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Abstract 

An algorithm is described producing for each formula of the 
first order theory of algebraically closed fields an equivalent free 
of quantifiera one. Denote by N a number of polynomials occuring 
in the formula, by J., an upper bound on the degrees of polynomials, 
by n a number of variables, bya, a number of quantifier alternati­
ona (in the prefix form). Then the algorithm wÎrks within the poly­
nomial in the formula' s si ze and in ( N cl, ) 11, (ta.+ ) time. Up t o now 
a bound ( Nd.,)11,

0'(11,
) was known ( [5] , [7] , [15] ). 

1. Fast algorithms for factoring multivariable
polYµomials and for solving systems of al­
gebraic eguations

Lately the considerable progresa in the polynomial factoring 
problem was achieved. Lenstra A.K., Lenstra H.W., Lovasz L. (12] 
have designed an ingenious polynomial-ti�e algorithm for factoring 
onevariable polynomials over Q • Independently Kal tofen E. [8) , 

[9] has constructed a reduction of multivariable factoring over Q
to onevariable factoring, running within the polynomial-time provi­

ded that the number of variables is !ixed. The authors (1) , [4] , 
have suggested a polynomial-time algorithm for factoring multiva­
riable polynomials over Q and over !inite fields. Later another po­
lynomial-time algorithm for the case of finite fields was exhibited 
in [13] spreading the method [ 12] • 

Also an essential progress has taken place in another important 
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problem of the commutative computeralgebra, namely in the problem of 
solving systems of algebraic equations. Earlier a complexity bound 
of the order ,ii

"' 

was known for it,e.g. from [5] , [7] , [15] • 
La.zard D. [11] has designed an algorithm for solving homogeneous 
systems of algebraic equations in the case when the variety of roots 
in the projective space of the system is null-dimensional, i.e. fini­
te, working wi thin the time a, O(n,) if the coefficients of the input 
system are taken from a finite field (certainly, provided that we 
are supplied with a polynomial-time algorithm for polynomial facto­
ring). The authors [2], [J] , L4] involv:ing the polynomial-time 
algoritlun for polynomial factoring [ 1 ] , [ 4 J and the method !rom 

[ 11] have constructed an algori thm for solving an arbi trary s ystem
of algebraic equations, running within a polynomial in the size L 2, 

!I, 
of the input data (system) and in cl,,11, time. Moreover, the algorithm 

11, -
finda all the irreducible compounds wd,, C p ( F) of the variety of 
roots of the homogeneous system within the polynomial time in d, 11,c 

and in L2, whe:re C= �+1'111Ntd,. � wd., (the general case is reducible 
here to homogeneous one). Finding Wdv allowa to answer the prin­
oipl.e questions, e.g. emptiness, dimension of the variety of roots. 

Now we turn ouraelvea to the exact formulations of the mentioned 
reaults. Let a grou.nd field F ==Htî1 , ... ,Tt) Cz] where either 
H ::: Q or H = f 't � , i == o,h,wt, ( H) , the elements Î◄ , ••. , Î t

be algebraically independent over H ; the element '2 is separable 
and algebraic over a field H(½,··· ,Tt) • denote by <f== �

rl
on (<f�¾oœr

Zi H (Î T ) [ Z] 
o,1.<�z(Cf) i 1 · 

• e o--·, t it s minimal polynomial over H (l� , ... ,Ti) with 
the leading coe!!icie&i kz(<f)=� • herewith qf1 ,q<t>EH[�,---,Îe]
and the degree � (q ) is the least pos2ible. Jmy polynomial t e
f [ X0 ... , X11,]can be !,ln19.ue�y represented in a !orm f= E rlofl • 

(a,.. - /t) tto X4'"' 0 ,{1't<-a�CfHo,···t'!,11, 1.1,._., ... ,t,.. tz o·" 11, where a.,,i
0 

•••• ,i 11, 10€.H[Î1, .•• ,îtJ,the degree � (') is the leaat possible; the polynomiale a,. t . t 
d Hi! A 011 1,,

,,
o,··,

"'
11.' are etermined uniquely up to a factor f:rom • Set ""'?1'- { = 

l!'!':�-.�Jdtfr/a.L,io , ... ,l11, ),�r, (i)} • By a length of descriplion � ( h,) 
in the case k, €. Q we mean Ha loi twise leDgth, and in the case 
�e. fq,:ic we me&n XWii(Ct) . .By te{) denote the maximum of the lengths 
ot descriptions of the coefficients f'rom H in the monomials in Î.u···, 

Ît of the polynomiala a-11,i.0, ... ,t,.,, ,(, . 
Let !Ujx/l><At., CUir

1<f)<At,1, <UB,-.(Cf)<t,t , �z(<f}<�1, 
lch � Mt, t (<f) " M1 • As a size Li ( l) of'3 the polynomial { we con­
a
t
ider if+lhe theorem I a value "t,11, -,.t�f "f,,1 M.2, and analogously
(Cf)=Af- -1 Mi, 
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THEOREM r. ( [1] , [4] ). One can factor the polynomial/ over 
F within the polynomial in Li(t), Li(Cfl, q, time. 

Remark that it is possible within the saine time to obtain also 
the absolute factorization of { i.e. the tacto�s irreducible 
over the algebra.ic closure F of the field F ( [2] , [4] ). 

Proceed to the problem of solving systems of algebraic equations. 
Let an input system of algebraic equations f

a
= ... = {K = 0 be given 

(we can assume w,l.o,g. that to ,···,lK are linearly independent). As 
a matter of fact we suggest an algorithm which decomposes an arbit­
rary projective variety on the irreducible compounds, so one can sup-
pose w.l.o.g. that {0, ••• ,fKe.F[X0, ••• ,X 11, J are homegeneous re-
latively to Xo,• .• ,XII, polynomials. Let �î .,.. z<Cf)<.�i' tct)�M n 

1'""' 1 e, ..._ N' 

�X X (�i, )<cl,, ite-a
T 

.,. di )<.cl,9, for all o, i" K. and in o,·· ·, 11, ï1 1,···• 1e, d, & Jf+i 
the theorem 2 a size L1(�i,) = ( ttt,) d,1 d.i M t

and L
2(q')=ll-1 M1, 

Denote L=L ,.,({0 )+ ... +L,t,(fK). 1(, -
The projective variety { f0 

= ... :: /K = 0} C 1P ( f) of roots of 
the system lo = ••. = { K = 0 is decomposable on the compounds { f O = 

•.. = {K = o} = � W,1.,
, herewith each compound W

J., 
is defined �� 

irreduci})le over the maximal purely inseparable extension F 4 
o! F • .llloreover wd. ::: V W,1.., where the (absolute]y irreducible) 
compounds wd,,, are defined and irreducible over F • Denote C== 
1+ tt;;tw.t cUm, wd,, . The algorithm designed in [2], [3], I4]!inds a11 wd.,

and thereupon �,<actually, w
d,,
, WJ.} 

are defined over some finite 
extensions of the field F which are also constructed by the algo­
ri thm). We (and the algori thm) repreaent every compound wd. or WJ.

J 
in two .following manners: by its general point [16] and on the 
other hand by a certain system of algebraic equations such that the 
compound under consideration coincides with a variety of the roots 
of this system, in the similar case we say that the system determines 
the varie ty. 

For functions �i'� :l. ,k,1' •.. ,h,� a relation �i��itP(kw··•h,�) 
denotes further that 't

1 
i 92, P (l,i,11 .•. ,h,5) .for an appropria te polyno­

mial P •
Let W c IP

"'
(F) be a closed projective variety,oo<U,tt\,

IP
1t,(W)=-m., 

defined and irreducible over some field F1 being a fini te extensi­
on of F , denote by F2, the maximal subfield of F1 which is a se­
parable extension of F • Let t 11 ••• , t tt,-n,, be algebraically inde­
pendent over F . A g e n e r a l p o i n t of the variety W 
can be given by the !ollowing fields isomorphism 

� 1 � Fe t1 , ... , ttt,-111,)[e]-. FdX1JXio'··•1Xi
ti
-m,/ x,at<Xo/Xjo) , ... ,(X11,/�

o
) ) C � {W) ( 1) 
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for suite.ble \v (here and further -Y :;,.Q when 4 >0 and we set
o/ = i when c+im(F)=O ), index O 6 j

0 
� � and an element 8 

is algebraic separable over a field �tt1, ... ,tn,-m,) ; denote by
<l>(Z) its minimal polynomial such that fez ( 4>) = 1 . The elements

X./ X. are conaidered herein as the rational functions on the 
vJ1etJ

0 

W , herewith W is not situated 
.
in a hyperplanelXA0

=0}, 
under the isomorphism (1) t,1, -Xgi/Xj0

, 1� ,t. � ft-111, • The al�o­
rithms further represent t�e isomorphism (1) by the images of ratio-
nal :functions t Xj/ x

ja 
)°r in the field F!l, (ti,-- .,ttt,-n-1,) [ 0].

Sometimes, when there is no misunderste.nding, we identify a rational 
function with its image, 

THEOREM 2. ( (2], tJ] , [4] ). a) An algorithm is suggested 

which !or every compound W� produces its general point a.nd
(

const­

ructs a certain family of homogeneous polynomials <y��), ... , (!' :) E.

€. F [X
0

, ... ,X11,1such that a system �t'= ... = lj>�l :; 0 determines the variety

W.;., • Denote m= ood,i,m, w�, 8� =0, g>� = � • Then �
j 

,ii
.Q,m

,�z( et>�)� " 
�WJ..,d."!' for all i,j the degrees �71, .•• ,'l't,t◄,···•tit,-i't.),�,-:fe,tr:iii-�4/Xj]
(the latter two degrees are defined according to the isomorphism (1) 

analogously to how d,,q'I':· ( {) was defined above) are less than 

t!s.f(d."';d,• ), a:part that t(tJ 1 t((Xj/ Xj0)°t"),(M11-M,_+(t1,tC)��2,)f (rA,�, �.).
A number of equations N, m,1 i;I, lltl\ , the degrees JL. Y X ( rnt) , lt t1tt,

� 
Cd.) J 4l J m, J "'ô"a,•··, "' T 

and the degrees .,.
1 

'Ji,(1i>
5 

)�a. • .r 1a, ,�◄);besides that the algorithm{ f•••J 11 1 "'(.t.t - �) represents each �s in a form Cfs ==½)5 (Z5,0, ... , Z s,n,-m,H)
for sui table linea.r forma Z

s,j in the variables X0, •• -,Xn,wi th the
coefficien!_��{

rom H and the polynomials �f> €. F [ Zs,o , .. •, Zs, H.-tttt+ll,
thereto {(<fs }4(M1+M1,+(11,,tt)�d.,1)f(iin,.,, _

d,i ), lastly the size
,

L1.(Zs,j)' fP(t1-,� d,d,,itii,) for all s, a . The total running 
tt�t of th.e algori thm can be bou.nded from above by 03 ( Mo M

a,
, cd/''ct.1d..t) )

Obviously, the latter value is less than f(Lc1-f 
(�+1)) � P (L� L.(q,+{))

i! 11,::.ff(�). 
b) An algorithm is suggested which for every absolutely irredu­

cible compound WJ.j, 
!inds the maximal separable subfield F

2,
= F[\�.,J 

o! the minimal field of definition � (containing F ) of the vari­
ety W

J.,J 
• The algori thm pro duces a general point of WJ.J, and some

system ot equations wi th the coefficients !rom the field F!L de­
termining the variety w�J, . For the parameters of the general point
and the system of equations hold the same bounds as in the item a) 
ot the theorem. Denote by �.i., E. f [ Z] the minimal polynomial for

lJ.Jo such that tc_ z: (<f<LJo):::1, then �z(�,._,) � d,eq w�J, and
the deg:rees �

'1'1, 
.•• ,1't l�.4.>) � fi.,_!P(t!";'ti-1), lastly t(qJ.J) � ( M1 t- M9, +

{1t+h½<it)f(��d,4)• The time bound is the sa.me as in the item a).
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REMARK. If we are supplied with a general point (with the sa.me 

bounds on its para.meters as in the theorem 2) of a closed irreducib­

le variety V1=%lW.1., ) where m(X0; ••• :X 11, )=-(X
0

: •• • :X
m,

)is a le-
near projection tn,: IPI\- - \P t11,, and WJ.. is some compound of the va-
riety { {0 = ... = {K 

= 0} C IP
11,

( F) , then we can produce a system of 
equations determ:Lning V

-1 
wi th the same bounds on the parameters as 

for the family ti't) in the theorem 2 within the sa.me time bound. 
In conclusion of the section 1. The authors m�e a conjectrre 

that one. can find the compounds wi:thin time ff->(d, (et
+ +�)H,, (ci-1d..1)

t1.+
, L)

where c' = Wl,,W-r, WIM1, { (UW\, wd,, +� 'wJin,, W.4,}.
d., 

2. Projectiœ a constructive set

Let an input formula 3 X1··· :1 Xs (:&i�Ji.K ({À =O) 8djf O)) 
be gi ven, herein the paramet ers of the polynomials f A , i € F [ Z4, ••• , 
z1t-s,Xt1·•·,Xs] satisfy the sa.me bounds as of �i in the section 1. The 
goal in the present section is to produce an equivalent quantifier-
free formula Y1�-i, �N (&,, ��.,,,. ( i��� = O )& ( l.l�

i
) -J. 0 )� where 

j(◄) (4) F "" .. ·,�,, ... -1, ·t ,,,A Ot T 

Hi ' � i € [ z t ' ..• ' z tt-s]. 
The _input f�ula is equi

�
l.ent to 3Xo 3 x◄ .. JXs 3Xs+t ((Xo 10) &

&t� j, K ( 1i = 0) � ( {0 = Xs+i 4 -X0h � = 0 )), therein X0, Xs+i are
new variables and Î

i 
= x, x4 ... xsef, Hà (Zi1·•·,z'4-5,Xi/Xo,·-,Xs/Xo), 9=X�X1··•Xs<g> 

�(Zi1•-7-11,-s,Xi/x,,,.�,Xslf.oKcf. [7] ). The desired projection, i.e._ t� const­

ructive set consisting of a.11 the points (.i!w··,l
11,-s)E.A

t1, 5
(F)

satisfying the latter formula, we denote by il . One can assume 
further w.1.0.g. that �Xo,···,x$½ fi =-d-t, O�i � K f :ceplacing J,
by the family of pol.ynomials l t xi d.-f-degfi} o,-l,s+i. s -

Introd.!1ce a variety U = {(i!�•···,i!n.-5;(X0; ••• ::t5.H))e;,(\
11.
-s� 1P � )( F): S+i

&0�j4K ( tj ::: 0)} and a natural linear projection �: J\"'..;s.x P 
- J\"'-s , then the desired I1 =tfL, ( U {'\ { X. 1- 0}) • For each 

point r=(i! -1 ,···,:C 11,-s)E.A
"'-S(f) consider the variety(the layer) 

Uz=�-\�){'\ u c{z} ,X p s+i � p sH • The condition :ce. n is true
iff for an appropriate O '° ln� 5+1 the layer Uzhas at least one 
compound W wi th the dimension S+ � - 111 such that W 9=- { Xo = 0} •

Pi:x: a point ? in the following speculations for some time. It 
is net difficuJ.t (see e.g. § 2 [2] ) to indicate a family of N•::: 
=KQ,

l'tl,
+4 vectors um, ... ,u(N') e. HK+{ a:ny K+� from which are 

linearly independent ( we suppose here and below that H contains 
sufficientl� 1::aD.Y element, exte�ding it if ne�essary). Denote Hti =
-� (i,) i. . (i,) (i) (-1,) 
-.w.04â�"Uj l'�, herew:i.th 1A, 

=(u0 , ••• ,'Lt,K )· The relevant com-
pound w of u!. exists iff there are such indices 1�i��---<{,""'4N

1 
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that W ia a compound of the variety t ki/n= ... =h-.j,m�)=O}c 1P
$
;

1 

herein the coordinat es of the point 2 are subati tuted inatead o.f 

z., ... ,Z,i-s, i.e. h.,t.(i)E.F[X0 , • • •  1 X5t1] (c:f. §4a [2] ). 

One ce.n constJuct (see § 2 [2] ) a fam:i.ly 11(,='lns,s·111..,J.IK­
consistillg of (S-nt.+1) ..:tuples of linear forms in variables X11 ••• , 

X with the coefficients from H such that for every variety 

w!� ps sa.tisfying the inequalities � W1 �s-m., d..t� W1 � ct,m 

there is ( 5-111,+1) -tuple ( yp ... ,YS-11-\.+4) E m for which W1 Il f Y1 = · · · 

=Ys-111,+i=O}=�L Thereto c,w,,d,cm)� ( (S+it:_+ 1
) • Let us take

a va.riety w n {X o =o} as w� . Supplement linear forma Yo
= Xo , \,

, ... , Ys-m+i up to a basis Yo, .. •, Ys+� w:i..th the coefficients from 
H of the space of linear .forms in X0 , • • •  , Xs•H (in arbi twy manner ). 

Replacing variables denote ti, (.!, Yo, ... , Y S+i) == h,,j, (i!) and hti (;!) = 
=�

i,
(:2:,Y0 ,o, ... ,O,V

5
_1tt,+t'".,Y5-t-,i)• Thus, the condition under oonaidera­

tion about the existence of W is equival.ent to that there are in­
dices 14.{.� < ..• < iltt, , N' and line!2" .forms Y,. , ... , Ys-111,+�
tor which the variety { tt

.,
(l)=-.•. :: n,-1.ttt, 

{i!:)•O} C pm. as one of its
compolmds has a certain point .fl. = ('�

0 : ls-m+.i: ... : l SH ) su.ch 
tllat the point f2. = (i!,(io: 0: •.• : 0 � �S-ttt+t: ... :t&+� ))E uiE fl l Yo =t- 0} 
(in force ot the theorem about the dimension of intersection [14] ) • 

Introduce a system of homogeneous al.gebraic equations 
~ cl-1 
hti� (2;)- YYs-m+jH =-0; �, J, 111, (2)

in the v.!l'iables Y0 , Ys-1t1,+i,, ... , Ys+-1 with the coefficients !rom 

ftY]cF(Y)=K where Y is algebraically independent over F •

One can prove (see also lemma 11 § 5 [J] ) tl:lat the set of roots 
in IPhl.(K)of the syatem(2) is finite. The variety of roots is decom­
posable on the irreducible and de!ined over K nulldimensional com-
pounds V

-, 
correspond.ing to the minimal prime ideals i

K. 
C K[Y0 ,YS-11li1' 

.•• , Ys+1J/ ( {\iJ 
(.l)-Y Y &-m+j+l}i�

j
"ll\),The system ( 2) can be considered 

apa.rt that aa the system in the variables Y, Y0, Y s-m.H,, ... , Y �-t-i 
nt, t12_e coefficients !rom f which determiD.es a variety Ù fl C 
� (f). It is not difficult to show (cf'.lemma 12 §5 [J] ) that 

there is a bijective correspondence between the points V
°f

k and on 
the other aide such compounds V

"IF of the variety ur> that v, 
1s n. ot contained in any union o:t .finite number of hyperplan.es o.f

F
the 

Y } Il M-1,,i-l, -kind { -C4 =O C M. for e1 
e F, notice that â,i,m. Yp F

=2. 
Now we e.xhibit an important auxilia.ry device !rom (11] (see 

also §J (21 ). Let 9
0

, ... ,'ÎK-4€.F[X0, ••• ,X
11,
1 be homogeneous polyno­

mials of degrees 0
0

� ... �ô'K-.f rea:pectively. Introduce new variables 
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tl,
0

, ••• ,Uf'v algebraically independent over F(X0 , • • • ,X
11,

) • Set 

aK=X0U0 + ... +X11,U1vEF(1L0, ••• ,U111)[X0, ... ,X 11,1 and ]=Z ô't-n-,
-a 0�1,�� 

herein � = 1 if K :s; �- � 11, • Consider linear over F ('U.0 , ••• , U,ht ) 
mapping (X:�

0
Œ> ••• @� K. -� where �i, (correspondingly 1J) is 

the space of homogeneous polynomials in X
0

, ••• ,X tt, over the field 
F ('U,0, ••• , U 11,) of degree D - ô'

,i: ( correspondingly D ) for O � i 4 K, 
namely r,qi0, ... ,tK)=� gij-t, .Any element g=(i0

, ... ,gK )E.
O�t4K 

!P.,0© ... ES!}.)K can be written in the form f=(g017 ••• ,t05 
,t

{ 
q··-,g◄ 5 ,

... ,gk.,P···,gK,S,J where .5.;:, =(11,+R_-ôi) �d g
,i,
,/,0 

••• ; f>-l,Si, 
1 4 

are 
the coeffièients of the polynomial g

i, 
provided that a certain nu­

meration of all the monomials of the degree D -ô',;, is fixed. Ana-
logously one can wri te the elements of the space fPJ • In the 
chosen system of coordinates the mapping Of, has a matrice A o.f
the size ( tt�_D) x f �- Si) . One can represent A=(f\', A'

1
) 

, 

IV \04t�K 
where A (ca�( it the number part of A ) contains Eo�i4K�i Si 
colwnns and A (call it the f'ormal part) contains SK columns, be­
sides that the entries of A' belong to F, the entries of N' are li-
near forma over F in variables U,

0
, ••• , U "' (cf. [6] ). There 

is proved_in [10] that the system jo = ·-- ==
�K-i = 0 has no roots 

in JP 11, 
( F) i:ff the ideal (90, - •., 9 1<.-i ):, (X0, • •• , Xn. l . Basides 

that, the fo1lowing proposition is ascertained in [11] •

PROPOSITION� ( [ 11] ) • 1) _The system �o = ••. = � K-i '= 0 
D 

has a
finite number of roots in IP

11, 
(F) iff the rank ,J\::: ( "''t, ) ..e'f,,; 

2) all .\f,, X "f, minors of A generate a principal ideal whose
generator "RE. F [ U0, ••• , Un] is their g.c. d.; 

3) the homogeneous form R = lJ Li where L.j, = -4 5 �
q

'U,,.; - 1H�D1 (i) (4,) o��,H, a 4 
is a linear form over F , moreover (l

0 
: ••• : 5 11, ) is a root of 

the system and the number o.f occuring of the forma proportiona.l to 
Li for each � in the product equals to

1
the multiplicity of the 

corresponding root. Apart tha.t dej R=D1 = "l- �(A). 

The algorithm designes the matrix A with the entries from 
the ring F[Y,Z 11 ... ,Z11,-s,U0 ,U5_m+ti···;U,

Sri
1orresponding to the modi­

fied system (2) in which Z-1 , •.. 1 Z 11r-S are considered as variables (in­
stead of � i, ... , Z r1,-5 ) e.ccording to the just exhibited device. 
Denote by A� the matrix obtained !rom A by means of substituting 
the coordinates �f the point Z instead of Z1 ,. .. , z.,,_s . Let the 
polynomial Î2; E. F [Y, U

0
,Us-m+2,,···,U.st-1] correspond to the matrix 

Ai:
as in the proposition. One can suppose w.l,o.g. that Y À"l�

(dividing R
l. on the greatest possible power of the variable Y ).
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Regard a certain representation o.f_ the union u
'f F 
va' F 

=l So = ...
:r:S, ::::O} for suitable polynomiale SieF[Y,Ya,Ys-111+i1·--,Ys+1] 
h!.:geneou.s relatively to V0 , Ys-m+t , ... , Ys+-1 • Considering a system 

S. 1 O Y \/ '( )=O • O � {, 4 K' � i and basing on the proposi ti-t, \ , Ot 1S-1t1,H,J•••1 S+i J "' C[ 
011 (see also lemma 16 § 5 [J ] ) , one prc:ves iha.t R,(O, U0,Us-m+2, ... ,UsH)"' 1J L;, 
al:ld moreover the linear !orme Li::: :E3 i<�l U

j 
correspond bijec-

tively to the points l'�(i,); ..,(i) • • l, h> ) E w' C pm. where the
o 'ôl .S-lt1.+l' ••• , � St� i! 

oone Cf>tl,tW' ) = ( u'l) V-o ) n { Y= 0} • Thereupon it is not dif-� uf oF?C 1 !icult to check that .lL E. W'E. (cf. lemme. 13 §5 [3] ). Summari-
zine; and utilizing the notations introduced above, we have ascer­
tained the tollotrl.n,g. 

LEW. 1. The f�r:�ia 3X1 .. ,'3Xs<&1,i�K <ir•·O)t(9!0)) is va-
lid in a point � E. F iff for appropriate O , m.� S+1 there 
erlst such indices � 4 i� < ... < -i. ltl. , N' , a set of linear forma 

( Y1 ' .•. , YS-lt\.+i) E m end a point il=(�, llo: 0: ... : 0 :�s-m.+t: ... :�s+i )) 

€ U ! n { Xo � O} (in the coordinates Ya, Y,i , ... , Y 5+1 ) that the li-
near !orm C\o -U.o +is-m;.2. 'U-s-1t1,+2, +. ·· +!s+f Us;-1) !l�z (O,U.o,U.s-in.+:i , .. ·, Ust-1 ). 

Now make more precise the definition ot a version of Gaussian 
algorithm ( v.G.a) for redu.oing the matrices to the generalized 
trapezium form (cf. (7] ).V.G.a. is deter.mined by a succession of 
pairs �f in�ices (pivot�) ( i�, ào ), ( i-1,j◄), ••• , ( i

J
, i j) . Here-

wiA
Tot i, ,4 ,,. i,J, and â� 11, i.f J., 'Y" J, 

A(c» rc�r a.ny
AJ;}p1a1 matrix

v.G.a. Y;!lds the ohain of matrices " 1 f\ , ••• , t\ • Introduce 
a notation N == (a,it> ) • Ape.rt that a-tt. "'1- 0 and a.tt> = a,\1> + (,Q (.C.) / ("-) • • • (cl+1) a
t

°'UJ IÀti,I forall 1, distinguished from -t.0, ••• ,tc,1, , lastlyQ..
-' t

'::.
(4 (Ill,, �,� 0 ,,. A(.P+I) • • • J, = . ; where � j , J... • The matri.:x: I'\ J.s 1.n the g:enerahzed ra-i,, (pH) 

pezi'Ulll :form, namely, Q; ij = 0 when either -1t dit.fers from
{0, ... ,.;.,jl 

or i=i�, l::j ,,. and G{,>J , besides tha.t CNtJ> -:::Q,(4-� :j-0, 
� I �f� �� Denote by 11,t.
3 

the determinant of (�+�) x (M�) matrix :rormed 
by the rows wi th the indices ,i,0, ••• , -td.-�, -i. and the colwrms wi th 
the indices J O , •• • , âki , 3 provided that {f i.0 ,. • •, l:; i4_1

..i;, i · .j. • {et) ('4) / (�-0 and " ,a,•••, âr 3<k--i • Then lt{. ::: A14 A.
'4,(,

. ,i _ (see e.g. 
lelllllla 7 [7] ) • a d f ,,.i.. " 

l
fr-fo• we turn ou.rselvea to considerillg an arbitrary point i'; E

I\ . Pix !or some time 0,111-,s+� indices 1�l�<-.. <i 1t1, � N' 
and a set ot linear forms (Yp---1 Ys-m-H) E. m (see lelllllla 1). By 

"(.. denote the number of rows of the matrix A • P.roduce a certain 
succession of v.G.a.s r

1
, r

t
,•" overa !ield F(Y,Z1, ... ,Z 11,-s,Uo, 

Us-1tt-t2, 1 ••• , 'U,S-ti ) and a succession of polynomials � 1 Pi, ... E. 
F tY, Z1t·••1 Zn.-s, U.a,U-5_1'1\.ti''"'U,

.s-t
À�hereto v.G.a. fI can be applied 
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correctly to the matrix Al for all points r: = (l
-1
, ... , :Z 1\.-s) of 

(possibly empty) quasiprojective variety ( (14] ) Wi c A�-s which 
is defined by the followi� conditions: inequality O ":/- Pt ( Y, ë

p
• •. ,

:i: 11,-s � U0 ,'l.ls-nt,+,î, , ... , Us+-1)E. F [V,1!-0,Us-ttt,ti, ... , U.s+-1] and equalities 
O = n. (Y,., :;z: 11 11 111 ) for J�.j_/ï-' are ful!illed. 1 J '-' -j!•••,-11,-St�OIWS-Ht,t-2,l•""t W6+,f 1 ""o�v 1 
Apa.rt that the variety {(:0 .•• ,z 11,-s): � ( \ J!h ••• ,i H.-S'U0,U,$-h1.t2.'"'''U5+-1)::0
for all ,{,} :::: >25, henceforth U1, wi 

= t\\n,-s • Exposed below 
construction is close to the proof of the lemma 9 (7]. 

Later on we apply the v.G.a.. s r., r:i,,··· to the initial matrix A • 
As � one can take an arbitrary v.G.a. Set a polynomial �= TI

04d.�1 
A'f) • (for v.G.a. regarded at the current step the same no-

tat1't!� as above are utilized). Assume that 4, • • •, ri i P1 , •• , , P.j,

are already produced. Then as �-t--1 we take v.G.a. in which for evefaij
0 � d., !:-J;,+-1 the colwnn index Ù, of the pivot in the matrix N )

is the least possible, moreover jc:1, > JJ.-� and the polynomials

P, " TI CJ) · F · w··,'1,, 0�P'-""' A
,{, 

. are linearly 1.ndependent over • Fi-
nally, put 1-'i+i = 1T ".fajj t:}J:->. . The algoritbm stops producing 

G il r, 04.U.J'tH • t . tc4� � . bl t d .-,. t . v •• a.a 11,11, ..• wnen i 1s imposai e o pro uce 1 -1,+-1 sais-
fying formulated above requirements (if Pt'f� < "t-1 then \.Xi+

4
=(2)). 

One can ascertain that if W;., =;:. çJ then for each .a 6. W
-1, 

the polynomial 'R.! (see proposition) is obtained as the value in 
the point z o:f the polynomial d.e,t â.i, (up to a factor Yf. for 
a sui table f, ) , where � X "tt submatri:x: A;., of the matrix A is 
generated by the c:Ol.umns with the indices j

0
, .  • • , 3,.-i correspon­

di
� 

to v.G.a. fl . This follows !rom the !a.et that in the matrix
h(Â. (4) , • , • 

(n 1 a.nentry <A,
jj

=O �hen J;iH,0, ••• ,t.4.� and �<t,._ 
in force of the choice of J.iv • Therefore, if :tor an appropriate dv 
a cell (i.,H, jJ.-i) belongs to the number part A' of A and a cell 
(id. ,i,A,) belongs to the formal part A" o:f A then �((A'h )=et 

that implies the mentioned representation of "Ri: •
Write d.e.t Lli = � & ô,y-> Y e, herewi th â�\Z-1,···,Z11,-s)E F[Z-1, ... ,211.-s, 

11 11 '11 ] • W (t) _ { (0) w0 , w s-m+t , ..• , w
$+1 

• Introduce vari eties i - (i!w .. , l ti-s) E. W.;, : A . (i! 
(f--1) • (fl t 1' 

... ,2:>1,-5)= ... =� 1, (�, ••• ;?11,-s)=O, �i(l◄,--,ln.-s)IO} for é �0 • The variety 
w.<t) is quasiproj ectiv� as the. intersecti.on of two quasiproj ective 

var1eties, namely, if S'�1={8c,(G�>=O)&V�(Ctià0)j; i=i,1
then 81 n 22. = {& ,co,,ci., (Gj1<) = 0) � Gfc:i.) "' 0)& Ytn,fc,.) (C�1◄) c��l) 'FO)}. 

W ce1> n W ce.,> ri. U Wœ, W Moreover i . = 'fJ for 81 'f li and t f, = -i •
1, 

(l) (E I> D -l 
. 

Thereupon represent à 1, : E o.<. l ..-n e . f tto l O where 
(f,j) .... , � 2, 1, 

ei lZ1,···tZ n,-s)E F[Z1,···,Zri.--s,t,{,s-111,+i , .•• ,1,t,,,t-(]. Consider quasiprojee-
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at the variable 'U,0 does not vanish. 
Thereupon remind that c00,W� =-UfFvfF nt y =0} and int-

roduce W'= uH,W·'t.,j)(lë}XlW� (Î {Yo,;.o})) (as above we !i_x i,ë,i,
I 1.,I W' r w<t:,a) ). Obs�rve tha.t "'tll1, ... ,�11,-5,l�0 :13 5.m,,u: ... :�w))� i r x 

�
1'\F)C wi:�·al .x P

m,

( F): 0 ::( �i�·P (-Ls-n.,+i�J.� s+/UJ. �� , �o 'Uts-m,+�, ... ,�o USti\E. 
E. F ['U-s-m.ta., • .. , 'Uts+�]}, Representing the polynomial 

y_tfr,i\- �s-m.+��.t� S+i u� Y,;,., YoUs-m-+:i,, ... , Yo'U.St1) =ZJ Er 'U, J leads to 
,f,I / ( • Ill, an equality W = l&

1
(Er"'-O)}rt(W/'i'l 1-A ). Because of 

f 
that

the subset W' is closed in the, quasiprojective variety w{ ;i> J. A� 
Consider the natu,ral linear projection st-2, : ��-

5
x(f

.,,,
(\ l V0 t' 0 })-+-A 11,-s 

defined by the f ormu;1a s-�,_ (Z:h ••• ,Z t1rs, ( Y0: Ys-1'1.+:t: ... : Y Sti )) = ( Z1 , ••• , Z 11.-s). 
Let a morphism Si,4; W _, W f�a) be the restriction of $i on W'. 
Our nearest goal is to shdw that $1 is finite ( [14] ). Obviou�ly, 
the inverse image ffi.�� (V) C W1 

of any open affine subset Ve w��·�> 
is is0morphic to ( Vx. fot") (\ W' , hence.f orth S't,�1 t V) is open f¾i.
W' and besides that 5i,�

4 ( V) is affine since m,�4 
( V) is closed 

in the open affine set Vx /\'fi!, ( [14] ). Now we check that every 
coordinate function Y-z/ Yo on the variety Si.;i (V) sl_!tisfies 
a sui table relation of integral dependence over the ring F (V]
whez:e S-f'l1tti.� ae �S+i • Let V?�i>_yi<Etcu.o ,U.s-m+,.,·-·,'Utrn ). Then 

(ê,j) V y ' , • 1t\,t (1-;,. / 0 ,0, ... ,0,-1,0, ... ,0)=0 on W, herein -1 is substituted 
instead of th� variable Ua: • Taking into acoount that ( r t )� :f: 0 

when � € W �e

r
,�} this yields an equation of integral dependence.

1,, 
So, we infer that the morphism &1 is finite. 

Utilizing the notations from the lemma 1 one ooncludes that a 
t Vtf,j) . . . t 1 ) r w<E,jlse . ! consisting of all such poin a Z= '-li •... ,z t\.·S o::. i I 

1., (\ ' 
that there exista � point J.L.:: c�, ( lo: o: ... : O:is--m+t : ..• :�s+4 ))€. uil n{ Xot:O}
is closed in Wf:t as '½, t�,i) coincides wi th the image under 
projection Sï.1 of the closea.' in the do�in of defini tion of ti,1 
(i.e. in W' ) set si;\w�:t)() t t "'- ... :: 4r. =o} wher: Îat(Yo,�s-m.ttt 
.. ·• YSt1) =-Îre ( Yo, 0, ... ,0, Ys-1t1.+t' •--,Ys+�) and f ge( Yo, YH---,'ls+1 )== { (Z.1,-,Zri.-s,Xo,-,XSti) 
for O 4 � ',. K. and since the image of the closed set under a fi-
ni te morphism is again closed ( [14] ). 

e,j) 
Now we describe a procedure for. constructi:cg the required �,I •

Let the quasiprojective variety wf:t = {&�(G -=O)&{VlC
i
-10))}, 

herewi th the polynomials G,, CrE F [ Zu---,Z11,-sl were aotually produced 
earlier. Denote the 5;_,losure of the P.rojection ��,, t&,cG,=o)&
&rlE;r =O) & & o��&K qx = O n = V/;,o . On the other hand in 
force of the �o;esaid the equai'ities hold '{�,j)='¼'il)\l&x(Ci=o)}
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• Thus, it remains only to design the af-

fine variety v i r' 
• 

Involving th� theorem 2 (see section 1) the algorithm finds the

general points ot the compounds J of the v.ar;i.ety{i;( G
.r,

=== O)&&
;r

(E;r-=O) 

& & (l = 0 .J, It is suffioient for each / to construct the clo-
o,�o. 't� !J 

Y') . . b dd' sure of i ts proJ· ection !C,,_ (.1 • Notice tha t there is an im e i:og -oo-- -00 r-
ot the Uelds of !��ions F't (er,,_{t))=F� tZw•·1Z11.-s)E.F (Z1, ... ,Ztt,-s, 

Y.tfV0, ••• ,Ystl /Yo ):: f't_ (f) . 'l'herefore, the algori thm can produce the

general point of � yieldi:og firstly a trascendental basis and 

atter that a primitive element (cf.(1), section 1). Searching a 

transcendental basis and also a primitive element is based on the 

proc.edure for calculating a polynomial relation over F (if i t exist s) 
q,-0'> between the elements a.1, ... ,Gl, J·H Ê F (t1, . . .  ,t n,-m) [ 91 C F (/) 

provided that l'.l,p ... 1 Q,J 
are algebraically independent over F , the 

procedure in its turn is reducible to i.olving a linear system whose 
indeterminates are the coefficients of the relation (cf. § 1 [2] , 

§ § 4b, 6 (J J ) • Tbereupon wi th tbe help of the remark just a.fter
the theorem 2 the algorithm computai. a representation m-1(; )-= l &c 
(&f 20)} where the polynomials Bs, E. F [Z4, ... 1Z 11,-sJ • Ô 

le sumrnarize the results o! the present section in the follow­
ing lelllJl'la, in which bounds are obtained maki:og use of the theorem 2. 

LEMMA 2. An algorithm is suggested which outputs the construc­
tive set IT =-91,,(U 1) lXo 10}}={(.èo•··,i!: tt-s)�A

"'
-s (F) :3X4 .. 3X5 (&1�-ac, K (tt(i4, ••. ,211,-s,

x .... ,,Xs)==o)& �(l4,···1ll\•$'xi,•",XS)toi• i .e. the projection in the form 

· .· ·. loY111.f.Stf ti,, .. ü,4ti' (t .. -,Ys-t11+i>"m. Vi,t,J,1 �/�ô�N l Bf O)H Ci1o)}=l�t&.;(Bîlo)
. Jc(C9'1;0)}}. �hereat d.q (B'JA-1

)�d,.ll(n+2)(!.St!) \lo.n ,1f"·>){ 
. J f J,(Hl)n Zo .. ,,Z11,-s t ' """lî1 , ... ,îe, ' t ,. 

. 
1 trn ,J1}, lengths of descriptions lt&t

>
)�(M ,i +Mi+(11.+C)fo�it)J( 

!l'{J,( 
) ,4'1} Apa.rt tb.at �Zp .. -1Z1t,-& (C

(/L) 
)�{3�)

(1St3)
, �Îi,, .. ,T, (C(µ.)) �

". �9(4,
tHO

,d◄)and ftCV4))�(M1+M,_ t(Mf)�d..i)f(J.(S-tO,ii1). 
· . · .Basides that Ô 4(St4� (�t)ll(tSH)(n+·2) ,; J U.(St�)( 11.-tSt3) . • 

· · , , JI, ..,a, . The runru.ng time
ot the dgoritb.m can be estimated by f(M

1
tMi,d,5t\,(ittl), (d.1

1-d,
J,
)1"•tl

1 'J,). 

J. Suhexponential-time deciding the first order
theory of algebraically closed fields

·. Let a .Boolean .formula a wi th N atoma o.f the kind
where {1, E. f (X�,---,Xt'll satief'ies the same bounds as in the 

· be given, L.,( Q) denotes the size of Q • Firstly we
p:r<>cedure reducing Q to a disjunctive :normal form. 

,h =O 
section 1,
exhibit a 
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Following [7] name ( �p··· , g
1) -cell for �.-···, �

.P
E F [ X,i ,••·, X11,1

any nonempty quasiE_rojective variety of the kind {&
j

e4
/jt=0)8' 

&iEt/îj*O)}c A\
11,

(F) herewith 11 U li == {�,---,.Ph 'J
-,
nd'2=0-

By mea.ns of the Bezout inequality [14] it is ascertained in [7] 
that a number of all (�w-·•iy) -cells is less or equal to (1 + M� �i + ...
+dej �.I' )

11, • We shall describe the method for decomposing the space 
A"' on (ii1--·1ip) -cells by recursion on .P • Assume that we are 

supplied with all (tii···•�
_p

-�) -cells (J�n • Every {1p- ··iiy) -cell
is of the form either K "{�_p

= O} or Kfl{�
.Jl

fO} for a pertinent 

{11, ... ,i,-�)-cell K • Henceforth it is sufficient to pick out (invol­
ving the theorem 2 from the section 1) all nonempty sets among qua­
siprojective varieties of the forma Kn{9p=O} and Kfl {Q

.l'
fO}. 

Applying the just described method the a.lgorithm yields all 

( { �d 1�-l � N) -cella. Again repeatedly making use of the theorem 2 by 
induction on the number of logical signa in Q the algori thm for 
each ( Hd � � i � f'{ ) -cell checks, whether this call is contained in 
the constructive set TI Q = { Q} C /\

"' determined by the formu-
la Q , and thereby represents TIQ as a union o! (l fd

Ki �t() -cens 
K(jl,\ tha.t means reducing Q to a disjunctive normal form Y

y, 
(& 0�4

<ftto)&( ff) f O ))) - Moreover 1 � )l �({ + N �) "', 1 � o" � N , any polynomial 
fr'= �1, for a releva.nt t and �t\ :: TTiE) fi for an appropriate 
1 C { 1, ... , NJ • The working time of the e.xhibi ted procedure can be 

estimated according to the theorem 2 by .9(L2,(Q) ,N\(c!�t1J!l.)11,t� 4 ).
Finally we paas to the general case. Let an input formula of 

the first order theory 

(3) 

be given where the formula Q is of the kind as at the beginning 
of the section, {1, t F[Z4, ••• ,Z s

0 ,Z4,4 , ... , Za,,sa, J, herein l1, ••• ,25
0 

occur free , 14:: S0 + s1 + ... 1- �a, , by Li denote the size of (3). Apply­
ing to (3) alternatively the just exhibited procedure for reducing 
to a disjunctive normal form and the lemma 2 (section 2) the algo­
rithm. arrives after performing � steps at .an equivalent to (3) 
formula 

JZ-1,J··.3z•,s
1
1 ... 3ZQ,-�,4 •• .3Za-i,s

4
_�1 (¼�.i:,N<�) (&-1�;,1:.<ao_1 <�lt =0)8" ({�: r o))).

Denote ol,(aq= tt1,M · • ,J.,,, J(�) 
) · d (:t) - 11'11/NX - •"'j�Z1, ... ,Zs0

Z

'\{ ,···,Z1t-�,s11.-se("tij ' t - �j 
AM., .,. (9(�))· (Jt(�)=N(a!.)K(l-)d,(aë). w�,=�--t(J��) ); 6":s _ . Then in for--0111---, 1i T-t3 'ë ' 2. 1.� 't'\-i Q, \le.·H 
ce of the theorem 2 and the lemma 2 the inequalities hold: d.,(lll'.\ �
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(f
(t-<f6'+.2\l'M�N(-'>,(f,t-l)yi,-1-{t(6'+1)�+ô"t'!\ K.Cil\(6'+�>1c��(Z-I) )8Ca'+'J.)(n+2) • Theref ore

°"
(�)� (,o,-0)�&J1.(0"t&) ' ( Nd./'U�+l43�i5

f�)/�)�. Apart that �i\le) ,d..t·0 X

xf(�(�O,d,4 Htl..i f (�(a:J,il''), M�\( M4+ M,.+l� �t) !P {�(Ill, rLf) • Lastly
the :rumung time of the algori thm (after re stepa) is less than 
ttJ M M M J Il ( �, 11,/:1) 1t (t,ll!ti �Â,(t ( Sj +&))

ae 
(Ml) ,J ;e J 

) 
Mt a ) :T ( 1+ t, ( 1,1N ) �. ' �1 '1.fl, .-y • 

Per!or ming a, stepa completes the proof of the following 
THEOREM 3. An algorHhm is proposed which for a formula (3) 

outputs an equivalent to it a quantifier-!ree one V1�H.tf(8'14i�'.K. 

(ti(O)& Ci1.o#O)) wh�e iij E. F [ z., ... ,Z50 ] , herewith dt�z., ... ,zs!iiy
� (�d, IL-) ( 'lh( H..+&� )/a,) =«J, d.e..q

,; 
, ... ,'l't (itj) (;Gtt� (�, d, �) j besides that 

l<j,J)'(M1+Mt,+U.o�d,._)�(�1 dt�) • The integers J(, j{ �g:) • Finally,

the a1gorithm works within the time f (Li,L1(q), (N��(J.ih,(K+&1.t)fa,)4'(11.-tt),

(di; ri-1) M,tt d )·
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