the presence of arbitrary but bounded 
delays in the units while detecting a change in the bus state. These delays have 
an electrical origin; they arise from delays in the detection circuitry, and the 
presence of different bias voltages at the units. To accommodate these delays, 
"long" and "short" are actually time intervals, whose length is proportional to 
the maximum delay. Thus the protocol is parameterized both by the maximum 
delay and by the number of units taking part in it. 

The verification of the protocol proceeds by two applications of abstraction, 
one for each parameter. The first abstraction theorem shows a delay indepen- 
dence property of the protocol : an instance of the protocol with n units and 
maximum delay A is correct iff the instance with n units and maximum delay 
2 is correct. Thus, correctness need be proved only for the family of instances 
with maximum delay 2. The second abstraction uses the algorithm in [EN 96] 
to handle the parameterization over the number of units in a/uUy automated 
manner; the algorithm constructs a finite "abstract graph" which represents the 
entire family of instances exactly, over which properties can be model-checked. A 
simple version of this protocol, without the complexity introduced by the delays, 
was verified in [EN 96]. The modeling of the delay not only introduces complexity 
into the behavior of the units, but also introduces additional parameterization 
into the protocol, which is dealt with by the delay independence theorem. 

The success of this effort leads us to believe that careful specification of the 
computational model underlying other protocols will expose constraints that 
can be utilized, as in this case, for developing decision procedures for other 
classes of parameterized protocols. It also exposes a dire need for developing and 
popularizing notation for expressing such protocols. Remarkably, the SAE-J1850 
document does not contain a succinct protocol description; the development 
of such a description was a major component of this project. The successful 
verification of the protocol using symbolic methods, despite the theoretical result 
on PSPACE-completeness of the procedure used [EN 96], is reason to believe 
that fully automated parameterized verification is feasible for reasonably sized 
protocols. 
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The rest of the paper is structured as follows: Section 2 describes the various 
components of the protocol in more detail. Section 3 discusses the abstractions 
used for handling the parameterizations. In Section 4, we describe the imple- 
mentation of the [EN 96] algorithm, and its application to this protocol. Section 
5 concludes the paper and provides comparisons with related work. 

2 Protocol  Description 

The SAE-J1850 protocol is a data transfer protocol over a single wire bus, which 
is intended to be used for communication between various sensors and controllers 
in an automobile. The restriction to a single wire bus reduces wiring complexity. 
An instance of the parameterized system consists of several units connected to 
a single bus. The operation of the protocol can be described at the "interface" 
and "implementation" levels. 

At the interface level, the units communicate by broadcasting messages (se- 
quences of symbols from the set {0, 1)) over the bus. Units may transmit con- 
currently; arbitration takes place during transmission. The arbitration mecha- 
nism is defined in terms of priority among symbols; the symbol 0 has higher 
priority than 1. The priority order among symbols is extended to messages by 
lexicographic ordering. The key correctness property of this protocol is that the 
arbitration mechanism works as follows : whenever several units are sending 
messages concurrently, the message with the highest priority is placed on the 
bus. 

At the implementation level, since the bus is a single wire, symbols are en- 
coded by pulses of differing length and the bus value during the pulse. For 
instance, the 0 symbol is encoded by either a "long" high pulse, or by a "short" 
low pulse. The high and low states on the bus are referred to as Dominant and 
Passive respectively in the SAE-J1850 document [SAE 92], so we will use this 
terminology in the rest of the paper. The state of the bus is an "or" of the 
bus states desired by the units. The protocol is further complicated by non- 
deterministic, but bounded delays in the units while detecting a change in bus 
value. This delay is caused either by bias voltages, or by delays in the detection 
circuitry. To account for these delays, "long" and "short" are not fixed num- 
bers, but are instead non-empty intervals, whose length is proportional to the 
maximum delay parameter, which we term A. 

We will continue to use the symbolic names "long" and "short". There 
are four parameters associated with a symbolic length I : Txmin(l), Trmin(l), 
Txmax(1), Trmax(l). Their values are based on a nominal value Tnom(l) and are 
given by the formulae : Txmin(1) = Tnom(1)- A/2, Txmaz(1) -- Tnom(l)+ A/2, 
Trmin(1) = Tnom(1)-3A/2, Trmax(l) = Thorn(1) +3/1/2. Tnom(1) is itself pro- 
portional to A. Tnom(Long) = 8* A, and Tnom(Short) -- 4* A. The values are 
given explicitly in the table below: 

Note that the interval [Txmin(l), Txmax (~)] is properly contained in the inter- 
val [Trmin(l), Trmax(1)], and that the least Long value exceeds the largest Short 
value by A. The core of the protocol is the following procedure followed by each 
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Length Trmin Txmin Txmax Trmax 
Short 2.5A 3.5A 4.5A 5.5A 
Long 6.5A 7.5A 8.5A 9.5A 

Fig. 1. Interval Lengths 

unit to transmit a symbol with symbolic length l at a bus value of b (e.g., 0 as a 
Short ,  Pass ive  pulse). At the entry to this procedure, request = b, localbus = b, 

and counter  = 1. 

v a t  localbus (* the bus value perceived by the unit *) 
vat  request (* the bus value desired by the unit at the next cycle *) 
v a t  counter (* the number of cycles elapsed for this transmission *) 

do  
counter E [0, Trmin(l) ) -----+ 

if 
localbus = b ---+request, counter := b, counter + 1 

N localbus • b -----+counter := 1; signal FAILURE(* pulse too short *) 
fi 

B counter • [Trmin(l), Tx~in(l)) ; 
i f  

localbus ~ b -----+counter := 1; signal SUCCESS 
[] localbus = b ----+request, counter := b, counter + 1 
fi 

counter • [ Txmin(l) ,  Txmax(I) ) ---4 
if 

localbus ~£ b ----+counter := 1; signal SUCCESS 
H localbus = b -----+request := -~b 
fi 

D counter • [T=ma~(l), Trma=(1)] ---+ 
if  

localbus ¢ b ----+counter := 1; signal SUCCESS 
localbus = b -----+request, counter := Passive, counter + 1 

fi 
counter > Trmax(l) -----+signal FAILURE (* pulse too long *) 

od  

Fig .2 .  Algorithm to transmit  a symbol with length l and bus value b. 

Informally, the procedure above at tempts  to maintain the bus at value b for 
T x m i n ( l )  t ime units. If this a t tempt  succeeds, then it a t tempts  to change the 
bus value to -~b within T x m a x ( l )  t ime units so as to terminate the pulse. If that  
fails, then the procedure switches to a Pass ive  request and waits for some other 
unit to change the bus value. As the names indicate, [Trmin(1),  Trmax(1)] is the 
interval for successful "reception" of the symbol while T x m i n ( l )  and T x m a x ( l )  
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are the time bounds for a t tempting "transmission" of the symbol. 0 is encoded 
as either a Short Passive pulse or as a Long Dominant  pulse, while 1 is encoded 
by the other two combinations. The asymmetry between Passive and Dominant  
is used to enforce the priority order 1 ~ 0. 

2.1 Correctness Properties 

The correctness property is stated informally in the protocol document [SAE 92] 
as: Whenever several units are transmitting messages concurrently, the message 
with the highest priority is the one placed on the bus. 

This property can be stated precisely in CTL as follows: Consider n units 
connected to the bus, indexed by i, (i E [1,n]). Let ~A(k) denote the set of 
message strings (over {0, 1}) of length k. For each i in [1, n], let msgi  denote the 
fixed message string that  is associated with unit i. Let B denote the message 
that  is t ransmit ted on the bus (this may be defined as an auxiliary variable 
tha t  records symbols as they are t ransmit ted on the bus). Let tri be a boolean 
auxiliary variable that  records if unit i is transmitting. Let max be the function 
that  determines the maximum message of a set of messages, according to the 
lexicographic priority _ on messages. If the set is empty, max has value c, the 
empty string. The following CTL formula expresses the property above: 

(CO) (Vm: m E .~4(k) : A G ( m a x T  = m A B = e =~ A(B _ m U B = m))),  
where m a x T  = m a x { i :  i e [1, n] A tri : msg~} 

This expression is of finite length for fixed k. Verification of this property 
for a fixed k requires adding state to each unit to store message contents, which 
makes the state space intractably large. To solve this problem, we modify the 
environment of the protocol so that  the message sent by a unit is generated on 
the fly. At any state, let senti denote the message sent by a unit. The modified 
correctness property is as follows : 

(C1) AG(maxS = e A B -- e ~ AG(B = maxS)) ,  where maxS =- max{ i  : i E 
[1, n] A tr~ : senti}  

Informally, this property states that  starting at any state where both the 
message on the bus and that  at the units is empty, at any point of time the 
message on the bus is equal to the lexicographic maximum of the messages 
sent by the currently transmitt ing units. This implies tha t  B must increase 
(lexicographically) as long as there is a transmitt ing unit. 

While the new environment is simpler, the statement of the property still in- 
volves several unbounded auxiliary variables. Instead of checking this property, 
which refers to the history of a computation,  we check several properties tha t  
deal with the transmission of a single symbol. We show in Lemma 1 that  their 
conjunction implies (C1). The statement of these properties requires some aux- 
iliary propositions : insym holds at states where B = e, or the state is at least 
A time units from the last bus state change; EOsender holds iff there is a trans- 
mitting unit with current symbol 0; Elsender  holds iff there is a transmitt ing 
unit with current symbol 1. 

Let before(x) :- A( insym U ( insym A x)) ,  at(x)  -- A( insym U (-~insym A x)) ,  
and after(x) - A( insym U (-~insym U ( insym A x))). Informally, before(x) holds 
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iff x holds before every next bus change, at(x) holds iff x holds at the following 
bus change, and after(x) holds iff x holds just  after the bus change is complete. 

A stable state on an execution sequence is one where B = e, or the state is at 
A time units after the last bus value change. By the protocol definition, in this 
state every unit perceives the new bus value. A stable state is the first state for 
which insym is t rue after a bus change. 

(C2a) In any global state where symbol transmission is in progress, and there 
is a unit sending 0, the next bus value is 0. In CTL, this is specified as 

AG( insym A EOsender ~ at(value = 0)) 
(C2b) In any global state where symbol transmission is in progress, if there 

is a unit sending I and no unit sending 0, the next bus value is 1. 
AG(insym A -~EOsender A Elsender ~ at(value = 1)) 
The properties above are global properties. The following are properties of 

every unit, expressed in an indexed temporal  logic (cf. [RS 85],[BCG 89]): 
(C2c) In any global state where symbol transmission is in progress, every unit 

t ransmitt ing 0 succeeds and continues to transmit  until the next insym state. 
Ai AG(insym A tri A (symi = O) ~ after(tri)) 
(C2d) In any global state where symbol transmission is in progress, and 

there is a unit sending O, every unit t ransmitt ing 1 fails before the bus symbol 
is determined. 

Ai AG(insym A EOsender A tri A (symi = 1) ~ before(-~tri)) 
(C2e) In any global state where symbol transmission is in progress and there 

is no unit sending O, every unit t ransmitt ing i succeeds and continues to transmit  
until the next insym state. 

Ai AG(insym A -~SOsender A tri A (symi = 1) =~ after(tri)) 

L e m m a  1. Properties (C2a)-(C2e) imply Property (C1). 

Proof. We show by induction on the number of stable states on any computation 
from a state with B = e and maxS = c (the 0th stable state) tha t  the following 
proper ty  holds: 

(IH) At the the kth stable state, B is the maximum of the messages sent by 
units tha t  were transmitt ing at the start  of previous stable bus state if k > 0, 
otherwise it is e. Every transmitt ing unit has sent B. 

Basis : k = 0. The message on the bus as well as the message at every 
transmit t ing unit are both e, so the claim holds. 

Inductive step : Assume that  (IH) holds at the kth stable state. If some unit 
t ransmits 0 at this state, by (C2a) the next symbol on the bus is 0. By (C2c), 
any unit t ransmitt ing 0 is t ransmitt ing at the next stable state. By (C2d), all 
units t ransmitt ing 1 fail before the next stable state. 

If some unit transmits l a t  this state and no unit transmits 0, then by (C2b), 
the next bus symbol is 1, and by (C2e) every unit transmitt ing 1 is still transmit- 
ting at the next stable state. By (IH), at the kth stable state, all units t ransmit  
the lexicographic maximum among the sent messages, hence, at the next stable 
state, the value of B is still the maximum among the messages sent. In either 
case, the inductive hypothesis holds. [] 
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3 Abstract ions  

The procotol as described is parameterized by both the maximum delay param- 
eter A, and the number of units N. Let P(N,  A) stand for the instance of the 
protocol with N units and delay A. This parameterization makes the protocol 
infinite-state, hence Model Checking cannot be applied directly to determine its 
correctness. We apply two abstractions that  reduce the protocol to an equiva- 
lent finite-state system. The first abstraction demonstrates a delay insensitivity 
property of the protocol : for every N, P(N,  A) is correct iff P(N,  2) is correct. 
Hence, protocol correctness need be checked only for the set of instances with 
maximum delay 2. However, this is still a parameterized, infinite-state protocol. 
This parameterization can be handled with the algorithm presented in [EN 96]. 
This algorithm abstracts away the number of units, constructing a finite "ab- 
stract graph" which encodes all instances of the system. Model Checking the 
abstract graph created by this unit is thus equivalent to checking the doubly 
parameterized SAE-J1850 protocol. Experimental details are presented in the 
following section. 

3.1 D e l a y  Insensitivity 

As noted in the protocol description, the timing parameters are proportional 
to the parameter A. In an underlying dense time model, each test of a clock 
variable x is of the form x E (l • A, r * A) (the angled brackets indicate either 
a open or a closed end to the interval), and each reset of x is of the form 
x := choose( l  • A, r * A), which assigns to x a nondeterministically chosen 
value from the interval. It is then straightforward to show that  if the intervals 
(l * A, r * A) are changed to (1, r) (dividing through by A), the resulting un- 
parameterized system has the same computations w.r.t, the non-clock variables 
as the original one. This is so since global states with identical non-clock values 
and clocks related by scaling with A are bisimilar. This class of systems thus 
forms a decidable instance of parameterized real-time reasoning (cf. [AHV 93]). 

Since our model of the bus system is over integer time (each transition takes 1 
time unit), we cannot use this result. The protocol, however, satisfies additional 
properties that  make a similar reduction possible. We show that  any execution 
of P(n,  d) (d even and at least 2) can be simulated by an execution of P(n, 2), 
in the sense that  the sequence of symbols on the bus is the same. 

L e m m a  2. Let a be an execution of P(n,  d) (d even and at least 2). Let l be 
the symbolic length of the time interval between successive stable bus states in a. 
Then 

1. Every unit sending a symbol with a different length is aborted by the start of 
the next stable state, and 

2. Every unit sending a symbol with the same length is transmitting at the start 
of the next stable state. [] 
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T h e o r e m  1. Let a be an execution of P(n ,  d) (d even and at least 2) from a 
stable state. There is an execution 7 of P(n ,  2) such that the sequence of symbols 
on the bus is identical in a and 7. 

Proof. We construct 7 inductively. For each i, ")'i ends in the i th  stable state, 
the symbols on the bus in 7i and in the subsequence of a up to and including 
the i th stable state are identical, and the local states of corresponding units in 
the ith stable states are the same except for, possibly, the counter values. The 
counter values, must however, satisfy the relationship : for any pair of units p, q, 
counterp < counterq in the i th stable state in (r implies that  counterp <_ counterq 
in the i th  stable state in 7- 

Let Vo equal no. Let p be the unit tha t  determines the bus change that  results 
in the (i + 1)st stable state. For a Passive to Dominant  change, p is the first unit 
to request a Dominant  bus state, and for a Dominant  to Passive change, p is 
the last unit to request a Passive bus state. At each stable state, all units begin 
transmission of their symbol with request identical to the current bus value. 
Thus, the change by unit p can occur only at counterp = Txmin(l) ,  where l is 
the length that  p sends its symbol at. Txmin(1) = (a/2) * A, for some a. 

The order of counter values is the same in the i th stable state in 7- As the 
counter value in each unit does not decrease until a bus change or a termination 
of transmission, in every execution starting at the i th stable state in 7, unit p 
still is one of the units tha t  determine the bus change. As the change of bus state 
occurs at the same multiple of A, the symbolic length, and hence the symbol 
on the bus is the same. From the previous Lemma, the units un-aborted at the 
(i + 1)st stable states in 7 and cr are the same. There exists a execution where 
within A units after the bus change, counter values for unaborted units are 
chosen in the order of counter values at the (i + 1)th stable state of a. Hence, 
the inductive hypothesis holds. [] 

We obtain the following theorem as a corollary: 

T h e o r e m  2. ( D e l a y  I n s e n s i t i v i t y )  P(n,  d) is correct for every even d, d >_ 2, 
iff P(n ,  2) is correct. 

Proof. The direction from left to right follows by instantiating d with 2. For the 
direction from right to left, note that  if P(n,  d) is incorrect for some d, then it 
contains a computat ion where the sequence of symbols on the bus is not the 
maximum of the sent messages. By the previous theorem, this computation can 
be simulated by one in P(n,  2), so P(n,  2) is incorrect. [] 

P r o o f  o f  L e m m a  2: 
Note that  at a stable state, all units have the same requested bus state, al- 

though they may be transmitt ing different symbols with differing lengths. In the 
interval between stable states, for any pair of units p, q, [counterp - counterq[ < 
A. 

(i) The length of the interval is Long. Let p be the unit determining the new 
symbol. As the bus change occurs when p's counter value equals Txmin(Long),  

Txmin(Long) - A < counterq <_ Txmin(Long) + A, for any unit q, i.e., 
6.5/I _< counterq <_ 8.5/1. 
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If q sends a symbol by a short pulse, as Trmax(Short) < 6.5A, q aborts by 
the time that the bus changes state. If q sends by a long pulse, its counter value 
remains in the interval [Trmin(Long), Trmax(Long)] up to the next stable state, 
by which time the new bus state is perceived by q. 

(ii) The length of the interval is Short. Let p be the unit determining the new 
symbol. As the bus change occurs when p's counter value equals Txmin( Short ), 

Txmin(Short) - A <_ counterq < Txmin(Short) + A, for any unit q, i.e., 
2.5z~ < counterq ~ 4.5A. 

If q sends by a long pulse, then as Trmin(Long) = 6.5A, q aborts by the next 
stable state (which occurs in the interval [3.5A, 5.5A]). If q sends by a short pulse, 
its counter value remains in the interval [Trmin (Short), Trmax (Short)] up to the 
next stable state, by which time the new bus state is perceived by q. 

Hence, every unit sending a different length aborts, and every unit sending 
a symbol with the same length is live at the next stable state. [] 

3.2 Many-Process Verification 

The delay insensitivity theorem (Theorem 2) shows that it is both necessary and 
sufficient to check every instance with delay 2 in order to check correctness for 
instances over all other delay values. While this eliminates consideration of the 
delay parameter, the reduced system is still infinite-state, as it is parameterized 
by the number of units taking part in the protocol. 

Verification of this parameterized system can be carried out fully automat- 
ically using the algorithm described in [EN 96]. This algorithm is based on a 
synchronous control-user model, where the instances of the parameterized sys- 
tem consist of a fixed control process C, and many copies of a fixed user process 
U. The n-process instance can thus be described by C II U1 [I --. II Un, where II 
denotes synchronous composition. In the SAE-J1850 protocol, the control pro- 
cess models the behavior of the bus, while the user process models the behavior of 
a single unit, together with some machinery for modeling the delays in detecting 
bus value changes. 

The algorithm of [EN 96] constructs a finite-state "abstract graph" for such a 
control-user parameterized system which is an abstraction of the entire family of 
instances. The states of the abstract graph record only the state of the control 
process, and for each local user state, whether there exists at least one user 
process in that state. The Lemma below gives a way of checking safety properties 
of the family. Liveness properties may be checked in two ways : (a) As the 
abstract graph simulates every instance, if the liveness property holds of the 
abstract graph, then it holds of the family, (b) An algorithm is provided in 
[EN 96] for exactly determining whether the liveness property holds of every 
instance. 

L e m m a  3. [EN 96] The abstract graph simulates every instance of the family. 
Every finite path in the abstract graph corresponds to a finite computation of 
some instance. 
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The paper also shows how to check properties of the form Ai Ag(i) by re- 
ducing them, using symmetry arguments (cf. [ES 93],[CFJ 93]) to checking a 
property Ag(0) of the control process in a modified control-user system, which 
has the same user process, but has C I = C I[ U as the new control process. 

4 Implementa t ion  Detai l s  

The behavior of the bus and the units as specified in the protocol is coded as a 
SMV [McM 92] program. The transition relation of the abstract graph is gen- 
erated automatically by a program which takes the specification of control and 
user processes (in C), and generates SMV code describing the transition relation 
of the abstract graph. This is done by enumerating the reachable local states for 
a single user process, then generating each transition of the abstract graph by 
inspection of the local transitions in the unit. States of the abstract graph are 
represented by subsets of the local user state space. Each subset indicates the 
presence of at least one user process in that local state, as discussed in the pre- 
vious section. Thus, for a local user transition s -+ t, the corresponding abstract 
graph transition adds t as a member of a abstract state following one that has 
s as a member. 

For the singly parameterized system with A _-- 2, each unit has 254 reachable 
states; thus, the number of Boolean variables needed to encode an abstract 
state is also 254 (subsets are encoded as a boolean membership vector). The 
correctness properties C2(a) - C2 (e) were checked together on the abstract graph. 
Since some of these properties are liveness properties, they were checked on the 
abstract graph using the fact that it simulates every instance. Every property 
succeeds on the abstract graph, so that we can infer that properties C2(a) - C2(e) 
hold of the pm'ameterized system with delay 2, which by Theorem 2 implies that 
they hold of the completely parameterized system. By Lemma 1, this implies that 
the desired correctness property, (C1), holds of the completely parameterized 
system. We did not have to invoke the potentially expensive but exact method 
for checking liveness properties. 

These checks take about 8 MB and 35 seconds on an Intel Pentium 133 
with 32 MB of main memory. Conjunctive partitioning of the transition relation 
and pre-computation of the reachable states (the strongest invariant) is used. 24 
iterations are needed to compute the reachable state space. Incidentally, checking 
a 15 unit instance takes roughly the same amount of time but less space. 

5 Conclus ions  and Re la ted  W o r k  

Verification of parameterized systems is often done by hand, or with the guidance 
of a theorem prover (cf. [MC 88], [MP 94], [HS 96]). Several methods have been 
proposed that, to various degrees, automate this verification process. Methods 
based on manual construction of a process invariant are proposed in [CG 87], 
[SG 89], [KM 89], [WL 89], [LSY 94], and have been applied for the verification 
of the Gigamax cache consistency protocol in [McM 92]. These constructions 
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have been partially automated in [RS 93], [CGJ 95] (cf. IV 93],[PD 95],[ID 96]); 
however, as the general problem is undecidable [AK 86], it is not in general 
possible to obtain a finite-state process invariant. For classes of parameterized 
systems obeying certain constraints, [GS 92], [EN 95], [EN 96] give algorithms 
(i.e., decision procedures) for model checking the parameterized system. These 
papers demonstrate the methods on simple verification examples; we believe that 
our case study is one of the few examples of verification of a large and complex 
parameterized protocol. It is likely that the delay insensitivity theorem is an 
instance of a general theorem for such types of systems; given such a theorem, 
the verification of this protocol could be indeed fully automated. 

We believe that careful specification of the computational model underlying 
other protocols will expose constraints that can be utilized, as in this case, for 
developing decision procedures for large classes of protocols. There is also a 
need for developing and popularizing notations for expressing such protocols. 
Remarkably, in the SAE-J1850 document (over 100 pages), there is no succinct 
protocol description; the description given in Section 2 had to be culled from 
the entire text. The successful verification of the protocol, despite the theoretical 
result on PSPACE-completeness of the procedure [EN 96], is reason to believe 
that fully automated parameterized verification is feasible for reasonably sized 
protocols. 
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