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AVERAGE NUMBER OF MESSAGES
FOR DISTRIBUTED LEADER FINDING
IN RINGS OF PROCESSORS

by

Christian LAVAULT*

Abstract

Consider a distributed system of n processors arranged in a ring. All
processors are labeled with distinct identity-numbers, but are otherwise
identical. In this paper, we prove the exact expression of the average
message complexity for the problem of determining a leader in
asynchronous bidirectional rings of processors.

To achieve the results, we make use of combinatorial enumeration
methods in permutations and derive an exact asymptotic evaluation of the
average number of messages in both probabilistic and deterministic
versions of the distributed election algorithm of Korach et al.
[KOR,ROT,SAN-81], [ROT,KOR,SAN-87]. This settles the result of
[BOD,VLE-86] that distributed leader-finding (election) is indeed strictly
more efficient in bidirectional rings of processors than in unidirectional
ones.

* INRIA, Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex. France



COMPLEXITE EN MESSAGES DE L'ELECTION
SUR DES SYSTEMES DISTRIBUES .
EN ANNEAU VIRTUEL

Christian LAVAULT*

Résumé.

Soit un systéme distribué dont le réseau d'interconnexion est configuré
en anneau virtuel de taille n. Tous les processus y sont identiques, mais
possédent des identités distinctes. Dans cet article, nous calculons
exactement la complexité moyenne en messages du probléme de I'élection
sur un réseau asynchrone de processus configuré en anneau virtuel
bidirectionnel. ‘

Pour ce faire, nous utilisons des méthodes typiques de la combinatoire
des permutations et de l'analyse asymptotique. Nous pouvons ainsi calculer
la valeur asymptotique exacte du nombre moyen de messages utilisés par
chacune des deux versions, probabiliste et déterministe, de I'algorithme de
Korach et al. [KOR,ROT,SAN-81], [ROT,KOR,SAN-87]. Cette démonstration
établit donc, en confirmant la preuve obtenue par encadrement de
[BOD,VLE-86], que, pour le probléme de l'élection, e réseau en anneau
virtuel bidirectionnel est strictement plus performant que son équivalent
unidirectionnel.

=
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1. Introduction

In the sequel, we consider the problem of finding a leader in an asynchronous
bidirectional ring of processors. Each site (processsor) is distinguished by a unique
identification number (its "identity"). There is no central controller and every processor only
has local information about the network topology, namely it only knows its direct neighbours
in the distributed system. The problem is to design a distributed algorithm that elects a unique
processor as the leader (eg the largest numbered one) in using a minimum number of messages.

Note that the problem is equivalent (up to O(n) extra messages) to the problem of
determining the largest processor's identity in the ring. ,

We assume that the processors work fully asynchronous and cannot use clocks or timeouts.
Hence, we can assume that the algorithms are message-driven : except for the
initialization-phase of an election, any processor can only perform actions upon receipt of a
message. We also assume the processors and the communication system to be error-free.

As for the terminology, a message is any information device which travels around the ring,
from one processor to one another, whether they are neighbours or not. We will as well denote
message an elementary message, which is a message between two neighbour-sites in the ring. At
last, we denote pip the traversal delay of one elementary message (such a traversal time delay in
the ring may be measured for example by use of Lamport's method of timestamps).

Much work has already been completed to obtain good upper-, lower- and average bounds
for different variants of the problem. An overview of worst-case and average case is given in
Table 1 and 2 (see page 2), for unidirectional and bidirectional rings' algorithms respectively.

In [BOD,VLE-86], upperbounds for distributed leader-finding in bidirectional rings are
proposed. These bounds are exhibited for the probabilistic algorithm given in [KOR,ROT,SAN-81]
and [ROT,KOR,SAN-87] (viz ALGORITHM-P) and for a derived deterministic version of the latter
(viz ALGORITHM-D).

In this paper, we derive the asymptotic average number of messages required both in
ALGORITHM-P and ALGORITHM-D. This value is obtained by use of permutations theory
considerations (inversion tables mainly) and combinatorial enumeration arguments involving
an asymptotic analysis based on Stirling's formula and Euler-Maclaurin summation formula as
well as average analysis by means of various permutations generating functions (eg generating
function of Eulerian numbers). Such combinatorial and analytic methods seem powerful and
general enough to provide efficient tools and cope with most average-case analysis of distributed
algorithms and distributed data structures. Each ALGORITHM-P and ALGORITHM-D is thus

proved to yield the same asymptotic average message complexity of 1/y3 nH,, + On).

Simulation te

asaas

wnfon ot wonidla 2 - PO SO, ~

1060 up to 50,0600
ay be considered to be in agreement

....
©
-
o
Pued
-
<)

o
$
=i
et
o
£
w
&
a
"
o
[a]

o
<3

e
-
]
c
[l

g
g

processors (each s
with this value.

The result then leads to a positive answer to the question (first posed by Pachl, Korach &
Rotem) of whether distributed leader-finding can be solved more efficiently in bidirectional
rings than in unidirectional rings by a deterministic algorithm, thanks to an exact asymptotic
estimation of the average number of propagated messages.
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Algorithm Average Worst Case
Le Lann (1977) n2 n2
Chang & Roberts (1979) nHj, in2
Peterson (1982) 0.943... ninn* 1.44...nlgn
Dolev, Klawe & Rodeh 0.967... nInn* 1.356...nlgn
(1982)

Table 1 : Election Algorithms for Unidirectional Ring
*) Result experimentally obtained by Everhardt [BOD-87].

Algorithm Average Worst Case
Gallager et al. (1979) Snign
Franklin (1982) 2nign

Korach, Rotem & Santoro

(1981) ALGORITHM-P
Korach, Rotem & Santoro
(1984)

Bodlaender & van Leeuwen

(1986) ALGORITHM-D
Van Leeuwen & Tan (1987)

This paper (1988)

This paper (1988)

This paper (1988)

[prob.] < 4§an

[det.] <

Hlw

nHp

[prob.) 1/\5nH,,

[det] 1/\onH,
(0.972..) [\ nHL*

[prob.] %nz
1.89.nign
1

1.44...nlgn
[prob.] %nz

[det.] 41n2

Table 2 : Election Algorithms for Bidirectional Rings

*) Result experimentally obtained (Section 5 of this paper).
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n

Note that the nth harmonic number is given by Hj, = X1 1/1, with asymptotic expansion

Hy=Inn +7+ -%n + On-2) ~0.693... Ign (where Y= 0.577... is Euler's constant) ; Inn denotes the

neperian logarithm and Ign is the logarithm taken to the base 2.
For most of the quoted bidirectional algorithms, the assumption of a global sense of

direction (ie each processor knows the left and right direction on the ring) is unnecessary.

2. Inversion Tables (see J. Vuillemin [VUI-80))
Lett =(0;0, .. O, ) € @n be a permutation of size n. Associated with %, define its
tnversion table t =1 t3 ---tp suchthat t; is the number of elements (in ) to the left of o, that is

larger than o, for all 1 (1<i<n), ie 0< t; <1 for all 1 (1<i<n) ; and this correspondance is one to one.

LEMMA 1. The left-to-right maxima (upper records) of € @ncorrespond to occurrences of value
zero in the inversion tables of sizen.

2 3 6 5 1 7 4, andthe inversion table of T is t such that
t= 00 01 4 0 3.

An inversion table can thus be pictured as a "staircase" :

X
S X

1 2 3 4 5 6 7

C = N W » OO

Put a cross in each column, the upper records (left-to-right maxima) are corresponding to
the lower crosses (the zeros).
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Now if one uses variables to denote the values 0,1, ... ,n-1 in the inversion table t

(eg Xj,Xg, ... , Xp-1). then the set of all inversion tables, corresponding to all permutations

e @n. is fully described by the polynomial

X0(X0 +X1 (X0 +X1+30) «eo (KQ+Xp+ oe4+Xp). (1)
T T T T
18t column  2nd column 3rd column (n-1)st column

.

- LEMMA 2.  The average number of zero elements in an inversion table of sizenis X 1< nl/i=

Hn’ the nth harmonic number. Besides, the number of inversion tables of size n having k zeros
is the classical unsigned Stirling number of first kind.

PROOF - See [VUI-80] . where the unsigned Stirling number of first kind sp k [COM-70] is proved

to count at the same time :
(i) permutations e @n with k upper records,

(i) permutations ®te @n with k cycles, and

(iif) inversion tables of size n such that | {i/ 1<i<n, t;=0} | =k O

The notation [xK]f(x), with f(x) = Zk fi.xK, reads as "the coefficient of XK in f(x)". And,
in the present context of permutations counting, the enurmerating polynomial of Snkis
2k SnkX¥ =x(x+ 1)(x+2) - (x+n-1);and

Snk= Xl x(x + )(x +2) --- (x + n - 1).

Therefore, an immediate consequence of Lemma 1. and 2. is

COROLLARY 1. The average number of left-to-right maxima (upper records) of a permutation

| ne @, ts Hy,

LEMMA 3. Let me @n and assume that the G are equally likely in . The average distance to

 the first left-to-right maximum (upper record) of & is Hp, - 1.
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PROOF - The average distance to the first upper record of T€ @n can be obtained by two different
means. On the one hand, it represents nothing indeed but the average number of left-to-right

maxima of T whenever its first element 0, is fixed as an upper record. Hence, the average

distance to the first upper record of & which is different from 0, is the average number of
occurrences of value zero in the inversion tables of size n, minus one :viz Hp, - 1, since the first

upper record of T (0;) is not counted in the enumeration.

On the other hand, the average distance to the first upper record in T may be directly

derived as the solution of the following recurrent equation, where Dy, denotes the distance to the

first upper record of %.

[ D, =Dy + @)Dy + @12

D=0
0
D D
oo 1 D, =0
n! (n-1)! n 1
Whence the result,
— D, L
Dn=n—!=ZT=Hn-1 (2)
i=2 D

PROPOSITION 1. The probability [15,()) that a permutation e @n has exactly j upper records

(122), with the leftmost one in position o (0t>1)and the righmost in position P is

O X)1a) . (1 2
IT,() = [x 2 B DB-D) (1+ a)(1+ a+1) (1+ B—Z)

PROOF - Let Gp(x) denote the generating polynomial of permutations e @n with exactly j

upper records (j>2), the leftmost one being in position & and the rightmost one in position P :

Gy (%) is conditioned over the values ¢ and .
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In the first place, let us consider all the positions of the J left-to-right maxima of Tt (j22) in
an inversion table of size n (the leftmost in a, the rightmost in B). Let us write down all tﬁé
monomials, each corresponding to the possible upper records of K.

Paositions 123.---@1) « (@1) --- -~ B-) B B+) . - -n

Monomials 1 1 2 ... (0-2) x (x+0) (x+0t+1) - - - x+B-2) x B+1) - - - n

The corresponding genefating polynomial Gy,(x) is derived from the above terms as the

product of all the stated monomials divided by the product of all the positions in an inversion
table of size n. Namely,

1.1.2. ... (0-2)x.(x+00). (x+0L+1) eee (x#B-2).x. (B+1)....n

Gp(x) = . and
1.23... (a-1).0.(0+1) ... B-2 . G-10.8. B+1....n
2
X X+l X+0+1 x+f3-2
G = : C
) B(a—1)(B-1) ( o a o+1 ) ( B-2 )

Second, expressing the generating polynomial G,(x) as the generating function of the
probability [1,,(). we get

G, = D, Mo =x2Y, O (x> - 3)

22 22

Thus, [1,() is the coeflicient of xi-2 in Gy(x), for %[3 <@ <P <2a; and the value of [T ()

follows :

0, X1 2y 1e X,
[le(1+a~-»-)(1+a+1 Vo (1) 4)

"7 Bla-1B-1)
3. Analysis of ALGORITHM-P

We know from [KOR,ROT,SAN-81], [BOD,VLE-86] and [ROR,KOR,SAN-87] that

ALGORITHM-P requires an expected number of messages of at most ;}:’-'-n'Hn + O(n). This value is
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only an upperbound because of possible effects of higher order upper records which remain
ignored in this evaluation.

ALGORITHM-P [BOD,VLE-86]
Each processor Pj keeps the larges! identity (identification number) it has seen in a local variable MAX; (1si<n),
Each processor Pj goes through the following stages.

Stage 1, (initialization)
MAX; := gj ; choose a direction de(ieft,right} with probability% ; send message <Gj> in direction d on the ring ;
Stage 2. (election)
repeat the following steps, until the end of the election is signaled by receipt of a <!> message :
if two messages are received from the left and the right simultaneously, then ignore the smaller message and
proceed as if only the larger message is received ; if message <oj> is received from a neighbour, then
if oj> MAX; then MAX;:= Oj ; pass message <Gj> on

else It o) = MAX; then send message <!> on the ring

/+ Py has won the election +

fi;
Stage 3. (inauguration)
if a message <!> is received, the election is over and MAX; holds the identity of the leader ; if this processor was
elected in Stage 2 then the inauguration is over, otherwise pass message <!> on and stop.

One easily verifies that a processor Pj wins the election if and only if its identity succeeds
in making a full round along the ring in a direction chosen in Stage 1. The detailed correctness of

the algorithm is proved in [BOD,VLE-86], or [VLE,TAN-87]. In the sequel, we assume that all
processors start the election simultaneously. For the analysis, we will also assume that the
processors work synchronously.

3.1. Exact evaluation of the expected number of messages

Consider a ring of n processors Py, ... ,Pp, with identities O, through G,. Without loss of

generality, we may assume each C; to be an integer between 1 and n. And thus, 7t=( 01 0g9 - Oplis

a permutation of @n- Assuming also that the permnutations of @n are equally likely, we can
make use of the preceding results to analyse ALGORITHM-P.

First, seti=1; the message <G> is sent to the right or to the left with probability % Thus,
the expected number of elements in 7t visited by <0,> is

| 2 S 1) ‘v‘\nﬂamP conda HHa maaanga fT +n

.ll - - ~ T sl shd
2'4m WOCHICVET 2] SCIGS 1S ICSSAELe <U 1>

+
and -% L % H, | whenever P; sends its message <0;> to the left, since from (2), Hp, - 1

is the average distance to the first left-to-right maximum in %X. Accumulating the sum of these

two quantities for all <0;>-messages (1<i<n), which are independant random variables, yields

the known upperbound of %an + O(n) for the average number of messages required by
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ALGORITHM-P. Now taking also into account the effect of higher order upper records leads to the
exact average value.

PROPOSITION 2. The average number of <0, >-messages propagated by ALGORITHM-P is

exactly %Hn - Za,ﬁ(a‘%B)Gn(%) + 0(1), for %B<a<ﬁ<2a, where Gp(x) is the generatmg.
polynomial defined in (3).

PROOF - Let vy, v2, ... be random variables denoting the position of the first, second, and
higher order upper records. We may consider the vj as independant r.v. conditioned over the

- values 0 and 3, and suppose <0,> is sent to the right without loss of generality. If processors P,

to PB-I randomly choose to send their message to the right as well but PB sends its message to

the left, then the <0;>-message is annihilated by the <0'B>-message if the messages meet before
P, is reached ; i.e. at position 1+ L%BJ. provided <20 Otherwise, the <G,>-message is stmply
annihilated at Py,. Hence, let 7 denote the permutation (G- O )€ @n, the number of positions

in T visited by message <G> is exactly o - (1+ I_%BJ ), with %B<a<B<2(x. Recall now formula

(3) and the definition of probability [Ty (j) and let us examine for the effect of all upper records

of . The average number of <G>-messages propagated by ALGORITHM-P is

W1=%(Hn-1)+%L-;—HnJ—Z 2'j2(a-|.é-BJ—1)nn(j) (5)
22 af
and, since

{ng
N'.
—

=
N

2.2 {16 () ‘
22

22
- 222 (K160
i>0
1 1
=7 G5 .
N, = SH, 22, (a-L1B)G@ + 01)  (3<a<h<o) ©)



10 Average number of messages for distributed leader finding in rings of processors

rangwﬁ'orn%ﬁ+lto[3—l.and[5rar1gwﬁ'orn2ton O

Note that the identity 24_>_0 27 { ¥Ifx) } = f(-;-) is obvious, since f(%) = ijofj 27 if
f(x) = ijo fj xJ. The coefficient ;1- in (6) comes precisely from the fact that we have here

[x)-2]G, (%) instead of [X]Gp(x).

COROLLARY 2. The average number of messages required by ALGORITHM-P is exactly

3nH, - nS;, +On), where

S SR . NS S P SR B S PP S

2<B<n ;B<a<ﬂ4 B( '1)([3 1) 20 20042 2B-4

PROOF- Accumulating in (6) the quantity N 1 for all the n <O;>-messages (1<i<n) which are

independant r.v. ylelds the exact average number of messages, namely

N-2om,-nY, Y ~@-ipG,d « on.
ZSB<n_B<a<B

1 1 1 1 1
o) = ——— (1 +— ) (1 oo (1
n (3) B(a—l)(B—l)( " 2 " +2a+2) ( +?_|3-4

)

and, summing respectively over } (2<f<n) and o (%B<0L<B),

~ 3 (a-Bi2) 1 1 7)
N— - (1 o)
Hy = n 2 2 g e (Tegg) () + O

Whence from (7) the exact average number of messages :
3
7 nH -nS_ + On) O

The remaining calculations concern the asymptotic behaviour of S,.

3.2. Asymptotic analysis of S;; [FLA-87]
The following asymptotic analysis of S, makes use of Stirling's formula and

Euler-Maclaurin (one-dimensional) summation formula.

For pe N, define Qp = (1+3)(1+3) - (1+1/2p)
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~357...(2p+1)
2.46. .. (2p)
or
(2p+1)
Q = etee———
P 2%

and, by means of Stirling's formula, for large p we have
0 - 2Jp
P
J n

with an error term of O(1). The sum Sy, may then be rewritten with the Qp's as follows :

1 % Q
S = — B —a=pn
o4 az,; N { Bla—1)(B-1) }

_1 O _(@-8p)_
42525;‘,, {W%B Q,  Bla-D-1) )

Denote u(f) the inner sum (with index a). For B large enough, by Stirling's formula,

_B

o

~r &

u(p) zﬂ: _Laﬁz o (%<a<B)

If we now set 0i=tf, where "t" ranges between 1 and1 by steps of 1/ p. then

2
(t-2)
1 2 1
B) ~— L
u(p B{Z‘tﬁ 5 )

and by approximation of the discrete sum by an integral (Euler-Maclaurin summation formula),
one gets the asymptotic expression

1
u(p) ~1E{ I

172

1
d + O },
+0(ﬁ>}

1
(t-3)
3

which is uniform tn B. And at last

1 1 ‘
(B) ~—1{3-2y2 — (9)
u(p B( +O(l3)) |

which ylelds the

THEOREM 1. The asymptotic expected number of messages used in ALGORITHM-P is
1/\anH, + On) = 0.707106..ninn + On) ( ~ 0.49... nign).
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PROOF - From (7),
N -3

=-Zan- ns, + On).

The exact computation of S, from (8) and (9) gives rise to

_ %2%(3-2J§') + o) ;
B

and since YO(1/p) = O(1) (Sp, being uniform in B),

T - 2o, - o B22) }ZB‘E + o0 = 75, + o) .

4. Analysis of ALGORITHM-D

ALGORITHM-P {is probabilistic, and hence does not constitute in itself a proof that
distributed leader finding can be achieved strictly more efficiently for bidirectional rings than
for unidirectional rings. To solve the problem, a deterministic version of ALGORITHM-P is
described in [BOD,VLE-86] in which Stage 1 is replaced by a fully deterministic stage. The idea is

to let each processor Pj send its <*0;>-message in the direction of the smallest neighbour and

thus get rid of all the smaller neighbours from scratch.

/Ny

Similar to ALGORITHM-P except ihat for each processor Pj, Stages 1 and 2 are replaced as follows :
*

send message <'cj> to both neighbours on the ring ; wait for the message <*cj.1> and <"g;, 1> of both
neighbours ;
MAX; = max { *oj. ,*0; ,*0;, 1} :
It MAX; = *oithen
If *6j.y<*cj,1 then send message <*gj> to the left

else send message <"o> to the right

|
fi;
Stage 2", (election)

repeat the following steps, until the end of the election is signaled by receipt of a <!> message :
if two messages are received from the left and the right simultaneously, then ignore the smaller one and proceed

as if the larger message is received ; if message <* op is received from a neighbour then
if °i > MAXj then MAX| = o] ; pass message < “oj>on
else if “c; = MAX;and “c; = "o; then send message <i> on the ring
/+ Pj has won the election */
else If 'cj = MAX;and “o; # 'oj- then pass message <‘oi> on
/+ the neighbour of Pj will win the election */

fi ;
(Stage 3 remains unchanged).

Stage 1* requires exactly 2n messages and leaves at most l_-% n_| processors active Or
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candidate in the election, viz the peaks of the permutation 1:=(0'1 O'n), which clearly pass on to

the next stage. The other r%n-l remaining processors, the "non- peaks" of T, thus stay in the state
defeated after Stage 1*. By pairing every permutation of @n with one in which the neighbours of

P, are interchanged, one can see that P; sends its <‘o:]>-message to the left or to the right with

probability 1 (averaged over all the permutations of S,).

4.1. Average number of peaks, rises and average length of rises and falis
In order to obtain an exact asymptotic estimation of the average number of messages sent
by the active processors that pass on to Stage 2* in ALGORITHM-D, we need know the average

number of these active processors (the peaks) and the average distance between two of them. This
we ‘obtain thanks to combinatorial average-case results about permutations, namely the

expected number of peaks and rises of T, and the expected lenth of the rises and falls of .

LEMMA 4. The expected number of peaks of e &, is P, = $(n+1).

PROOF - To derive P, » We use combinatorial enumeration methods developped by Philippe
Flajolet (see [FLA,VIT-87] for example). J denotes the (binary) tournament tree associated to the
permutation 7, Tg and Tq denotes the left and the right subtree of g respectively. It is easily seen

that the number of peaks of T is the number of leaves of J . Let A[J] denote the number of leaves

of I, then
M) = 8yg) 1 + MTl T |+ Aral T = 841, + 2191 ATy
Thus, the ordinarglr generating function of the expectation of A is
z
A(z)=2",Anzn=z+2!A(x)%, A(0)=0

which leads to the first order differential equation :

(l-z)i Az) - 2A(2) = 1 - z
dz

whith solution
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1 z3
A(z) =3 2+ lz-Z
(1-z)
and, since
A(z) -—Z(n+2)z . Zz"
n>3 n21

(OGF of A(z) obtained from the above solution),

= [2"AG) 02, 4 J(n+1)
An = [z ]A(Z) -—3—— 1 = 3

The expected number of peaks of T is then _P-n = %(n+ 1). The central limit theorem applies,

but the variance being of order n3 (and thus the standard deviation of order n3/2), it yields in the
case an expression which 1s frrelevant to our purpose). O

Note that the average number of valleys of n,vl}l. is such that Vn = Fn -1= %(n-2). and that

the average number of peaks and valleys of 7 is then %(2n- 1).
LEMMA 5. ‘The expected number of rises of te & is R, = 3n+1),

PROOF - Louis Comtet for example shows that the eulerian numbers A(n,k) count the number of

permutations e @n with k rises. The exponential generating function of eulerian numbérs

ﬂ

U(tz) = 1+ Z A(nk)— ¢
n,k
has the value ({COM-70], p.63, T.1) :
1 -t
Ultz) - exp( z(t-1)) - 1 .

Whence, developping (10) with regard to (t-1) :

Uz) = (D, 2" ) +(1-1) ( 2l 2" (“)(Z 2D 27y .

nx1 n22

Considering Ult,z) and its derivatives in t=1, we obtain :
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[z r']U(t,z)|t=l = ZA(n.k) = nl (11)
k
[z"] % v, - kZ(k—1)A(n,k) - (“;) nl a2

2

[znli—tzu(t,z) I‘=1=2k (k1)(k2) Afni) = 2BS)

12

The mean R, = (12)/(1q) +1= %(n+1), and the variance var(R) = (n+1)/ ;5 are easily
derived from the above identities. In the case, the standard deviation is of order Yn. The central
limit theorem shows that Ry, when normalized, converges to the normal distribution. Note that

the expected number of falls of T is then %(n-rl). 0

LEMMA 6. The expected length of rises and falls of e @n isITn = 2D/5..

PROOF - Let us first recall the fundamental one to one correspondance (due to J. Francon and G.

Viennot [FRA,VIE-79] [GOU,JAC-83]) between permutations of @n and weighted paths, with n-1
steps, from altitude O to altitude O with possibility functions posj (k) = k+1, posg(k) = 2(k+1) and

pos.1(k) = k+1 (recall that that the initial and final elements of a permutation Te @n are

recognized by notionally placing a zero at both ends of &t ; whereas in a circular configuration of

processors, we also assume that of course the first and last elements of a permutation x are the
same : see example in page 17). :

Besides, define the set E, of "subexceeding functions" on [1,n] to be the set of functions f on

[1,n] such that fli)<i for all i in [1,n]. Then there exists a one to one mapping between the set E,

and @n which may be pictured as the correspondance between the crossed squares of the

inversion table of a permutation (viz its associated "staircase") and the corresponding value f{i)-1
(for all 1< i<n), f being then a subexeeding function.
A
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) _ 1
T /<>\
1 3 1 3
AVAES
2 4 5 6 2 4 5 & 4 °
|
123456 |4 6
010133 |[f)-1 L
I I » Efl =24156 3

Fig.1. The one to one correspondance between @ and E,.

E,, may be described by means of the formal polynomial (non-commutative) :
F(X), ....%) = X3(X] +Xg) +++ (X} +Xp + - - - +Xp ), from which we can obtain
Fj(t) = (j-1)! (t+-1) - - - (t+n-1), the generating polynomial of subexceeding functions on [1,n]

according to the number of times when value j is reached : Iﬁ(t) corresponds to the length of a rise
or a fall of . By Summing up I'](t) on index j from 1 to n, one gets the generating polynomial of

the total length of rises and falls of permutations 7, provided that the constant term in Fj(t) has

value zero.
Let
n-1
&0 = X, ((t+]) eon en-1)} - i) ”
j=0

be this generating polynomial.

From(13), ®(1)=nn! - n! %(n-l): %(n+1)n!

and
n-1 n n ] -1
D'(1) = Zj! Zp'1 + n!Zp- 21 = n.nl
j=0  p=j+i p=1 0
Whence
- 01 2n
Ln = =
ax1) n+1

the expected length of rises and falls of .
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Note that the variance is

2n(n+3) 4
(n+‘1)2 n+1-1,

and the central limit theorem shows that L, when normalized, converges to the normal
distribution.

4.2. Exact asymptotic estimation of the expected number of messages

At the end of Stage 1*, there remain %(n+ 1) active processors on the average (the peaks of T),

and each of them is at least one position apart. Within Stage 2*, we may claim the independance
of their choice of direction in sending their messages around the ring (left or right), with respect
to one another. As a matter of fact, the direction where each peak-processor sends its

<‘0'j>-me_ssage (Je d. with IJ |= %(n+ 1) ) is absolutely independant of its respective position

(regarded as the position of a peak of ) with respect to the position of any other peak-processor.
Two consecutive peak-processors may actually send their respective messages in the same
direction or in opposite directions in the ring, this according only to the position of their

smaller neighbour.
As an example, we may consider the permutation % of @12 with (bold) peaks 10, 7, 11, 6

and12: T=(8910174112 365 12),

The choice of direction of Pyq, P7, P;1. Pg and P19 will only depend on the respective
identities of their (immediate) right and left neighbours : P sends its <*10>-message clockwise
(towards Pj) and so does P7 (towards P3) ; but P7, Pg and Pj5 will send their respective

" messages anticlockwise towards P;, P3 and Pg (respectively).
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messages anticlockwise towards P}, P3 and Pg (respectively).

This relative independance shows itself in the fact that Pg and Py on the one hand, Pip

and P7 on the other hand are pairwise consecutive peaks which send their messages in the same

direction in the ring for the first pair and in opposite directions for the elements of the second
couple.

We know from Lemma 6 that the average length of rises and falls of &t is I._'n= 2n/,.,1- Now,

fn also represents the average distance between two consecutive peaks and thus, the average

distance between two consecutive peak-processors in the ring.

THEOREM 2. The asymptlotic expected number of messages used by ALGORITHM-D is

1/JanHp+ Om) = 0.707106..ninn + On)  ( ~ 0.49... nign).

PROOF - Denote n* = -%-(n+ 1) the average number of peak-processors which remain at the end of
Stage 1* and Ly, the average distance between two consecutive peak-processors. Within Stage 2*,

every message travels along the ring in a direction which is not dependant of the respective
positions of peak-processors. Therefore, the probability that a message is sent to the right or to

the left is -;- and we are brought back to the analysis of ALGORITHM-P.
In the case then (ALGORITHM-P revisited), the asymptotic expected number of messages is

i/\ogn*Hye + 1/y3 n*LyH, + Om), when accumulating the average distance L, for all the n*
peak-processors.
Since

;
2

the asymptotic expected number of messages propagated in ALGORITHM-D is

(n+1)

*(1+n+1) +O(n)=71§.— 2 (1+fT”1)Hn+0(n),

1 (3n+1)

,/5 + On) = —nH + O(n) Il

7

Note that we assumed (Section 3) that all processors start the election "simultaneously”
and work synchronously. The first assumption allows us not to consider the case when there

exists p<n initiators, and the second assumption (together with the first one) yields an O(n)

"time" complexity for both ALGORITHM-P and ALGORITHM-D : viz in the best case, n+-;-n and

n+1+%n Pips, respectively ; in the worst case, 3n and 3n+1 pips, respectively ; 2n and 2n+1 pips
on the average, respectively (A "pip" is a delay used in our terminology, see Introduction in
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leader). .
As to the worst-case message complexity of ALGORITHM-P and ALGORITHM-D, note that

Bodlaender & Van Leeuwen proved that the maximum number of messages is +n2 and }n2

respectively [BOD,VLE-86].

5. Simulation tests

In the tests, the basic theorical number of messages is the expected complexity of
ALGORITHM-P, 1/49 nin(n). The number of messages computed by the "SEQUENT" (a 12

processors PRAM machine) is the total number of propagated messages minus 3n. The
implemented algorithm is quasi-synchronous, since the maximum and minimum delays of
message transmission range between 1 and 2, respectively (some tests performed with
transmission delay ranging between 1 and 100 do not apparently change the results). The n
processors which participate in the election own pseudo- random identification numbers
randomly drawn from a 9-digit decimal generator.

Number of processors in N= 5’; Hn + O(n) N’ = average number for 70 tests N
the bidirectional ring A, : _ 1 (N’ = # messages - 3n) Ratio —ﬁ_
n= (N= Vs ninn)
20,000 140,056.464 187,290.6875 0.980
30,000 218,685.91 218,355.7584 0.96648
40,000 299,718.0911 288,955.7 0.964
50,000 382,636.929792 378,747.11 0.994
(for 50 tests)
1,000 4,884.52 4,733.2 0.945
5,000 30,112.825 29,735.5 0.985
10,000 65,126.9418 63,743 0.977
(mean =~ 0,9725
i.e. different of about
2,8% from 1)

Table 3, Average number of messages, N', used by ALGORITHM-D (70 tests) ; and
ratio N'/[, where N = 1/4/5 nin(n) + O(n) (ALGORITHM-P.

In the 70 simulation tests performed (with 1000 to 50,000 processors), the ratio N'/ N of the
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In the 70 simulation tests performed (with 1000 to 50,000 processors), the ratio N /N of the

average number of simulated messages to the basic theorical mean (N = 1/ /2 nin(n)) varies from

0.945 to 0.994. Moreover, these ratios are all accurately close to 1 (up to 2.6% at most) whereas
they still remain strictly lower than 1.

On the one hand then, the first fact is a strong argument for the equality of N and I—\I_', when
on the other hand, the repartition of ratios is too systematically below 1. Yet, a conclusion may

be drawn from the simulations : we have no real control on the factor O(n) and the use (as the

number of counted messages) of N' minus 3n might not be enough to stick to the real process of
ALGORITHM-D. In a way which is similar to the experimental results obtained by Everhardt,
these simulation tests do not enough take into account the small negative value contained in

Ofn). As a consequence, we may conclude that these simulation tests are in agreement with the
theorical result of a same asymptotic average message complexity for both algorithms.

6. Conclusions

We have presented a detailed analysis which shows that the probabilistic algorithm
ALGORITHM-P as well as the deterministic algorithm ALGORITHM-D have the same asymptotic
average message complexity while requiring nearly the same amount of "time". Simulation

results showed good agreement with constant's value of 1/4J5. These algorithms also do not

require a global sense of orientation in the ring (ie clockwise does not have to be the same for all
processors). It is still an interesting open question to find an exact (not only asymptotically

exact) expression for the expected message complexity and the variance of ALGORITHM-P and

ALGORITHM-D. This result is a confirmation of the tight bounds derived in [BOD,VLE-86] and
settles the proof that distributed leader finding can be solved more efficiently in bidirectional
rings than in unidirectional rings by a deterministic algorithm. in general, analysis on the
average of bidirectional algorithms seem harder than unidirectional ones ; combinatorial
enumeration and generating functions prove suitable and instrumental methods to tackle this

kind of problem.
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