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COMPLEXITY OF QUANTIFIER ELIMINATION
IN THE THEORY OF ALGEBRAICALLY CLOSED FIELDS

A.L.Chistov, D.¥u.Grigor'ev
Leningrad Scientific Research Computer Centre
of the Academy of Sciences of the USSR,
Mendeleevskaya 1, Leningrad, 199164, USSR

Leningrad Department of V.A.Steklov Mathematical
Institute of the Academy of Sciences of the USSR,
Fontanka 27, Leningrad, 191011, USSR

Abstract,

An algorithm is described producing for each formule of the
first order theory of algebraically closed fields an equivalent free
of quantifiers one. Denote by A a number of polynomials occuring
in the formula, by J, an upper bound on the degrees of polynomials,
by n a number of variables, by a a number of quantifier alternati-
ong (in the prefix form). Then the algoritlﬂxa’z%ks within the poly-
nomial in the formula's size and in (Nd )" time. Up to now
a bound (Nd/)"’ﬂm was known ( [5] , (71, [151 ).

1. Fast algorithms for factoring multivariable

polynomials and for solving systems of al-
gebraic eguations

Lately the considerable progress in the polynomial factoring
problem was achieved. Lenstra A.K., Lenstra H.W., Lovasz L. [12]
have designed an ingenious polynomial-~time algorithm for factoring
onevariable polynomials over @ . Independently Kaltofen E. [8] ,
[9] has constructed a reduction of multivariable factoring over Q_

to onevariable factoring, running within the polymomial-time provi-
ded that the number of variables is fixed. The authors [1] , [4] ,

have suggested a polynomial-time algorithm for factoring multiva-
riable polynomials over @, and over finite fields. Later another po-
lynomial-time algorithm for the case of finite fields was exhibited

in [13] spreading the method [12] .

Also an essential progress has taken place in another important
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problem of the commutative computeralgebra, namely in the problem of
solving systems of algebraic equations. Earlier a complexity bound

of the order d""m was known for it,e.g. from (5] , [ 7], [15] .
Lazard D. [11] has designed an algorithm for solving homogeneous
systems of algebraic equations in the case when the variety of roots
in the projective space of the system is null-dimensional, i.e. fini-
te, working within the time d/O(M if the coefficients of the input
system are taken from a finite field (certainly, provided that we

are supplied with a polynomial-~time algorithm for polynomial facto-
ring). The authors [2] , [3] , [ 4] involving the polynomial-time
algorithm for polynomial factoring [1] , (4] and the method from
[11] nave constructed an algorithm for solving an arbitrary system
of algebraic equations, running within a polynomial in the size L.Q,
of the input data (system) and in d,nm time. Moreover, the algorithm
finds all the irreducible compounds W,CP"(F)of the veriety of
roots of the homogeneous system within the polynomial time in dz"'c
and in |, where C=lmaxy dim W, (the general case is reducible
here to homogeneous one). Finding WA, allows to answer the prin-
ciple questions, e.g. emptiness, dimension of the variety of roots.

Now we turn ourselves to the exact formulations of the mentioned

results. Let a ground field F =H(T“---,T{‘,) ['2] where either
H=Q or H=F, 2 N q=0{bw‘b(H) , the elements T“u-,Tf,

be algebraically independent over H ; the element p is separable
am} algebraic over a field H(T“...,Tz) , denote by q‘:M_Zdzg (iﬂ/({(ﬁ))'
Z EH(T"...,T” CZ7 its minimal polynomial owver H(’E,,'F;) zU‘F)with
the leading coerricie&t) &iz(‘-f)=4 , herewith (fg),quH['E,.-.,T(l]
and the degree dl'g(q ) is the least possible. Any polynomial %e

F [X,,....X.Jcan pe }'migue%y represented in a form$= ;E: d-@ﬂ ; .
(w,«,’@,,_.,,t,,/%) 2" Xa°_ .. X: where a’%"o----":u’g € l"f{‘ﬁ’. f:f.?r;j’ i
the degree dcg( ) 1is the least possible; the polynomials @,

. R A
are determined uniquely up to a factor from H* . Set dLg,T {’:” e

i,"?fﬁ'.éid"q'rjm"‘"or“'@n)’d‘ujT (8)}« By a length of descripgion l(‘b)
:Cn the case (3 we mean its hitwise length, and in the case

he Fz we mean xﬁogg(a,) . By ?/(4) denote the maximum of the lengths
of descriptions of the coefficients from H in the monomials in T,,...,
T(, of the polynomials a,,;,,;m.__,,;w, .

zd)(Let deg, ()<, L{LQT’.(QUGZ, dzg-,-j(q)w“ deg, (@) <%y,

é
M‘M {(q) < M4. As a size L4( ), of®the polynomial { we con-
sider if [the theorem I a value yWhr

Y M, and anal 1
AL w7 O smalogonaly
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THEOREM I. ( (1] , [4] ). One can factor the polynomial { over
F within the polynomial in L,d), L,(¢q), ¢ time.

Remark that it is possible within the same time to obtain also
the absolute factorization of ¥ i.e. the factors irreducible
over the algebraic closure F of the field F ( [2], [4] ).

Proceed to the problem of solving systems of algebraic equations.
Let an input eystem of algebraic equations ¥°= =£K=O be given
(we can assume w.l.0.g. that #o""’ x are linearly independent). As
a matter of fact we suggest an algorithm which decomposes an arbit-
rary projective variety on the irreducible compounds, sSo one can sup-
pose w.l.0.g. that {,, ...,{KG. F[)(,,,..., Xw] are homogeneous re-
latively to X,,...,X, polynomials. Let MTq,---,Tg,Z(qu’“ f(&)éMz’

degy x ied, deg.. g Fi)<dy for all 0<i ¢k and in

LY . 19029 lf d+n L 0+
the theorem 2 a size Lx(h):-( W )d,dz,' Mg, and Lz(q)=d'4 M1.
Denote L=L,,(¥o)+...+L,(fK). W=

The projectiive variety {&:...:2,‘: O}C IP (F) of roots of
the system {0 = = fy =0 is decomposable on the compounds {¥o=
-2 #K"' 0} =y W& N herewith each compound W* is defined and,
irreducible over the mazimal purely inseparable extension
of F . Moreover WaL= WA_} where the (absolutely irreducible)
compounds Wd,js are defined and irreducible over F . Denote C=
1+ r(la/nd,ém W, . The algorithm designed in [2] [3],[4]£inds a1l W,
and thereupon V\a}(actually, Wd’, W&} are defined over some finite
extensions of the field F which are also conmstructed by the algo-
rithm). We (and the algorithm) represent every compound Wd or W&}
in two following manners: by its general point [ 6] and on the
other hand by a certain system of algebraic equations such that the
compound under consideration coircides with a variety of the roots
of this system, in the similar case we say that the system determines
the varie tye.

Por functions gi,gz,k{{,... ,14/4 a relation g{$%zﬂ)(h’u~"ké)
denotes further that ¢,< sz(h'u-“:h:s) for an appropriate polyno-
mial P . _

et Wc P“(F) be a closed projective variety, deme(W)=m,
defined and irreducible over some field F4 being a finite extensi-
on of [ , denote by Fz the maximal subfield of F1 which is a se-
parable extension of F . Let t“.-., tn,-m be algebraically inde-
pendentoverF .A general point ofthevarietyw
can be given by the following fields isomorphism

\ y
F(t“u.’tn_m’)[el": Fz (X:}/XL,...,Xa‘n_m/xb,(Xa/xjo)q,..,,(xnl/xja)@ )CE(W) (1)
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f?)r suitable v (here and further <+ 3>( when 6}>0 and we set
4 ={ when chat(F)=0), index 0¢j,¢n and an element 0
is algebraic separable over a field r‘;'({:‘,. . "tn-m) ; denote by
CP(Z) its minimal polynomial such that &',Z(@):’i . The elements
X/ X; eare conaidered herein as the rational functions on the

4 do
variety W , herewith W is not situated in a hyperplane{xa'f()},
under the isomorphism (1) t@—»)&ﬁ/x& , 1¢ign-m . The algo-
rithms further represent the isomorphism (1) by the images of ratio-
nal functions (Xa/xh )a' in the field Fz(h,.. .,tn- w) (07.
Sometimes, when there is no misunderstanding, we identify a rational
function with its image.

raEOREM 2. ( [2]1, 131, [4] ). &) An algorithm is suggested
which for every compound W& produces its general point and(i:)onst-
ructs a certain family of homogeneous po];ynomials :M,. ey (PN c
€F[X,,-«sX Juch that a system 9)(*)?“:({)( '20 determines the variety

03" . 4 Y, |’ b

W& . Dixeote M=COdAMW,\,, 6&=G, %.=<P . ‘J?henay $d/ ,d”gz_( ZBES

W4,$d. , tor all 4,] the degrees ngT.':-")TC)t{)""tn,' ,f,,?*)’d%,ﬂ‘e.t,--;tn.(lexj’
(the latter two degrees are defined according to the isomorphism (1)
analogously to how d&ti(h was %efined above) are less than
dyPd™ dy), apert that (&), N/ X, )s(MpM,}(mMogd,,)ﬁ’(d/"",024). o
A number of equations N¢midA , the degrees d‘ﬂx, xn(q)?‘ ) !edz
gaery
and the degrees T“__.’T&((P?))gd,zf)(d”:gq);besides that the algorithnm
. ) _ 3

represents each LPS) in a form (), =({)5)(Zs,o"“’zs,w‘m+a,)

for suitable linear forms ZS,' in the variabl(oets Kgy-sRpwith the
coefficients from H and the polynomials q)s)eF[Z“ ,-~-,25 n~m,+»z],

-~ (dy m /] »

thereto ?,(({’5 )s(M(rM,j(mMogd,,,)?(d ,dq), lastly the size
Lz(Zg’j)iy(n,M tidqd/g,) for all s,j . The total running timﬂe

of the algorithm can be bounded from above by EQ(M“Mz,(d/“'dqd«z)M )
Obviously, the latter value is less than P(I°* (q,+"))$?(Lco9L(aY+h)
1t n=0).

b) An algorithm is suggested which for every absolutely irredu-
cible compound W&} finds the maximal separable subfield Fz=F[§&}J
of the minimal field of definition ﬁ (containing F ) of the vari-
ety W&} . The algorithm produces a general point of W&} and some
system of equations with the coefficients from the field F!‘ de-~
termining the variety W,L} « For the parameters of the general point
and the system of equations hold the same bounds as in the item a)
of the theorem. Denote by (fd. e F [Z] the minimal polynomial for

EJ‘P such that &Z(q‘})=13 th::l dl'gz(qd'}) < WA.} and

the degrees dﬂij “_._’Tc(t{*’)sdrzﬂ)(d, dq),lastly {:(({&} $( M4*‘M2‘+
"

(ﬂrbt)‘o%dx)y(d, dq). The time bound is the same as in the item a).
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REMARK. If we are supplied with a general point (with the same
bounds on its parameters as in the theorem 2) of a closed irreducib-
le variety V4- UT,(WA,‘) where ﬂL(xa:...:X“)z (xo:.. ot XM) is a le-
near projection gy: |P"’ - \Pm’ and W‘* is some compound of the va-
riety {40 ...=¥K-0}C Pw( F) , then we can produce a system of
equations determining \{4 with the same bounds on the parameters as
for the family ()*) in the theorem 2 within the same time bound.

In conclusion of the section 1. The authors [make a conjectpre
that one can find the compounds within time P Ol,(°+ +u (d, d«,_)m L)

where (' =moa man { dim W, +1, codim Wo}.
2. Projecting a constructive set

Let an input formula JX;...3Xs (2‘4$£$K (%:0) 3750))
be given, herein the parameters of the polynomials F[Z“...,
Zu-S’Xlr-wxs] satisfy the same bounds as of 4 in the section 1. The
goal in the present section is to produce an equivalent quantifier-

flzf)e formule V1<1,sN (Bse e (4( 1=0)& (g #0) where
i "N €FLZiy - Zyssl
The _input formula is equura]_ent to IXe IX,--3X EXS«H((X #0)&
Mrejex Fi=00k (Jo=Xs 7 -K 7 4=0), " therein Ky, Kyuy  are
new va.rlables and Xxé X4 Xs(%){ (Zh Lin-5:K4/Xgrr X S/Xo),g XM ~xstd
9(2{,--7Zn.5)X4/xa,.-,X5/X)(jcf- (7] ). The des:.red projection, i.e. tl;g const-
ructive set consisting of all the points (21,‘- ,Zn_s)eA (F)
satisfying the latter formula., we denote by ﬂ . One can assume
further w.l.0.g. that x” -d 1, 0<3 , Teplacing 41
by the family of polynomials {1‘ X d- “‘169 ’}0$4.45+{
u-s SH
Introduce a variety U= {(24, zn-S’(xﬂh“'xSﬁ))e(A x P )(F) o
3<°$3$K (4 = 0)} and a natural linear projection & : P
— AnS then the deslred ﬂ-a(Un{X. # 0} . Por each
point Z=(Z{y--.,Ey- s)eA (F) consider the variety(the layer)
Uz=5~ )0 UC{Z} x P~ PS*' . The condition ze [l is true
iff for an appropriate 0<m< S5+ the layer Uzha.s at least one
compound W with the dimension S+i-M  such that W¢ {Xof-' 0} .
Pix a point Z in the following speculations for some time. It
is net difficult (see e.g. §'2 f271 ) to indicate a family of N'=
~de +4 vectors 1,{,(0 u(“) (3 HKH any K+{ from which are
linearly independent {we suppose here and below that H contains
sufflclently many &lement, extending it if neceasary). Denote h’i, =
Zm“u‘ )%, herewith %() (4 ‘(;'),.. U ) The relevant com-

4 {
pound W ‘oz Uz exigts iff there are such indices 1$ 4«4~-~~<‘m‘N
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§+1
that W is a compound of the variety {h¢4(2)=...=h4;m(2)=0}clp s
herein the coordinates of the point 2 are substituted instead of
Zys-w 1 Lyngy Lo0e hi @eF[X,-. . Ksyy] (cf. faa L[21).

One can construct (see §2 [2] ) e family = Mg, som dm
consisting of (5—m+4) ~tuples of linear forms in variables X,,. <y
XSH with the coefficients from H such that for every variety
W1C PS5 satisfying the inequalities MmW, £5-m, dbg W1 <d™
there is (S-m+1)-tuple ( 4,...,Y5_m+4)e ’}."&"L for which W, N {Y1 =,

- =0}=g. Thereto cand (M) ( (s+4)d™ +4 . Let us take

S-m+{ X, = S-m Y =X Y
a variety ﬂ{ 0 -0} as Wj . Supplement linear forms Y,=Ag) Yjs
:"-'Ys-m-H up to a basis Ygy .. .y [544 with the coefficients from

of the space of linear forms in X,,. .o ’XS‘H (in arbit;vary mannex ).
Replacing variables denote R-t(E,Yo,. . "YSH) =h,1-' (2) and h’i (&)=
= i,(z)vthO""’O’Ys-m+a,’~-';Ys+1)’ Thus, the condition under considera-
tion about the existence of W is equivalent to that there are in-
. . t

dices 1<‘.4<. ..<4,m£. N and linez'r forms Y{"",YS‘M+4
for which the variety {R@{(Z):..g M.m(z)=0}c pm as one of its
compounds has a certain {)oi.nt : :*-(ga Bgamen -t Bguq) such
that the point {L=(%,(8o10% . 10 g 0 0 1%, NEUg N Y, # 0}
(in force of the theorem about the dimension of intersection [14] e

Introduce a system of homogeneous algebraic equations

~ dr"" .
i, @ =YV5opyge=0 A€ st (2)

in the variables Yp, Ys-mag »--» Y544 with the coefficients from
F[Y]cF(Y)-aK where | is algebraically independent over [ .
One can prove (see also lemma 11 §5 {37 ) that the set of roots
in P”"(K)of the system(2) is finite. The variety of roots is decom-~
posable on the irreducible and defined over K nulldimensional com-
pounds Vp corresponding to the minimal prime ideals ?KC K[V,,Ys,mﬁ,
""YSﬂI/({ﬁi‘(z)‘YYs~m+j+1}1sjsm)‘The system (2) can be considered
apart that g;a the system in the variables Y’Yo:Ys—m,q-ga --«,YSH

with the coefficients from F which determines a variety UL’ C

A" (F). 1t is not aifficult to show (cf.lemma 12 §5 (3] ) that
there is a bijective correspondence between the poin":ts Px and on
the other side such compounds V?F of the variety U;) that VP

1s not conteined in union of finite number of hyperplenes of the
kind {Y-C,=O} c A”H for C4€ Fy notice that MVPFS'Z .

Now we exhibit an important auxiliary device from ([11] (see

also §3 [2]). Let 90’---’9K-46F[Xor"!xn] be homogeneous polyno-
mials of degrees 8;; ..z K-1 reapectively. Introduce new variables
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Wyy---» Wy, 8lgebraically independent over F(X,,...,X,) - Set
= KoWot.. .+ XU € F(Upy..., W) [Xoye oy Xy] and D= Z 6’- -n,
herein ;=1 it K$3 <1 . Consider 11nea.r over F(’H, .,’u,w)

mapping OL:RH ®...0H¢ - H  where & (correspondingly #$) is
the space of homogeneous polynomials in Xo, X“, over the field
F('U,o, 'l,{,n) of degree ]) - é" (correspondingly D ) for 0<L<K

namely Ut(ga, 6&) Esx i3i Any element 6 (60,_. b k)€
i’)@g ®H¢ can be written lnnthﬁ fagrm (501, OS . “é ,84,54
1Ok 9--090k,5,) WheTe 5= n u ’- Y]

the coefficients of the polynomial g{, prov:Lded that a certain nu-

meration of all the monomials of the degree D-—&, is fixed. Ana-

logously one can write the elements of the space f?) . In the

chosen system of coordinates the mapping 0(, has a matrice A of

the size ("’f ) ( 54 + One can represent A (A‘ A"
0§41 4K

where AI (call it the number part of A ) contains ZO<¢$K"‘I 51'«
columns and A (call it the formal part) contains 5 columns, be-
sides that the entries of A belong to F, the entries of A are li-
near forms over [ in variables ’H/v, ey Uy (ct. (6] ). There
is proved in [10] that the system f§,=...= =0 has no roots
in P¥(F) 1fz the ideal (§g»---s G4y ):)(Xo, X, )P Besides
that, the following proposition is ascertained in [11] .
PROPOSITION. ( [11] ). 1) The system §,=... 9“ 0 Dhas a
finite number of roots in P*(F) iff the rank %A (M' )='t,,
2) all “ X" minors of A generate a principal ideal whose
generator RGF[%O, ,'Hm] is their g.c.d.;

i
3) the homogeneous form R TI;D Lq, where L ». (),HJJ
14D, i sn
is a linear form over F s moreover (§() (”) 1séa root of

the system and the number of occuring of the forms proportional to
Li for each 4 in the product equals to the multiplicity of the
corresponding root. Apart that dzgR=D,=‘z- (A').

The algorithm designes the matrix with the entries from
the ring F[Y, T Zn.s ,%,,'M,S-mw ,u]correspondlng to the modi-
fied system (2) in which Z“ ZW-S are cons:Ldered as variables (in-
stead of Z,,. <+«9Z4_s ) according to the just exhibited device.
Denote by AZ the matrix obtained from A by meeans of substituting
the coordinates of the point = instead of Zf, . :Zn,-s . Let the
polynomial R c F [Y uo,us-mﬂ,. ’u5+1] correspond to the matrix

Az as in the proposition. One can suppose w.l.0.g. that Y*Rz
(dividing Rz on the greatest poassible power of the variable Y .
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Regard a certain representation of the union U?FV {
=3y -O} for suitable polynomials ;& F CY,Yy,Ys-mgs- ..,Y5+4]
homogeneous relatively to Y,,,Vs_mz, «esYs44 - Considering a system
500, Yoy Yoomag s s Ysu)=0; 0L €K/~1 and basing on the propositi-
on (see also lemma 16 §5 [31), one P""’“ﬂ'ﬂ RO lloyl 1pypersUosin)= T”-"
and moreover the linear forms L 2 “gm correspond biJec-

tively to the points (E“) g(.;-)mw.' . i(z) W c p™ where the
cone con(W) (U V ) n {Y 0} . Thereupon it is not dif-

ficult to check that ﬁ. €Wy (cf. lemma 13 §5 [3] ). Sumari-
zing and utilizing the notations introduced above, we have ascer-
tained the following.

L 1. The formila X,...3Xs (kg (4;=00k (g£0)) is va-
lid in a point Z € F"S izf for appropriate 0sm g5+ there
exist such indices '1‘1,4 <k § N, a set of linear forms
(Yoo s Voome) € M end @ point a(z,(80:0:...10: 8yt - Esry )
e U, n X, #0] (in the coordinates Y,,Y“ Y.e,,,1 ) that the 1li-
near f°m (§ o +8 ¢ s Ws-man -+ By Uosns )Rz (0 Mo Wsepig yoees Wsgg)-

Now nake more precise the definition of a version of Gaussian
algorithm ( veG.a) for reducing the matrices to the generalized
trapezium form (cf. (7] ).V.G.a. is determined by a succession of
pairs of im?ices (pivots) (ia,j.,),(ﬁ,jq); . ,(ij,,j ) . Here-
wifosx i, 7 4p and f, #fy it dFEp . <‘3 eny initisl matrix

v.CG.a. yi.‘flds the chain of matrices A A . Introduce
a notation N (a,,~J ) . Apart that 0% %0 ond a,@;ﬂ) a,(";’

Q) 7, (& da,
Pads /a,“ for all + distinguished fram 4g,--. iy , lastly a,“‘*“—

@"1 where 0Lpsa &‘he matrix A(‘P+ is in the generalized %ra—
pezium form, namely, & ‘? =0 when either { differs from
,4,‘9 or i= 1,‘,5 3 and 4.>p , besides that wﬁfm) a,““ #0
Denote by A('? the determinant of (oL-H) x (4+4) dmatrix fLormed
by the rows with the indlces 4gs+++34yys 1 and the columns with

the indices 30’ ..,34 Y provided that ‘biﬁ Lgyes ,L#Ld_
and §#4y,...y §# ja~y . Then a.““ A(‘)/ (4:' Ja- (see e.g.
lemana 7 [7] ). 1944

. glow we turn ourselves to considering an arbitrary point Z€
« Pix for some time (<M 5+4 indices 4<b4< L § N

snd a set of linear forms (Y“...,Ys-mﬂ) € Ml (see lemma 1). By
4 denote the number of rows of the matrix A . Produce a certain

succesaion of v.G.&.8 R, Pz,... overa field F(Y, 24,..‘.Zn~5,%,,
Wemegr-s Weeq) andoa succession of polynomials P,P,,... &
(e Z,h., , e W =428 ‘lthereto v.G.a. |; can be applied
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correctly to the matrix Az for all points Z=(Z,y...yZp.s5) Of
{possibly empty) quasiprojective variety ( (147 ) W;c A" "5 which
is defined by the following conditions: mequallty 0= P (Y,z““ -

2y oUW g, s W) eF[Yu,u Uz s~ ciq] and equaln.t:.es
0=P (Yy24-- g3 Wor Ws-peg 1+ ’%GH) for 4<3<1, are fulfilled.
Apart that the variety {(@,,...,Zp-s):P E4v~ ’Zn-s*uﬂ’u’&mq-z* “,uw).o
for all {,} ¢’ hencetorth U, W A . Exposed below
construction is close to the proof of the lemma 9 [7] .
Later on we apply the v.G.a.s {,r;',... to the initial matrix A .

As ﬂ one can take an arbitrary v.G.a. Set a polynomial P ﬂOSdsp

A(d') (for v.G.a. regarded at the current step the same no-
tatlo g as above are utilized). Assume that r;, . E,a fasesy Ty
are already produced. Then as [1” we take v.G.4d in which for evezZ
0$&$_P;+4 the column index 3& of the pivot in the matrix
is the least possible, moreover J& )3‘*_ and the polynomials

P~ TTo pec A({) are linearly independent over F . Pi~-
nally, put £+4 Tr ‘ﬁ” A“) « The algorithm stops producing
V.G.a.8 1, 1, LIS :.s 1mpossible to produce QH satis-
fying formulated above requirements (if P;4s < 7-1 then WLH ¢)

One can ascertain that if Wt #* ¢ then for each zeW
the polynomial Rz (see proposition) is obtained as the value in
the point Z of the polynomial d!/t A, (up to a factor Y
a suitable § ), where Y4%X% submatrix A; of the matrix A is
generated by the columns with the indices jo gy 51_4 correspon-
di to v.G.a. ﬂ « This follows from the fact that in the matrix
(A( an entry a,j;’;’=0 when P #ig,. ..,1.:4_4 and 3‘<jd‘
in force of the choice of j& + Therefore, if for an appropriate dv
a cell (4,4, 3&_1) belongs to the numbex;’ part A oz A and a cell
("Mao\,) belongs to the formal part A of A then ‘tg((A )z) a
that implies the mentioned representation of

write deba;= 3, A & VE  peremith 2% (21,. ZH)GF[Z”

Wos Wo-eeg s 3 SH] Introduce varieties W ={(z-yZ _5)eW "N (5"
1 Epg) = -A( (Zp-Z15)70; A; (£,..,Zn.5)#0} for £>0 . The variety
W(é) is quampro,] ective as the intersection of two quasiprojective

varletles, _namely, if l_.q) {8( (G‘ﬂ) 0)&V C‘“%O)} 3—‘( 2,

then I—lqn S ® {&}“’ pH (G,(o = 0) & G'ﬁ’l’ Og& Vx(ﬂ x(&) (CK“) C ) *0)}

Moreover W(E‘) W(S") =@ for § #& ena U W =W;.

Thereupon represent A( £ ‘ZOSLGD (E’“ ull,,j where

(&%)
e(.' h (Zh"-’ n-s)e F[Z,,..., n‘s'%s-mzr-"%sﬂl' Consider quasiprojec-
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; £), (6% .
tive varieties W.(z’a) = {(Z,,...,zMS)GW{‘( )‘ﬁ(i’w (ZprEis) =0, Og= <( ’.)
ef’ﬂ(z"m,zw_s)fo},then wi&’ﬂq)nW{Egzz) =p when j, 2, snd Uy $54Dzw{. W)=
Wm. Obgerve that the proposition and the ascertaicned earlier en-—
£) - % . _
tail that (A(:) )Z =A(i (z”..,zn-s,uo’us-mﬂ,nqus.ﬂ)‘T‘.sz 18 & pr?

duct of linear forms for Z€ W{é) o Thig implies that for zé eWi

the polynomial (€ f” )z equals to the product of powers L.a‘,_°e of

all linear forms li.g in which the coefficient at W, vanishes.
4 . .

Henceforth (e(f"))z |(A(.;) )z in the ring F [umus-mﬂ’---,usﬂ]'

(€

Our nearest purpose is to calculate the quotient (Aé"’)z /(e{ ,3))Z

{8
for E!G.W.; A . It I=(I5_m+,.,...,15“)is a multijndex then denote

Ts- .
u1=usi:::§, e 'U,gi‘:" apart that by L <J denotf the lexi~
cographical order on multiindices. Write e‘f”’ =Z‘I Y1 U and let
O#XIE F[Z“--.,Zn-s]for a certain | (fixed in further speczalations).

(&,9) £
Introduce a quasiprojective variety Wi,l’fa ={(Z4,\.. ,Z n_s)ewi ’3);

xj(z,‘,...,zn_s)fo when J>] and KI(E“...,Zn.S)fO} (s. 5E)vidently
W) NWED =g st Tp], wma U WSS =W por any
potiz;t (z‘,t.j,zn_s) € Wi(’efj) the quotient (A(f) )z / (e(f’”)z can be
cobtained by means of the described below process of dividing poly-
nomial on polynomisl and after that substituting the coordinates
Zyy.. By~ instead of variables Zj,...,Zy.s.

Let 07V EF(Z),Zue ) [MWecrmssgrerr, Weone Denote by
fex(Vy==0 the monomial of ¥y in varia les"ﬁ,é_md ?, 4,4 for which

in V- €e3(% %c_‘cur only the monomials less than fex (Y) , set
Vo WU oy Wsmess - hopt)  amd e(Y)=deg(¥) . Delete fromI
&i‘d’ all the monomials ¥, #7 (except pluI ) with 6"(%7)2 &(U”)

' Ay
- and denote obtained polynomial by @ie’}’ . Then (0?”*))Z=(e{““’ )z

o )
when i€ sz_fr since (6?”‘"))5 is the product of linear forms. For

 any index j<%s Qg the algorithm designs a succession of non-

. zero polynomials Y= efe’u) Ji>» Yp.  Represent uniquely Wt=wm+\"m+
o +W«2 » herewith TI/?’,W’ are homogeneous, &(Y¥)<e(¥)=6(¥,") =
oY) and V' /U e Z,,...,Z,M)[ué.m*z,...,uwﬁ , lastly
' each monomial from V¥ is not divided by T . Then V=
=Y Wé"’)-‘i’;"éx{fe"’/ U* tor eve?jr 2)0‘ T<p-1 (obviously, (¥ )<

,‘",-‘e"wt) )+ Regerd s polynomial‘l’,f,I Tﬁt‘s \p;" r;"*"/wle

xbs p-1 ;
©3) Dy &%) ¢ D2
F'[anzn-u us-mm---;“w.] and set w:.,f =3}P L% 3‘3};‘3 wt,I e )
' &%)y /P e €3, %) Y w6
One can cheok that (] L/ = (5P, for zeW 5P and .
- therefore (A%, /(e = yed ), equals to the product ol

for all lineer forms L, in which the coefficient
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at the variable 'U/ does not vanish.

Thereupon remind that Coan U?PFVE’ F n {Y 0} and int-
roduce W's Uzew(t*ﬂ ([Z X(W 0 1Y, #0})) (as above we fJ.x i€y gy
I . Ol()es;rve that W'={(z,,...,2p-5, (Y, Ysmag: . %sﬂ))ewt !
w = X ,
A SF)C XP (F) 0= ((P(e”( Zs-mw,s,usﬂug.gd,a %a%S-mm: a1}a s,ﬂ“f
€F[us Mg %5»,4]} Representing the polynomlal
W(&,j ( Zs-mmqgsﬂ u’&Y&’Yous—mfﬂ,’ Yu’fm) ZIEI % leads to
equa.l:.ty W'= {& (EI-O)}ﬁ(Wte’ﬂ xAm) Because of (E h tl&?t

the subset W is closed in the quas:Lpro;jectlve varlet
Consider the natural linear projection 569‘ K(P ﬂ{Y 4 Oh'*An—

defined by the formula iy (Zyy. Ly g, (Yo:Voopeuni ot You ) = (Z,... Z,- s)

Let a morphism &,* W—b (& be the restrlctlon of .%,J on .

Our nearest goal is to shdw that §, is finite ( (14] ). Obviously,

the inverse image 914 (V) C W of any open affine subset IS ‘I'

is 1somorphlc to (V /\m) n W( s henceforth %;4 (V) is open :tﬁ

W' and besides that (V) is affine since &7 (V)  is clesed
in the open affine set Vx }\m’ ( [14] ). Now we check that every
coordinate function Yz/Y on the variety S'L; (V)  satisties
a suitable relation of integral dependence over the ring F[V]
where 5-M+%. 4% $5+1 . Let w(e’“ me" (ﬂ.o,ug,m,d, ,’u,sﬂ) . Then

W(E,“(Yx/Ygsoi 0,-1,0,...,0)=0 on W herein -1  is substituted
1nstead of the variable %x . Taking 1nto account that (XI)E #0
when =2 eW I i) this yields an equation of integral dependence.
So, we :|.nfer that the morphism 6'1',4 is finite.

Utilizing the notations from the lemma 1 one concludes that a
set V(ai) consisting of all such poznts Z=(Z(4-vZp5) € Wu
that there emsts a point Q=(,(%,:0:...: 0 Bomag bt Ban)eU;ﬂ{X,#o}
is closed in W1. & as Vt ! coincides with the image under
projection 311 of the closed in the domain of definition of &,
(i.e. in W') set 31 (5’3 )(\{4, ? O} where {,_(Y,,YS M4t

"YSH) 296(Y050 OYS -l 1Y5H) and ag(YOaYM Y&H) “Zu--’ u-saxm--,xsu)

for Ogaeg K and since the image of the closed set under a fi-
nite morphism is again closed ( [14] ). i

Now we describe a procedure for construct:mg the required V(t
Let the quasiprojective variety ” = {&} (G =0)&(V. (Cg¢0))}1
herewith the polynomials G C 1oy n_s-] were actually produced
earlier. Denote the closure of the froaectlon 9'»;,1&? (G -0)&

12
& (E} 0) 8‘2‘049&<K (2; V ! . C()? ;l;he (ot:zer hand in
force of the aforesaid the equalitles hold V ’3 V ‘3 \i& (05 0)}
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q%(;’a" \{&x (Cl’ = 0)} . Thus, it remains only to design the af-
fix?e variety V;f;”) . ) )
Involving the theorem 2 (see section 1) the algorithm finds the
general points of the compounds )/ of the VarietY{&p(GfO)&&i(E]’O)
“‘osmcx(zf 0)}, It is sufficient for each J° to construct the ‘.’10'
sure of its projection iy (7)_00 . Notice that there is aq?”imbeddlng
of the fields ot functions F¥ (@ ()=FV (Z,..2n)EF" (ZZn-s,
n/Y‘”“_’YM/YD): F¥ /) . Therefore, the algorithm can produce the
general point of §i,( ) yielding firstly a trascendental basis and
after that a primitive element (cf.(1), section 1). Searching a
transcendental basis and also a primitive element is based on the
procedure for calculating a polynomial relation over Ew(if it exists)
betwsen the elements -4 psy € F(h,...,{;w.m‘)[e]c Fq (/)
provided that a,“...,a,_? are algebraically independent over [, the
procedure in its turn is reducible to solving a linear system whose
indeterminetes are the coefficients of the relation (cf. § 1 [2] ,
§§ 4b, 6 {3] ). Thereupon with the help of the remark just after
the theorem 2 the algorithm computes a representation m)= {&
(84 20)} where the polynomials Bg& F[Zy...Zy-s) - §
We summarize the results of the present section in the follow-
ing lemma, in which bounds are obtained making use of the theorem 2.
LEMMA 2, An algorithm is suggested which outputs the construc-
tive set [l=4(Un{ X, 7“’i)‘{(zw--’zn—s)eA'H(?) 73)(4..3)(5(&Ka‘K(%!(Z“.‘_,Z
x"...,xs):o)& g(zh"-'Zn-s'xqo---'xl,-)?o)}’ i.e. the projection in the form w
. {OYMSﬂ Y“a““"im"“ (\Y’u--st-mﬁ)em Vi’i’j'I \,{}’,X(ﬁé“N(Br 0)&(Cx#o)}-{\§‘(8<3(53=0)
E(CP#0): merear dog, ., (BY) QA0S | dog, - (BP)<
d;f(d/““y: d/‘), length: o’r .ti—:scriptions “B%‘)) < (TM;I:\%,‘:,(M(, eog d,‘}x
FPA). apert that Az, 2, €€ B, dag,. o (040 ¢
dafUCd) ama ECP ) (MM, + Cntl) l0gdy) (440, 4y
. Besides that, §'¢(st0)? (3d) @5t o od RODMAsd) o running time
©f the algorithm cen be estimated by P(M+My,dsm(Mb) (4 L4 il 3.

t-s?

’

3. Subexponential-time decidi i
theory of algebraically closed fields

Let a Boolean formula ( with N atoms of the kind 4 =0
where {CQF[X"...,X,‘]satisries the same bounds as in the sez:tion 1,
‘be given, L,((}) denotes the size of Q. Firstly we exhibit a
procedure reducing Q to a disjunctive normal form,
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Following [7] name (Gys--1 §p) -cell for ‘34""’9y€F[x4o~--:Xn3
any nonempty quasiprojective variety of the kind {2~e}‘(gd'=0)8{
n : = .

&je'h(gj t0)jc AV (F) , herewith % U }z-{d,...,yi, 30 %=
By means of the Bezout inequality [14] it is ascertained in [T7]
that a number of all (ﬁﬁ'“'gy) —-cells is less or egqual to (4+d,tg Git--
+dll}gj;)“ . We shall describe the method for decomposing the space

A“ on (91,---,”) -cells by recursion on P . Assume that we are
supplied with all (9{""'9_?—4) -cells (PH) - Every (91,.‘.,%) -cell
is of the form either K n {3P=0} or Kﬂ{gPFO} for a pertinent
(%,...,gy_‘)—cell K . Henceforth it is sufficient to pick out (invol-
ving the theorem 2 from the section 1) all nonempty sets among qua-
siprojective varieties of the forms Kﬂ{gP= 0} ea Kn {g!fO}

Applying the just described method the algorithm yields all
(”‘3}1<£<N) -cells. Again repeatedly meking use of the theorem 2 by
induction on the number of logical signs in Q the algorithm for
each (H{}{S‘; sN) -cell checks, whether this cell is contained in
n

the constructive set HQ={Q} C A determined by the formu-
1a Q » and thereby represents HQ as a union of ({4‘;}144',4!\) -cells

KU” that means reducing Q to a disjunctive normal form V}L (& &34

({?;0)&(¥(6’l)? 0)). Moreover f< p é({+Nd,)w, 1¢<6" <N, any polynomial
¥( =¥1-‘ for a relevant i and ¥On =TT4~E} :fJ- for an appropriate
4C{4..,N] . The working time of the exhibited procedure can be

estimated according to the theorem 2 by 9(L2(Q),N",(d”d,1ol,,~)w+§l]').

Finally we pass to the general case. Let an input formula of
the first order theory

324’4...324,54 VZz” <..V22’5z... aza,l.-.EZa)sa Q (3)

be given where the formula Q is of the kind as at the beginning
of the section, 44‘,€F[Z4,...,25°,Z4,4 yuery Z@Sa]7 herein 21,...,250
occur free, N=55+54%...+ Sq, bY Lg’ denote the size of (3). Apply-
ing to (3) alternatively the just exhibited procedure for reducing
to a disjunctive normal form and the lemma 2 (section 2) the algo-
rithm arrives after performing 2@ steps at .an equivalent to (3)
formula

30,032,130 g T a5, N Viciaq@bagien, <¥§;)=°)8’(¥2?* 0))-

@ @ . (@ _ .
Denote =X d‘ﬂzp---,zs,lv,...,Za,.ag,s,;_x(‘;r;a- )i da = MO g4

), . L) - N(& ) DN. £ .
MT{,...,'I‘&@(%- ),0!( ?= ¢ )K(&')d:(&); Mfz =mm£-£(4f;.’ Y5 6=54 044 - The(r;aln for-
ce of the theorem 2 and the lemma 2 the i&equalities held: d{ <



30

. Therefore

@ &
. Apart that g  $dq %

g x) '
x®g* U da)<dy f(q(Z)Jd’{(x))l M(g, &( M#Ma"u%dx)fp(o}m’ d¢) - estly
the running time of thexalgorithm (ag)%%r( %C) steps) is lgss than
48 Z . (St ht Wt

B (e My, (KA B Enejea ) 0" )™ 1g)-

Performing @ steps completes the proof of the following

THEOREM 3. An algorithm is proposed which for a formula (3)
outputs an equivalent tc it a quantifier-free one V““N(&““%
(mgo)&(%ﬁo)) where q%- eFLZ,...,Zg] , herewith d“"ﬁzu---,zsfgij)

['%
CNgm R rar/a)l g A, Tc(gt.‘-)sd,‘@(ga, 4%); besides that

{
C( ; )Q(M +M,+{lo L‘L )Q(Q, A/a') « The integers M% A F;inally,
th?:jalgo;ithﬂ;n wogk: within ‘the time P (Ly,Lycqy, (NJY ednrtdarf) (ME)’

@) q).

(Hbgmaxmz:N(a) < (optz—u)nm(ow (nmn’ K®g 54 4)7.(5 q(z-o )s @ +0)n+2)

¢

U YO ¢ ¢ Ney ™ H e s jal iR
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