
V e r i f i c a t i o n o f a

P a r a m e t e r i z e d B u s A r b i t r a t i o n P r o t o c o l *

E. Allen Emerson and Kedar S. Namjoshi

Department of Computer Sciences,
The University of Texas at Austin, U.S.A.

A b s t r a c t . Model Checking is well established as a verification technique
for finite-state systems. Many protocols, while composed of finite-state
processes, are parameterized by the number of such processes, hence
Model Checking cannot be applied directly to determine correctness of
the inherently infinite-state parameterized system. We present a case
study on the verification of such a parameterized protocol, the SAE-
J1850 data transfer procotol. This is a standard in the automobile in-
dustry, where it is used to transmit data between various sensors and
micro-controllers in an automobile. The protocol communicates data over
a single-wire bus, and provides on-the-fly arbitration between competing
transmissions. Our verification effort is interesting from many aspects :
it proves correctness for arbitrary instances, is largely automated, and
uses abstraction in an essential way. The abstractions used axe exact, in
the sense that a property is true of the parameterized protocol if and
only if it is true of the finite-state abstraction.

1 I n t r o d u c t i o n

Model Checking [CE 81] (cf. [QS 82],[CES 86]) is well established as a verifica-
tion technique for finite-state systems. Many communication protocols, however,
are parameterized by the number of processes, which induces an infinite family
of (usually) finite-state instances. While Model Checking is often used to verify
correctness of individual instances, this does not provide any guarantee of cor-
rectness for the entire family 1. Thus an important research task is to develop
algorithms and semi-algorithmic procedures to verify parameterized systems.
The general problem is known to be undecidable [AK 86]; however, algorithms
exist for specific types of systems (cf. [GS 92], [EN 95], [EN 96]), and many
semi-algorithmic procedures have been proposed (cf. [CG 87], [SG 89], [KM 89],
[WL 89], [PD 95],[CGJ 95]).

We present a case s tudy on the verification of an parameterized industrial
s tandard protocol. The protocol is called the SAE-J1850 protocol [SAE 92], and

* This work was supported in part by NSF grant CCR 941-5496 and SRC Contract
97-DP-388. The authors may be reached at ~emerson,kedar}@cs.utexas. edu.

1 This situation is, ironically, similar to testing; verifying a few individual instances
may help detect bugs, but can never demonstrate their absence for the entire family.

453

it is an automobile industry standard for transmitting data between various
sensors and controllers in an automobile. The system consists of a single-wire
bus to which several controllers (units) are attached. Since the bus is a single
wire, symbols 0 and 1 are transmitted by encoding them by both the length and
the value of a bus pulse. For instance, a 0 may be sent with either a long high
or a short low pulse.

Several units may transmit concurrently; the protocol incorporates a dis-
tributed, on-the-fly arbitration mechanism which ensures that only the units
transmitting the highest priority message succeed. Priority between messages
(strings over {0, 1}) is determined by lexicographic order, given that the symbol
0 has priority over the symbol 1. The protocol is correct if it ensures that the ar-
bitration mechanism functions correctly. We should note here that the protocol
as described in [SAE 92] has other higher-level functionality, which we have not
considered in order to concentrate our attention on the core arbitration question.
The protocol is further complicated by the presence of arbitrary but bounded
delays in the units while detecting a change in the bus state. These delays have
an electrical origin; they arise from delays in the detection circuitry, and the
presence of different bias voltages at the units. To accommodate these delays,
"long" and "short" are actually time intervals, whose length is proportional to
the maximum delay. Thus the protocol is parameterized both by the maximum
delay and by the number of units taking part in it.

The verification of the protocol proceeds by two applications of abstraction,
one for each parameter. The first abstraction theorem shows a delay indepen-
dence property of the protocol : an instance of the protocol with n units and
maximum delay A is correct iff the instance with n units and maximum delay
2 is correct. Thus, correctness need be proved only for the family of instances
with maximum delay 2. The second abstraction uses the algorithm in [EN 96]
to handle the parameterization over the number of units in a/uUy automated
manner; the algorithm constructs a finite "abstract graph" which represents the
entire family of instances exactly, over which properties can be model-checked. A
simple version of this protocol, without the complexity introduced by the delays,
was verified in [EN 96]. The modeling of the delay not only introduces complexity
into the behavior of the units, but also introduces additional parameterization
into the protocol, which is dealt with by the delay independence theorem.

The success of this effort leads us to believe that careful specification of the
computational model underlying other protocols will expose constraints that
can be utilized, as in this case, for developing decision procedures for other
classes of parameterized protocols. It also exposes a dire need for developing and
popularizing notation for expressing such protocols. Remarkably, the SAE-J1850
document does not contain a succinct protocol description; the development
of such a description was a major component of this project. The successful
verification of the protocol using symbolic methods, despite the theoretical result
on PSPACE-completeness of the procedure used [EN 96], is reason to believe
that fully automated parameterized verification is feasible for reasonably sized
protocols.

454

The rest of the paper is structured as follows: Section 2 describes the various
components of the protocol in more detail. Section 3 discusses the abstractions
used for handling the parameterizations. In Section 4, we describe the imple-
mentation of the [EN 96] algorithm, and its application to this protocol. Section
5 concludes the paper and provides comparisons with related work.

2 Protocol Description

The SAE-J1850 protocol is a data transfer protocol over a single wire bus, which
is intended to be used for communication between various sensors and controllers
in an automobile. The restriction to a single wire bus reduces wiring complexity.
An instance of the parameterized system consists of several units connected to
a single bus. The operation of the protocol can be described at the "interface"
and "implementation" levels.

At the interface level, the units communicate by broadcasting messages (se-
quences of symbols from the set {0, 1)) over the bus. Units may transmit con-
currently; arbitration takes place during transmission. The arbitration mecha-
nism is defined in terms of priority among symbols; the symbol 0 has higher
priority than 1. The priority order among symbols is extended to messages by
lexicographic ordering. The key correctness property of this protocol is that the
arbitration mechanism works as follows : whenever several units are sending
messages concurrently, the message with the highest priority is placed on the
bus.

At the implementation level, since the bus is a single wire, symbols are en-
coded by pulses of differing length and the bus value during the pulse. For
instance, the 0 symbol is encoded by either a "long" high pulse, or by a "short"
low pulse. The high and low states on the bus are referred to as Dominant and
Passive respectively in the SAE-J1850 document [SAE 92], so we will use this
terminology in the rest of the paper. The state of the bus is an "or" of the
bus states desired by the units. The protocol is further complicated by non-
deterministic, but bounded delays in the units while detecting a change in bus
value. This delay is caused either by bias voltages, or by delays in the detection
circuitry. To account for these delays, "long" and "short" are not fixed num-
bers, but are instead non-empty intervals, whose length is proportional to the
maximum delay parameter, which we term A.

We will continue to use the symbolic names "long" and "short". There
are four parameters associated with a symbolic length I : Txmin(l), Trmin(l),
Txmax(1), Trmax(l). Their values are based on a nominal value Tnom(l) and are
given by the formulae : Txmin(1) = Tnom(1)- A/2, Txmaz(1) -- Tnom(l)+ A/2,
Trmin(1) = Tnom(1)-3A/2, Trmax(l) = Thorn(1) +3/1/2. Tnom(1) is itself pro-
portional to A. Tnom(Long) = 8* A, and Tnom(Short) -- 4* A. The values are
given explicitly in the table below:

Note that the interval [Txmin(l), Txmax (~)] is properly contained in the inter-
val [Trmin(l), Trmax(1)], and that the least Long value exceeds the largest Short
value by A. The core of the protocol is the following procedure followed by each

455

Length Trmin Txmin Txmax Trmax
Short 2.5A 3.5A 4.5A 5.5A
Long 6.5A 7.5A 8.5A 9.5A

Fig. 1. Interval Lengths

unit to transmit a symbol with symbolic length l at a bus value of b (e.g., 0 as a
Short , Pass ive pulse). At the entry to this procedure, request = b, localbus = b,

and counter = 1.

v a t localbus (* the bus value perceived by the unit *)
vat request (* the bus value desired by the unit at the next cycle *)
v a t counter (* the number of cycles elapsed for this transmission *)

do
counter E [0, Trmin(l)) -----+

if
localbus = b ---+request, counter := b, counter + 1

N localbus • b -----+counter := 1; signal FAILURE(* pulse too short *)
fi

B counter • [Trmin(l), Tx~in(l)) ;
i f

localbus ~ b -----+counter := 1; signal SUCCESS
[] localbus = b ----+request, counter := b, counter + 1
fi

counter • [Txmin(l) , Txmax(I)) ---4
if

localbus ~£ b ----+counter := 1; signal SUCCESS
H localbus = b -----+request := -~b
fi

D counter • [T=ma~(l), Trma=(1)] ---+
if

localbus ¢ b ----+counter := 1; signal SUCCESS
localbus = b -----+request, counter := Passive, counter + 1

fi
counter > Trmax(l) -----+signal FAILURE (* pulse too long *)

od

Fig .2 . Algorithm to transmit a symbol with length l and bus value b.

Informally, the procedure above at tempts to maintain the bus at value b for
T x m i n (l) t ime units. If this a t tempt succeeds, then it a t tempts to change the
bus value to -~b within T x m a x (l) t ime units so as to terminate the pulse. If that
fails, then the procedure switches to a Pass ive request and waits for some other
unit to change the bus value. As the names indicate, [Trmin(1), Trmax(1)] is the
interval for successful "reception" of the symbol while T x m i n (l) and T x m a x (l)

456

are the time bounds for a t tempting "transmission" of the symbol. 0 is encoded
as either a Short Passive pulse or as a Long Dominant pulse, while 1 is encoded
by the other two combinations. The asymmetry between Passive and Dominant
is used to enforce the priority order 1 ~ 0.

2.1 Correctness Properties

The correctness property is stated informally in the protocol document [SAE 92]
as: Whenever several units are transmitting messages concurrently, the message
with the highest priority is the one placed on the bus.

This property can be stated precisely in CTL as follows: Consider n units
connected to the bus, indexed by i, (i E [1,n]). Let ~A(k) denote the set of
message strings (over {0, 1}) of length k. For each i in [1, n], let msgi denote the
fixed message string that is associated with unit i. Let B denote the message
that is t ransmit ted on the bus (this may be defined as an auxiliary variable
tha t records symbols as they are t ransmit ted on the bus). Let tri be a boolean
auxiliary variable that records if unit i is transmitting. Let max be the function
that determines the maximum message of a set of messages, according to the
lexicographic priority _ on messages. If the set is empty, max has value c, the
empty string. The following CTL formula expresses the property above:

(CO) (Vm: m E .~4(k) : A G (m a x T = m A B = e =~ A(B _ m U B = m))),
where m a x T = m a x { i : i e [1, n] A tri : msg~}

This expression is of finite length for fixed k. Verification of this property
for a fixed k requires adding state to each unit to store message contents, which
makes the state space intractably large. To solve this problem, we modify the
environment of the protocol so that the message sent by a unit is generated on
the fly. At any state, let senti denote the message sent by a unit. The modified
correctness property is as follows :

(C1) AG(maxS = e A B -- e ~ AG(B = maxS)) , where maxS =- max{ i : i E
[1, n] A tr~ : senti}

Informally, this property states that starting at any state where both the
message on the bus and that at the units is empty, at any point of time the
message on the bus is equal to the lexicographic maximum of the messages
sent by the currently transmitt ing units. This implies tha t B must increase
(lexicographically) as long as there is a transmitt ing unit.

While the new environment is simpler, the statement of the property still in-
volves several unbounded auxiliary variables. Instead of checking this property,
which refers to the history of a computation, we check several properties tha t
deal with the transmission of a single symbol. We show in Lemma 1 that their
conjunction implies (C1). The statement of these properties requires some aux-
iliary propositions : insym holds at states where B = e, or the state is at least
A time units from the last bus state change; EOsender holds iff there is a trans-
mitting unit with current symbol 0; Elsender holds iff there is a transmitt ing
unit with current symbol 1.

Let before(x) :- A(insym U (insym A x)) , at(x) -- A(insym U (-~insym A x)) ,
and after(x) - A(insym U (-~insym U (insym A x))). Informally, before(x) holds

457

iff x holds before every next bus change, at(x) holds iff x holds at the following
bus change, and after(x) holds iff x holds just after the bus change is complete.

A stable state on an execution sequence is one where B = e, or the state is at
A time units after the last bus value change. By the protocol definition, in this
state every unit perceives the new bus value. A stable state is the first state for
which insym is t rue after a bus change.

(C2a) In any global state where symbol transmission is in progress, and there
is a unit sending 0, the next bus value is 0. In CTL, this is specified as

AG(insym A EOsender ~ at(value = 0))
(C2b) In any global state where symbol transmission is in progress, if there

is a unit sending I and no unit sending 0, the next bus value is 1.
AG(insym A -~EOsender A Elsender ~ at(value = 1))
The properties above are global properties. The following are properties of

every unit, expressed in an indexed temporal logic (cf. [RS 85],[BCG 89]):
(C2c) In any global state where symbol transmission is in progress, every unit

t ransmitt ing 0 succeeds and continues to transmit until the next insym state.
Ai AG(insym A tri A (symi = O) ~ after(tri))
(C2d) In any global state where symbol transmission is in progress, and

there is a unit sending O, every unit t ransmitt ing 1 fails before the bus symbol
is determined.

Ai AG(insym A EOsender A tri A (symi = 1) ~ before(-~tri))
(C2e) In any global state where symbol transmission is in progress and there

is no unit sending O, every unit t ransmitt ing i succeeds and continues to transmit
until the next insym state.

Ai AG(insym A -~SOsender A tri A (symi = 1) =~ after(tri))

L e m m a 1. Properties (C2a)-(C2e) imply Property (C1).

Proof. We show by induction on the number of stable states on any computation
from a state with B = e and maxS = c (the 0th stable state) tha t the following
proper ty holds:

(IH) At the the kth stable state, B is the maximum of the messages sent by
units tha t were transmitt ing at the start of previous stable bus state if k > 0,
otherwise it is e. Every transmitt ing unit has sent B.

Basis : k = 0. The message on the bus as well as the message at every
transmit t ing unit are both e, so the claim holds.

Inductive step : Assume that (IH) holds at the kth stable state. If some unit
t ransmits 0 at this state, by (C2a) the next symbol on the bus is 0. By (C2c),
any unit t ransmitt ing 0 is t ransmitt ing at the next stable state. By (C2d), all
units t ransmitt ing 1 fail before the next stable state.

If some unit transmits l a t this state and no unit transmits 0, then by (C2b),
the next bus symbol is 1, and by (C2e) every unit transmitt ing 1 is still transmit-
ting at the next stable state. By (IH), at the kth stable state, all units t ransmit
the lexicographic maximum among the sent messages, hence, at the next stable
state, the value of B is still the maximum among the messages sent. In either
case, the inductive hypothesis holds. []

458

3 Abstract ions

The procotol as described is parameterized by both the maximum delay param-
eter A, and the number of units N. Let P(N, A) stand for the instance of the
protocol with N units and delay A. This parameterization makes the protocol
infinite-state, hence Model Checking cannot be applied directly to determine its
correctness. We apply two abstractions that reduce the protocol to an equiva-
lent finite-state system. The first abstraction demonstrates a delay insensitivity
property of the protocol : for every N, P(N, A) is correct iff P(N, 2) is correct.
Hence, protocol correctness need be checked only for the set of instances with
maximum delay 2. However, this is still a parameterized, infinite-state protocol.
This parameterization can be handled with the algorithm presented in [EN 96].
This algorithm abstracts away the number of units, constructing a finite "ab-
stract graph" which encodes all instances of the system. Model Checking the
abstract graph created by this unit is thus equivalent to checking the doubly
parameterized SAE-J1850 protocol. Experimental details are presented in the
following section.

3.1 D e l a y Insensitivity

As noted in the protocol description, the timing parameters are proportional
to the parameter A. In an underlying dense time model, each test of a clock
variable x is of the form x E (l • A, r * A) (the angled brackets indicate either
a open or a closed end to the interval), and each reset of x is of the form
x := choose(l • A, r * A), which assigns to x a nondeterministically chosen
value from the interval. It is then straightforward to show that if the intervals
(l * A, r * A) are changed to (1, r) (dividing through by A), the resulting un-
parameterized system has the same computations w.r.t, the non-clock variables
as the original one. This is so since global states with identical non-clock values
and clocks related by scaling with A are bisimilar. This class of systems thus
forms a decidable instance of parameterized real-time reasoning (cf. [AHV 93]).

Since our model of the bus system is over integer time (each transition takes 1
time unit), we cannot use this result. The protocol, however, satisfies additional
properties that make a similar reduction possible. We show that any execution
of P(n, d) (d even and at least 2) can be simulated by an execution of P(n, 2),
in the sense that the sequence of symbols on the bus is the same.

L e m m a 2. Let a be an execution of P(n, d) (d even and at least 2). Let l be
the symbolic length of the time interval between successive stable bus states in a.
Then

1. Every unit sending a symbol with a different length is aborted by the start of
the next stable state, and

2. Every unit sending a symbol with the same length is transmitting at the start
of the next stable state. []

459

T h e o r e m 1. Let a be an execution of P(n , d) (d even and at least 2) from a
stable state. There is an execution 7 of P(n , 2) such that the sequence of symbols
on the bus is identical in a and 7.

Proof. We construct 7 inductively. For each i, ")'i ends in the i th stable state,
the symbols on the bus in 7i and in the subsequence of a up to and including
the i th stable state are identical, and the local states of corresponding units in
the ith stable states are the same except for, possibly, the counter values. The
counter values, must however, satisfy the relationship : for any pair of units p, q,
counterp < counterq in the i th stable state in (r implies that counterp <_ counterq
in the i th stable state in 7-

Let Vo equal no. Let p be the unit tha t determines the bus change that results
in the (i + 1)st stable state. For a Passive to Dominant change, p is the first unit
to request a Dominant bus state, and for a Dominant to Passive change, p is
the last unit to request a Passive bus state. At each stable state, all units begin
transmission of their symbol with request identical to the current bus value.
Thus, the change by unit p can occur only at counterp = Txmin(l) , where l is
the length that p sends its symbol at. Txmin(1) = (a/2) * A, for some a.

The order of counter values is the same in the i th stable state in 7- As the
counter value in each unit does not decrease until a bus change or a termination
of transmission, in every execution starting at the i th stable state in 7, unit p
still is one of the units tha t determine the bus change. As the change of bus state
occurs at the same multiple of A, the symbolic length, and hence the symbol
on the bus is the same. From the previous Lemma, the units un-aborted at the
(i + 1)st stable states in 7 and cr are the same. There exists a execution where
within A units after the bus change, counter values for unaborted units are
chosen in the order of counter values at the (i + 1)th stable state of a. Hence,
the inductive hypothesis holds. []

We obtain the following theorem as a corollary:

T h e o r e m 2. (D e l a y I n s e n s i t i v i t y) P(n, d) is correct for every even d, d >_ 2,
iff P(n , 2) is correct.

Proof. The direction from left to right follows by instantiating d with 2. For the
direction from right to left, note that if P(n, d) is incorrect for some d, then it
contains a computat ion where the sequence of symbols on the bus is not the
maximum of the sent messages. By the previous theorem, this computation can
be simulated by one in P(n, 2), so P(n, 2) is incorrect. []

P r o o f o f L e m m a 2:
Note that at a stable state, all units have the same requested bus state, al-

though they may be transmitt ing different symbols with differing lengths. In the
interval between stable states, for any pair of units p, q, [counterp - counterq[<
A.

(i) The length of the interval is Long. Let p be the unit determining the new
symbol. As the bus change occurs when p's counter value equals Txmin(Long),

Txmin(Long) - A < counterq <_ Txmin(Long) + A, for any unit q, i.e.,
6.5/I _< counterq <_ 8.5/1.

460

If q sends a symbol by a short pulse, as Trmax(Short) < 6.5A, q aborts by
the time that the bus changes state. If q sends by a long pulse, its counter value
remains in the interval [Trmin(Long), Trmax(Long)] up to the next stable state,
by which time the new bus state is perceived by q.

(ii) The length of the interval is Short. Let p be the unit determining the new
symbol. As the bus change occurs when p's counter value equals Txmin(Short),

Txmin(Short) - A <_ counterq < Txmin(Short) + A, for any unit q, i.e.,
2.5z~ < counterq ~ 4.5A.

If q sends by a long pulse, then as Trmin(Long) = 6.5A, q aborts by the next
stable state (which occurs in the interval [3.5A, 5.5A]). If q sends by a short pulse,
its counter value remains in the interval [Trmin (Short), Trmax (Short)] up to the
next stable state, by which time the new bus state is perceived by q.

Hence, every unit sending a different length aborts, and every unit sending
a symbol with the same length is live at the next stable state. []

3.2 Many-Process Verification

The delay insensitivity theorem (Theorem 2) shows that it is both necessary and
sufficient to check every instance with delay 2 in order to check correctness for
instances over all other delay values. While this eliminates consideration of the
delay parameter, the reduced system is still infinite-state, as it is parameterized
by the number of units taking part in the protocol.

Verification of this parameterized system can be carried out fully automat-
ically using the algorithm described in [EN 96]. This algorithm is based on a
synchronous control-user model, where the instances of the parameterized sys-
tem consist of a fixed control process C, and many copies of a fixed user process
U. The n-process instance can thus be described by C II U1 [I --. II Un, where II
denotes synchronous composition. In the SAE-J1850 protocol, the control pro-
cess models the behavior of the bus, while the user process models the behavior of
a single unit, together with some machinery for modeling the delays in detecting
bus value changes.

The algorithm of [EN 96] constructs a finite-state "abstract graph" for such a
control-user parameterized system which is an abstraction of the entire family of
instances. The states of the abstract graph record only the state of the control
process, and for each local user state, whether there exists at least one user
process in that state. The Lemma below gives a way of checking safety properties
of the family. Liveness properties may be checked in two ways : (a) As the
abstract graph simulates every instance, if the liveness property holds of the
abstract graph, then it holds of the family, (b) An algorithm is provided in
[EN 96] for exactly determining whether the liveness property holds of every
instance.

L e m m a 3. [EN 96] The abstract graph simulates every instance of the family.
Every finite path in the abstract graph corresponds to a finite computation of
some instance.

461

The paper also shows how to check properties of the form Ai Ag(i) by re-
ducing them, using symmetry arguments (cf. [ES 93],[CFJ 93]) to checking a
property Ag(0) of the control process in a modified control-user system, which
has the same user process, but has C I = C I[U as the new control process.

4 Implementa t ion Detai l s

The behavior of the bus and the units as specified in the protocol is coded as a
SMV [McM 92] program. The transition relation of the abstract graph is gen-
erated automatically by a program which takes the specification of control and
user processes (in C), and generates SMV code describing the transition relation
of the abstract graph. This is done by enumerating the reachable local states for
a single user process, then generating each transition of the abstract graph by
inspection of the local transitions in the unit. States of the abstract graph are
represented by subsets of the local user state space. Each subset indicates the
presence of at least one user process in that local state, as discussed in the pre-
vious section. Thus, for a local user transition s -+ t, the corresponding abstract
graph transition adds t as a member of a abstract state following one that has
s as a member.

For the singly parameterized system with A _-- 2, each unit has 254 reachable
states; thus, the number of Boolean variables needed to encode an abstract
state is also 254 (subsets are encoded as a boolean membership vector). The
correctness properties C2(a) - C2 (e) were checked together on the abstract graph.
Since some of these properties are liveness properties, they were checked on the
abstract graph using the fact that it simulates every instance. Every property
succeeds on the abstract graph, so that we can infer that properties C2(a) - C2(e)
hold of the pm'ameterized system with delay 2, which by Theorem 2 implies that
they hold of the completely parameterized system. By Lemma 1, this implies that
the desired correctness property, (C1), holds of the completely parameterized
system. We did not have to invoke the potentially expensive but exact method
for checking liveness properties.

These checks take about 8 MB and 35 seconds on an Intel Pentium 133
with 32 MB of main memory. Conjunctive partitioning of the transition relation
and pre-computation of the reachable states (the strongest invariant) is used. 24
iterations are needed to compute the reachable state space. Incidentally, checking
a 15 unit instance takes roughly the same amount of time but less space.

5 Conclus ions and Re la ted W o r k

Verification of parameterized systems is often done by hand, or with the guidance
of a theorem prover (cf. [MC 88], [MP 94], [HS 96]). Several methods have been
proposed that, to various degrees, automate this verification process. Methods
based on manual construction of a process invariant are proposed in [CG 87],
[SG 89], [KM 89], [WL 89], [LSY 94], and have been applied for the verification
of the Gigamax cache consistency protocol in [McM 92]. These constructions

462

have been partially automated in [RS 93], [CGJ 95] (cf. IV 93],[PD 95],[ID 96]);
however, as the general problem is undecidable [AK 86], it is not in general
possible to obtain a finite-state process invariant. For classes of parameterized
systems obeying certain constraints, [GS 92], [EN 95], [EN 96] give algorithms
(i.e., decision procedures) for model checking the parameterized system. These
papers demonstrate the methods on simple verification examples; we believe that
our case study is one of the few examples of verification of a large and complex
parameterized protocol. It is likely that the delay insensitivity theorem is an
instance of a general theorem for such types of systems; given such a theorem,
the verification of this protocol could be indeed fully automated.

We believe that careful specification of the computational model underlying
other protocols will expose constraints that can be utilized, as in this case, for
developing decision procedures for large classes of protocols. There is also a
need for developing and popularizing notations for expressing such protocols.
Remarkably, in the SAE-J1850 document (over 100 pages), there is no succinct
protocol description; the description given in Section 2 had to be culled from
the entire text. The successful verification of the protocol, despite the theoretical
result on PSPACE-completeness of the procedure [EN 96], is reason to believe
that fully automated parameterized verification is feasible for reasonably sized
protocols.

Acknowledgemen t s We thank Dr. Carl Pixley for suggesting the verifica-
tion of the SAE-J1850 protocol and for helpful remarks.

References

[AHV 93]

[AK 86]

[BCG 89]

ICE 81]

[CES 86]

[CFJ 93]

[cc 87]

[ccJ 95]

[Em 90]

[EN 95]

Alur, R., Henzinger, T., Vardi, M. Parametric Real-Time Reasoning,
STOC, 1993.
Apt, K., Kozen, D. Limits for automatic verification of finite-state concur-
rent systems. IPL 15, pp. 307-309.
Browne, M. C., Clarke, E. M., Grumberg, O. Reasoning about Networks
with Many Identical Finite State Processes, Information and Computation,
vol. 81, no. 1, pp. 13-31, April 1989.
Clarke, E. M., Emerson, E. A. Design and Synthesis of Synchronization
Skeletons using Branching Time Temporal Logic. in Workshop on Logics
of Programs, Springer-Verlag LNCS 131.
Clarke, E. M., Emerson, E. A., and Sistla, A. P., Automatic Verification of
Finite-State Concurrent Systems using Temporal Logic, A CM Trans. Prog.
Lang. and Syst., vol. 8, no. 2, pp. 244-263, April 1986.
Clarke, E. M., Filkorn, T., Jha, S. Exploiting Symmetry in Temporal Logic
Model Checking, 5th CAV, Springer-Verlag LNCS 697.
Clarke, E. M., Grumberg, O. Avoiding the State Explosion Problem in
Temporal Logic Model Checking Algorithms, PODC, 1987.
Clarke, E.M., Grumberg, O., 3ha, S. Verifying Parameterized Networks
using Abstraction and Regular Languages, CONCUR, 1995.
Emerson, E. A. Temporal and Modal Logic, in Handbook of Theoretical
Computer Science, (J. van Leeuwen, ed.), Elsevier/North-Holland, 1991.
Emerson, E. A., Namjoshi, K. S. Reasoning about Rings, POPL, 1995.

463

[EN 96]

[ES 931

[GS 92]

InS 96]

[ID 96]

[KM 89]

[LSY 94]

[Lu 84]

[McM 92]

[MC 88]

[MP 94]

[Pn 77]
[PD 95]

[QS 82]

[Rs 85]

[Rs 93]

[SAE 92]

[SG 891

[vw 86]

[v 93]

[WL 89]

Emerson, E. A., Namjoshi, K. S. Automatic Verification of Parameterized
Synchronous Systems, CAV, 1996.
Emerson, E. A., Sistla, A. P. Symmetry and Model Checking, 5th CAV,
Springer-Verlag LNCS 697.
German, S. M., Sistla, A. P. Reasoning about Systems with Many Pro-
cesses. J.ACM, Vol. 39, Number 3, July 1992.
Havelund, K., Shankar, N. Experiments in Theorem Proving and Model
Checking for Protocol Verification, FME, 1996.
Ip, N., Dill, D. Verifying systems with replicated components in Mute,
CAV, 1996.
Kurshan, R. P., McMillan, K. A Structural Induction Theorem for Pro-
cesses, PODC, 1989.
Li, J., Suzuki, I., Yamashita, M. A New Structural Induction Theorem for
Rings of Temporal Petri Nets. IEEE Trans. Soft. Engg., vol. 20, No. 2,
February 1994.
Lubachevsky, B. An Approach to Automating the Verification of Compact
Parallel Coordination Programs I. Acta Informatica 21, 1984.
McMillan, K., Symbolic Model Checking: An Approach to the State Ex-
plosion Problem, Ph.D. Thesis, Carnegie-Mellon University, 1992.
Misra, J., Chandy, K. M. Paral le l Program Design : A Foundation,
Addison-Wesley Publishers, 1988.
Manna, Z., Pnueli, A. Verification of Parameterized Programs. In Speci-
f ication and Validat ion M e t h o d s (E. Borger, ed.), Oxford University
Press, pp. 167-230, 1994.
Pnueli, A. The Temporal Logic of Programs. FOCS, 1977.
Pong, F., Dubois, M. A New Approach for the Verification of Cache Co-
herence Protocols. IEEE Transactions on Parallel and Distributed Systems,
August 1995.
Queille, J.P., J. Sifakis, Specification and Verification of Concurrent Sys-
tems in CESAR, Proc. of the 5th International Symposium on Program-
ming, LNCS#137, Springer-Verlag, pp. 337-350, April 1982.
Reif, J., Sistla, A. P. A multiprocess network logic with temporal and spatial
modalities. JCSS 30(1), 1985.
Rho, J. K., Somenzi, F. Automatic Generation of Network Invariants for
the Verification of Iterative Sequential Systems, CAV, 1993.
SAE J1850 Class B data communication network interface. Society of Au-
tomotive Engineers, Inc., 1992.
Shtadler, Z., Grumberg, O. Network Grammars, Communication Be-
haviours and Automatic Verification. In J.Sifakis (ed), Automatic Veri-
fication Methods for Finite State Systems, Springer-Verlag, LNCS 407.
Vardi, M., Wolper, P. An Automata-theoretic Approach to Automatic Pro-
gram Verification, LICS, 1986.
Vernier, I. Specification and Verification of Parameterized Parallel Pro-
grams. Proc. 8th Intl. Symp. on Computer and Information Sciences, Is-
tanbul, Turkey, pp. 622-625.
Wolper, P., Lovinfosse, V. Verifying Properties of Large Sets of Processes
with Network Invariants. In J.Sifakis (ed), Automatic Verification Methods
for Finite State Systems, Springer-Verlag, LNCS 407.

