Complexity of quantifier elimination in the theory of algebraically closed fields

Alexander Chistov, Dima Grigoriev

To cite this version:

Alexander Chistov, Dima Grigoriev. Complexity of quantifier elimination in the theory of algebraically closed fields. Lecture Notes in Computer Science, 1984. hal-03053144

HAL Id: hal-03053144
https://hal.science/hal-03053144
Submitted on 10 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

COMPLEXITY OF QUANTIFIER ELIMINATION

IN THE THEORY OF ALGBBRAICALLY CLOSED FIELDS
A.L.Chistov, D.Yu.Grigor'ev

Leningrad Scientific Research Computer Centre of the Academy of Sciences of the USSR, Mendeleevskaya 1, Leningrad, 199164, USSR

Leningrad Department of V.A.Steklov Mathematical Institute of the Academy of Sciences of the USSR, Fontanka 27, Leningrad, 191011, USSR

Abstract.

An algorithm is described producing for each formula of the first order theory of algebraically closed fields an equivalent free of quantifiers one. Denote by N a number of polynomials occuring in the formula, by d an upper bound on the degrees of polynomials, by n a number of variables, by a a number of quantifier alternations (in the prefix form). Then the algorithm works within the polynomial in the formula's size and in (Nd) $n^{n^{(2 a+2)}}$ time. Up to now a bound $(N d)^{n \sigma(n)}$ was known ([5], [7], [15]).

1. Fast algorithms for factoring multivariable polynomials and for solving systems of algebraic equations

Lately the considerable progress in the polynomial factoring problem was achieved. Lenstra A.K., Lenstra H.W., Lovasz L. [12] have designed an ingenious polynomial-time algorithm for factoring onevariable polynomials over \mathbb{Q}. Independently Kaltofen E. [8] , [9] has constructed a reduction of multivariable factoring over Q to onevariable factoring, running within the polynomial-time provided that the number of variables is fixed. The authors [1] , [4] , have suggested a polynomial-time algorithm for factoring multivariable polynomials over \mathbb{Q} and over finite fields. Later another po-lymomial-time algorithm for the case of finite fields was exhibited in [13] spreading the method [12].

Also an essential progress has taken place in another important
problem of the commutative computer algebra, namely in the problem of solving systems of algebraic equations. Earlier a complexity bound of the order d^{n} was known for it, e.g. from [5], [7] , [15]. Lazard D. [11] has designed an algorithm for solving homogeneous systems of algebraic equations in the case when the variety of roots in the projective space of the system is null-dimensional, ie. findte, working within the time $d^{(N)}$ if the coefficients of the input system are taken from a finite field (certainly, provided that we are supplied with a polynomial-time algorithm for polynomial factorring). The authors [2], [3] , [4] involving the polynomial-time algorithm for polynomial factoring [1] , [4] and the method from [11] have constructed an algorithm for solving an arbitrary system of algebraic equations, running within a polynomial in the size L_{2} of the input data (system) and in $d^{n^{2}}$ time. Moreover, the algorithm finds all the irreducible compounds $W_{\alpha} \subset \mathbb{P}^{n}(\bar{F})$ of the variety of roots of the homogeneous system within the polynomial time in $d^{n C}$ and in L_{2} where $c=1+\max _{\alpha} \operatorname{dim} W_{\alpha}$ (the general case is reducible here to homogeneous one). Finding W_{d} allows to answer the pronciple questions, eeg. emptiness, dimension of the variety of roots.

Now we torn ourselves to the exact formulations of the mentioned results. Let a ground field $F=H\left(T_{1}, \ldots, T_{\ell}\right)[\eta]$ where either $H=Q$ or $H=F_{q x}, q=\operatorname{char}(H)$, the elements $T_{1}, \ldots, T l$ be algebraically independent over H; the element η is separable and algebraic over a field $H\left(T_{1}, \ldots, T_{\ell}\right)$, denote by $\varphi=\sum_{0 \leq i<\operatorname{deg}_{z}(\varphi)}\left(\varphi_{i}^{(1)} / \varphi^{(2)}\right)$ $\cdot Z^{l} \in H\left(T_{1}, \ldots, T_{l}\right)[Z]$ its minimal polynomial over $H\left(T_{1}, \ldots, T_{l}\right)$ deg ${ }_{z}(\varphi)$ with the leading coefficient $\mathcal{l}_{Z}(\varphi)=1$, herewith $\varphi_{i}^{(1)}, \varphi\left(\varphi^{(2)} \in H\left[T_{p}, \ldots, T_{l}\right]\right.$ and the degree $\operatorname{deg}\left(\varphi^{(2)}\right)$ is the least possible. Any polynomial $f \in$ $F\left[X_{0}, \ldots, X_{n}\right]$ can be uniquely represented in a form $f=\sum_{0}$ $\left(a_{i, i_{0}} \ldots, i_{n} / b\right) \eta_{i}^{i} X_{0}^{i_{0}} \ldots X_{n}^{i_{n}} \quad$ where $a_{i, i_{0}}, \ldots, i_{n}, b \in H\left[T_{1}, \ldots, T_{l}\right]$, the degree $\operatorname{deg}(b)$ is the least possible; the polynomials $\left.a_{l}\right]$, are determined uniquely up to a factor from H^{*}. Set $\operatorname{den}_{T_{j}} f_{i}=i_{0}, \ldots, i_{n}, b$ $\max _{i, i_{0}, \ldots, i_{n}}\left\{\operatorname{deg}_{T_{j}}\left(a_{i, i_{0}}, \ldots, i_{n}\right), \operatorname{deg}_{T_{j}}(b)\right\}$. By a length of description $l(h)$ in the case $h \in Q$ we mean its bitwise length, and in the case $h \in \mathbb{F}_{q^{x}}$ we mean $x \log _{2}(q)$. By $l(f)$ denote the maximum of the lengths of descriptions of the coefficients from H in the monomials in T_{1}, \ldots, T_{l} of the polynomials $a_{i, i_{0}, \ldots, i_{n}}, b$

Let $\operatorname{deg} x_{j}(f)<{ }^{\mu}, \quad \operatorname{deg}_{T_{j}}(f)<r_{2}, \quad \operatorname{deg} T_{j}(\varphi)<r_{1}, \operatorname{deg}_{z}(\varphi)<r_{1}$, $\ell(f) \leqslant M_{2}, \ell(\varphi) \leqslant M_{1}$. As a size $L_{1}(f)$ of the polynomial f we conaider $1 p_{\text {t }}$ the theorem I a value $r^{n}+\ell_{h_{2}} l_{2} r_{1} M_{2}$ and analogously $l(\varphi)=r_{1}^{l+1} M_{1}$.

THEOREM I. ([1] , [4]). One can factor the polynomial f over
F within the polynomial in $L_{1}(f), L_{1}(\varphi), q$ time.
Remark that it is possible within the same time to obtain also the absolute factorization of f i.e. the factors irreducible over the algebraic closure \bar{F} of the field $F([2],[4])$. Proceed to the problem of solving systems of algebraic equations. Let an input system of algebraic equations $f_{0}=\ldots=f_{k}=0$ be given (we can assume w.l.o.g. that f_{0}, \ldots, f_{k} are linearly independent). As a matter of fact we suggest an algorithm which decomposes an arbitmary projective variety on the irreducible compounds, so one can suppose w.l.o.g. that $f_{0}, \ldots, f_{k} \in F\left[X_{0}, \ldots, X_{n}\right]$ are homogeneous relatively to X_{0}, \ldots, X_{n} polynomials. Let $\operatorname{deg}_{T_{1}}, \ldots, T_{l}, Z(\varphi)<d_{1}, l\left(f_{i}\right) \leqslant M_{2}$, $\operatorname{deg}_{X_{0}}, \ldots, X_{n}\left(f_{i}\right)<d, \operatorname{leg}_{T_{1}, \ldots, T_{l}}\left(f_{i}\right)<d_{2}$ for all $\left.0 \leqslant i \leqslant k \quad \begin{array}{c}d+n \\ n\end{array}\right) d_{1} d_{2}^{l} M_{2} \quad$ and in
the theorem 2 a size $L_{2}\left(f_{i}\right)=(\varphi)=d_{1}^{l+1} M_{1}$. Denote $L=L_{2}\left(f_{0}\right)+\ldots+L_{2}\left(f_{k}\right)$.

The projective variety $\left\{f_{0}=\ldots=f_{k}=0\right\} \subset \mathbb{P}^{n}(\bar{F})$ of roots of the system $f_{0}=\ldots=f_{k}=0$ is decomposable on the compounds $\left\{f_{0}=\right.$ $\left.\ldots=f_{K}=0\right\}=\bigcup_{\alpha} W_{\alpha}, \quad$ herewith each compound W_{d} is defined and irreducible over the maximal purely inseparable extension $F^{q^{-\infty}}$ of F. Moreover $W_{\alpha}=\bigcup_{\beta} W_{\alpha \beta}$ where the (absolutely irreducible) compounds $W_{\alpha \beta}$ are defined and irreducible over \bar{F}. Denote $c=$ $1+\max _{\alpha} \operatorname{dim} W_{\alpha}$. The algorithm designed in [2], [3], [4]finds all W_{α} and thereupon $W_{\alpha \beta}$ (actually, $W_{\alpha}, W_{\alpha \beta}$ are defined over some finite extensions of the field F which are also constructed by the algorithm). We (and the algorithm) represent every compound W_{α} or $W_{\alpha \beta}$ in two following manners: by its general point [16] and on the other hand by a certain system of algebraic equations such that the compound under consideration coincides with a variety of the roots of this system, in the similar case we say that the system determines the varies ty.

For functions $g_{1}, g_{2}, h_{1}, \ldots, h_{s}$ a relation $g_{1} \leqslant g_{2} P\left(h_{1}, \ldots, h_{s}\right)$ denotes further that $g_{1} \leqslant g_{2} P\left(h_{1}, \ldots, h_{s}\right)$ for an appropriate polynomeal P.

Let $W \subset \mathbb{P}^{n}(\bar{F})$ be a closed projective variety, $\operatorname{codim} \mathbb{p}^{n}(W)=m$, defined and irreducible over some field F_{1} being a finite extension of F, denote by F_{2} the maximal subfield of F_{1} which is a separable extension of F^{2}. Let t_{1}, \ldots, t_{n-m} be algebraically independent over F. A general point of the variety W can be given by the following fields isomorphism

$$
\begin{equation*}
F\left(t_{1}, \ldots, t_{n-m}\right)[\theta] \sim F_{2}\left(X_{j_{1}} / X_{j_{0}}, \ldots, X_{j_{n-m}} / X_{j_{0}}\left(X_{0} / X_{j_{0}}\right)^{q^{\nu}}, \ldots,\left(X_{n} / X_{j_{0}}\right)^{q}\right) \subset F_{1}(W) \tag{1}
\end{equation*}
$$

for suitable q^{ν} (here and further $\nu \geqslant 0$ when $q>0$ and we set $q^{\nu}=1$ when $\operatorname{char}(F)=0$), index $0 \leqslant j_{0} \leqslant n$ and an element θ is algebraic separable over a field $F_{2}\left(t_{1}, \ldots, t_{n-m}\right)$; denote by $\phi(Z)$ its minimal polynomial such that $\mathcal{l}_{Z}(\Phi)=1$. The elements $X_{j} / X_{j_{0}}$ are considered herein as the rational functions on the variety W, herewith W is not situated in a hyperplane $\left\{X_{j_{0}}=0\right\}$, under the isomorphism (1) $t_{i} \rightarrow X_{j i} / X_{j_{0}}, 1 \leqslant i \leqslant n-m$. The algorithms further represent the isomorphism (1) by the images of rationail functions $\left(X_{j} / X_{j_{0}}\right)^{q}$ in the field $F_{2}\left(t_{1}, \ldots, t_{n-m}\right)[\theta]$. Sometimes, when there is no misunderstanding, we identify a rational function with its image.

THEOREM 2. ([2] , [3] , [4]). a) An algorithm is suggested which for every compound W_{α} produces its general point and consructs a certain family of homogeneous polynomials $\psi_{1}^{(\alpha)}, \ldots, \psi_{N}^{(\alpha)} \in$ $\in F\left[X_{0}, \ldots, X_{n}\right.$ such that a system $\psi_{1}^{(\alpha)}=\ldots=\psi_{N}^{(\alpha)}=0$ determines the variety W_{α}. Denote $m=\operatorname{coditn} W_{\alpha}, \theta_{\alpha}=\theta, \Phi_{\alpha}=\phi$. Then $q^{\gamma} \leqslant d^{2 m}, \operatorname{deg}_{z}\left(\phi_{\alpha}\right) \leqslant$ $\operatorname{deg} W_{\alpha} \leqslant d^{m}$, for all i, j the degrees $\operatorname{deg}_{T_{1}}, \ldots, T_{e}, t_{1}, \ldots, t_{n-m}\left(\phi_{\alpha}\right), \operatorname{deg}_{q_{1}, \ldots T_{2}, t_{1} \ldots t_{n-m}\left(x_{j} / x_{j} q^{\prime}\right.}$ (the latter two degrees are defined according to the isomorphism (1) analogously to how $\operatorname{deg}_{T_{i}}(f)$ was defined above) are less than $d_{2} P\left(d^{m}, d_{1}\right)$, apart that $l\left(\phi_{\alpha}\right), l\left(\left(X_{j} / X_{j_{j}}\right)^{q^{r}}\right) \leqslant\left(M_{1}+M_{2}+(n+l) \log d_{2}\right) P\left(d^{m}, d_{1}\right)$. A number of equations $N \leqslant m^{2} d^{4} m^{\prime}$, the degrees $\log _{x_{0}} \ldots, x_{n}\left(\psi_{s}^{(\alpha)}\right) \leqslant d^{2}$ and the degrees $\operatorname{deg}_{T_{1}}, \ldots, T_{l}\left(\psi_{s}^{(d)}\right) \leqslant d_{2} \rho^{(d)}\left(d^{m}, d_{1}\right)$; besides that the algorithm represents each $\psi_{s}^{(d)}$ in a form $\psi_{s}^{(d)}=\bar{\psi}_{s}^{(d)}\left(Z_{s, 0}, \ldots, Z_{s, n-m+2}\right)$ for suitable linear forms $Z_{s, j}$ in the variables $X_{0, \ldots}, X_{n}$ with the coefficients from H and the polynomials $\bar{\psi}_{s}^{(d)} \in F\left[Z_{s, 0}, \ldots, Z_{s, n-m+2}\right]_{s}$ thereto $\ell\left(\bar{\psi}_{s}^{(d)}\right) \leqslant\left(M_{1}+M_{2}+(n+l) \log d_{2}\right) P\left(d^{m}, d_{1}\right)$, lastly the size, $L_{\ell}\left(Z_{8, j}\right) \leqslant P\left(n, \log d d_{1} d_{2}\right)$ for all s, j. The total running time of the algorithm can be bounded from above by $P^{9}\left(M_{1}, M_{2},\left(d_{1}^{n} d_{1} d_{2}\right)^{c+l}\right)$ Obviously, the latter value is less than $\mathcal{P}\left(L^{c+l}(q+1)\right) \leqslant P\left(L^{\log ^{L} L}(q+1)\right)$ if $\quad n=\theta(d)$.
b) An algorithm is suggested which for every absolutely irreducible compound $W_{\alpha \beta}$ finds the maximal separable subfield $F_{2}=F\left[\xi_{d \beta}\right]$ of the minimal field of definition F_{1} (containing F) of the variety $W_{\alpha \beta}$. The algorithm produces a general point of $W_{\alpha \beta}$ and some system of equations with the coefficients from the field F_{2} determining the variety $W_{\alpha \beta}$. For the parameters of the general point and the system of equations hold the same bounds as in the item a) of the theorem. Denote by $\varphi_{\alpha \beta} \in F[Z]$ the minimal polynomial for $F_{\alpha \beta \beta}$ such that $\ell_{z}\left(\varphi_{\alpha \beta}\right)=1$, then $\operatorname{deg}_{z}\left(\varphi_{\alpha \beta}\right) \leqslant \operatorname{deg} W_{\alpha \beta}$ and
 $\left.(n+l) \log d_{2}\right) \rho\left(d_{1}^{m}, d_{i}\right)$. The time bound is the same as in the item a).

REMARK. If we are supplied with a general point (with the same bounds on its parameters $8 s$ in the theorem 2) of a closed irreducible variety $V_{1}=\pi\left(W_{d}\right)$ where $\pi\left(X_{0} \ldots . X_{n}\right)=\left(X_{0}: \ldots X_{m}\right)$ is a lenear projection $\pi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ and W_{α} is some compound of the variety $\left\{f_{0}=\ldots=f_{k}=0\right\} \subset \mathbb{P}^{n}(F)$, then we can produce a system of equations determining V_{1} with the same bounds on the parameters as for the family $\psi_{S}^{(d)}$ in the theorem 2 within the same time bound.

In conclusion of the section 1. The authors make a conjecture that one can find the compounds within time $J^{\rho}\left(d^{\left(c^{\prime}+l+1\right) n},\left(d_{1} d_{2}\right)^{n+l}, L\right)$ where $c^{\prime}=\max \min \left\{\operatorname{dim} W_{d}+1, \operatorname{codim} W_{d}\right\}$.

α

2. Projecting a constructive set

Let an input formula $\exists X_{1} \ldots \exists X_{S}\left(\&_{1 \leqslant j \leqslant k}\left(f_{j}=0\right) \&(g \neq 0)\right)$ be given, herein the parameters of the polynomials $f_{j}, g \in F\left[Z_{1}, \ldots\right.$, $\left.Z_{n-s}, X_{1}, \ldots, X_{s}\right]$ satisfy the same bounds as of f_{j} in the section 1. The goal in the present section is to produce an equivalent quantifierfree formula $V_{1 \leqslant i \leqslant N}\left(\&_{1 \leqslant j \leqslant x_{i}}\left(f_{i j}^{(1)}=0\right) \&\left(g_{i}^{(1)} \neq 0\right)\right) \quad$ where $f_{i j}^{(1)}, g_{i}^{(1)} \in F\left[Z_{1}, \ldots, Z_{n-s}\right]$.

The input formula is equivalent to $\exists X_{0} \exists X_{1} \ldots \exists X_{S} \exists X_{S+1}\left(\left(X_{0} \neq 0\right)\right.$ \& $\left.\&_{1 \leqslant j \leqslant K}\left(\bar{f}_{j}=0\right) \&\left(\bar{f}_{0}=X_{S+1} \bar{g}-X_{0}^{1+\operatorname{deg} \bar{g}}=0\right)\right)$, therein X_{0}, X_{S+1} are new variables and $f_{j}=X_{0} d_{0} X_{1} \ldots X_{s}\left(f_{j}\right) f_{j}\left(Z_{1} \ldots, Z_{n-s}, X_{1} / X_{0}, \ldots, X_{s} / X_{0}\right), \bar{g}=X_{0}$ deg $_{x_{1}} \ldots x_{s}(g)$ $g\left(Z_{1}, \ldots, Z_{n-s}, X_{1} / X_{0}, \ldots, X_{s} / X_{0}\right)$ cf. [7]). The desired projection, io. the canstructive set consisting of all the points $\left(z_{1}, \ldots, z_{n-s}\right) \in \AA^{n-5}(\bar{F})$ satisfying the latter formula, we denote by \cap. One can assume
 by the family of polynomials $\left\{f_{j} X_{i} d-1-\operatorname{deg} F_{j}\right\}_{0 \leqslant i \leqslant s+1} n-s$

Introduce a variety $U=\left\{\left(z_{1}, \ldots, z_{n-s} ;\left(x_{0} ; \ldots: x_{s+1}\right)\right) \in\left(A^{n-s} \times P^{s+1}\right)(\bar{F})\right.$: $\left.\&_{0 \leqslant j \leqslant k}\left(\bar{q}_{j}=0\right)\right\} \quad$ and a natural linear projection $\pi: A^{n-5} \times \mathbb{P}^{s+1}$
$\rightarrow A^{n-s}$, then the desired $\prod=\pi\left(U \cap\left\{X_{0} \neq 0\right\}\right) \quad$. For each point $z=\left(z_{1}, \ldots, z_{n-s}\right) \in A^{n-s}(F)$ consider the variety (the layer) $U_{z}=\pi^{-1}(z) \cap U \subset\{z\} \times \mathbb{P}^{s+1} \simeq \mathbb{P}^{s+1}$. The condition $z \in \Pi$ is true if for an appropriate $0 \leqslant m \leqslant s+1$ the layer U_{Z} has at least one compound W with the dimension $s+1-m$ such that $W \not \subset\left\{X_{0}=0\right\}$ -

Pix a point Z in the following speculations for some time. It is not difficult (see egg. §2 [2]) to indicate a family of $N^{\prime}=$ $=k d^{m}+1$ vectors $u^{(1)}, \ldots, u^{\left(N^{\prime}\right)} \in H^{k+1}$ any $k+1$ from which are linearly independent (we suppose here and below that H contains sufficiently many element, extending it if necessary). Denote $h_{i}=$ $=\sum_{0 \leqslant j \leqslant k} u_{j}^{(i)} \bar{f}_{j,}$ herewith $u^{(i)}=\left(u_{0}^{(i)}, \ldots, u_{k}^{(i)}\right)$. The relevant compound W of U_{z} exists ifs there are such indices $1 \leqslant i_{1} \leqslant \ldots<i_{m} \leqslant N^{\prime}$
that W is a compound of the variety $\left\{h_{i_{1}}(z)=\ldots=h_{i_{m}}(z)=0\right\} \subset \mathbb{P}^{3+1}$, herein the coordinates of the point Z are substituted instead of Z_{1}, \ldots, Z_{n-6}, ie. $h_{i_{j}}(z) \in \bar{F}\left[X_{0}, \ldots, X_{s+1}\right]$ (cf. $\wp 4 a[2]$).

One can construct (see § 2 [2]) a family $\gamma \forall V=J \not V L_{s, s-m, d m}$ consisting of $(s-m+1)$-tuples of linear forms in variables X_{1}, \ldots, X_{S+1} with the coefficients from H such that for every variety $W_{1} \subset p^{s}$ satisfying the inequalities $\operatorname{dim} W_{1} \leqslant s-m, \operatorname{deg} W_{1} \leqslant d^{m}$ there is $(5-m+1)$-tuple $\left(Y_{1}, \ldots, Y_{5-m+1}\right) \in$ Jr for which $W_{1} \cap\left\{Y_{1}=\ldots\right.$ $\left.=Y_{s-m+1}=0\right\}=\varnothing$. Thereto card $(\eta l) \leqslant\left((s+1) d^{m}+1\right)$. Let us take a variety $W \cap\left\{X_{0}=0\right\}$ as W_{1}. Supplement linear forms $Y_{0}=X_{0}, Y_{1}$,
 H of the space of linear forms in X_{0}, \ldots, X_{5+1} (in arbitrary manner). Replacing variables denote $\hbar_{i}\left(z, Y_{0}, \ldots, Y_{S+1}\right)=h_{i}(z)$ and $\tilde{h}_{i}(z)=$ $=\hat{h}_{i}\left(z, Y_{0}, 0, \ldots, 0, Y_{s-m+2}, \ldots, Y_{S+1}\right)$. Thus, the condition under considertion about the existence of W is equivalent to that there are indices $1 \leqslant i_{1}<\ldots<i_{m} \leqslant N^{\prime}$ and linear forms Y_{1}, \ldots, Y_{s-m+1} for which the variety $\left\{\tilde{h}_{i_{1}}(z)=\ldots=\tilde{h}_{i_{m}}(z)=0\right\} \subset \mathbb{P}^{m}$ as one of its compounds has a certain point $\Omega=\left(\xi_{0}: \xi_{s-m+2}: \ldots: \xi_{s+1}\right)$ such that the point $\Omega=\left(z_{,}\left(\xi_{0}: 0: \ldots: 0: \xi_{s-m+2}: \ldots: \xi_{s+1}\right)\right) \in U_{Z} \cap\left\{Y_{0} \neq 0\right\}$ (in force of the theorem about the dimension of intersection [14]). Introduce a system of homogeneous algebraic equations

$$
\begin{equation*}
\tilde{h}_{i_{j}}(z)-Y Y_{s-m+j+1}^{d-1}=0 ; \quad 1 \leqslant j \leqslant m \tag{2}
\end{equation*}
$$

in the variables $Y_{0}, Y_{S-m+2}, \ldots, Y_{S+1}$ with the coefficients from $\vec{F}[Y] \subset \bar{F}(Y)=K \quad$ where Y is algebraically independent over F. One can prove (see also lemma $11 \S 5$ [3]) that the set of roots in $\mathbb{P}^{m}(\bar{K})$ of the system (2) is finite. The variety of roots is decomposable on the irreducible and defined over K nulldimensional compounds $V_{P_{k}}$ corresponding to the minimal prime ideals p $p_{k} \subset K\left[Y_{0}, Y_{s-m+2}\right.$, $\left.\ldots, Y_{s+1}\right] /\left(\left\{\mathbb{H}_{i j}(z)-Y Y_{s-m+j+1}\right\}_{1 \leqslant j \leqslant m}\right)$.The system (2) can be considered apart that as the system in the variables $Y, Y_{0}, Y_{s-m+2}, \ldots, Y_{s+1}$ with the coefficients from F which determines a variety $\tilde{U}_{z}^{(f)} C$ $A^{m+2}(\vec{F})$. It is not difficult to show (cf .lemma 12 §5 [3]) that there is a bijective correspondence between the points $V_{p_{k}}$ and on the other side such compounds $V_{p_{f}}$ of the variety $U_{z}^{(F)}$ that V_{p} is not contained in any union of finite number of hyperplanes of the kind $\left\{V-c_{1}=0\right\} \subset A^{m+2}$ for $c_{1} \in \bar{F}$, notice that $\operatorname{dim} V_{p}=2$. Now we exhibit an important auxiliary device from [11] (see also $\$ 3$ [2]). Let $g_{0}, \ldots, g_{k-1} \in F\left[X_{0}, \ldots, X_{n}\right]$ be homogeneous polynomissals of degrees $\delta_{0}^{\sigma} \geqslant \ldots \geqslant \delta_{k-1}^{\gamma}$ respectively. Introduce now variables
u_{0}, \ldots, u_{n} algebraically independent over $F\left(X_{0}, \ldots, X_{n}\right)$. Set $g_{k}=X_{0} u_{0}+\ldots+X_{n} u_{n} \in F\left(u_{0}, \ldots, u_{n}\right)\left[X_{0}, \ldots, x_{k}\right]$ and $D=\sum_{0<i \leqslant n} \delta_{i}-n$, herein $\delta_{j}^{\sim}=1$ if $k \leqslant j \leqslant n$. Consider linear over $F\left(U_{0}, \ldots, U_{n}\right)$ mapping $\mathcal{O}: \mathcal{B}_{0} \oplus \ldots \oplus \mathcal{B}_{K} \rightarrow B$ where \mathcal{B}_{i} (correspondingly \mathcal{B}) is the space of homogeneous polynomials in X_{0}, \ldots, X_{n} over the field $F\left(U_{0}, \ldots, U_{n}\right)$ of degree $D-\delta_{i} \quad$ (correspondingly D) for $0 \leqslant i \leqslant k$, namely $o l\left(b_{0}, \ldots, b_{k}\right)=\sum_{0 \leqslant i \leqslant k} b_{i} g_{i}$. Any element $b=\left(b_{0}, \ldots, b_{k}\right) \in$ $\mathcal{B}_{0} \oplus \ldots \oplus \mathcal{B}_{k}$ can be written in the form $b=\left(b_{0,1}, \ldots, b_{0, s_{0}}, b_{i, 1}, \ldots, b_{1, s_{1}}\right.$,
$\left.\ldots, b_{k, 1}, \ldots, b_{k, s_{k}}\right)$ where $s_{i}=\left(\begin{array}{c}n+D-\delta_{i} \\ n\end{array} \quad\right.$ and $b_{i, 1}, \ldots, b_{i, 5 i}$ are
the coefficients of the polynomial b_{i} provided that a certain nuthe coefficients of the polynomial b_{i} provided that a certain numeration of all the monomials of the degree $D-\delta_{i}$ is fixed. Analogously one can write the elements of the space \mathcal{B}. In the chosen system of coordinates the mapping O has a matrice A of the size $\binom{n+D}{n} \times\left(\sum_{0 \leqslant i \leqslant k} s_{i}\right) \quad$. One can represent $A=\left(A^{\prime}, A^{\prime \prime}\right)$ where A^{\prime} (call it the number part of A) contains $\sum_{0 \leqslant i \leqslant k-1} s_{i}$ columns and $A^{\prime \prime}$ (call it the formal part) contains 5_{K} columns, besides that the entries of A^{\prime} belong to F, the entries of $A^{\prime \prime}$ are linear forms over F in variables U_{0}, \ldots, U_{n} (cf. [6]). There is proved in [10] that the system $g_{0}=\ldots=g_{k-1}=0$ has no roots in $\mathbb{P}^{n}(\bar{F})$ ifs the ideal $\left(g_{0}, \ldots, g_{k-1}\right) \supset\left(X_{0,1}, \ldots, X_{n}\right)^{D^{1}}$. Besides that, the following proposition is ascertained in [11].

PROPOSITION: ($[11]$). ${ }^{1}$) The system $g_{0}=\ldots=g_{k-1}=0 \quad\left(n+D^{\text {has a }}\right.$

2) all $u \times r$ minors of A generate a principal ideal moose generator $R \in F\left[U_{0}, \ldots, U_{n}\right]$ is their g.c.d.;
 is a linear form over \bar{F}, moreover $\quad\left(\xi_{0}^{(i)}: \ldots: \xi_{n}^{(i)}\right)$ is a root of the system and the number of occuring of the forms proportional to L_{i} for each i in the product equals to the multiplicity of the corresponding root. Apart that $\operatorname{deg} R=D_{1}=\gamma-\operatorname{rg}\left(A^{\prime}\right)$.

The algorithm designs the matrix A with the entries from the ring $F\left[Y, Z_{1}, \ldots, Z_{n-s}, U_{0}, U_{s-m+2} \ldots, U_{s+1}\right]_{c o r r e s p o n d i n g}$ to the moifred system (2) in which $Z_{1}, \ldots, Z_{\text {hhs }}$ are considered as variables (instead of z_{1}, \ldots, z_{n-s}) according to the just exhibited device. Denote by A_{z} the matrix obtained from A by means of substituting the coordinates of the point z instead of Z_{1}, \ldots, Z_{n-5}. Let the polynomial $R_{z} \in \mathcal{F}\left[Y, U_{0}, U_{s-m+2}, \ldots, U_{s+1}\right]$ correspond to the matrix A_{z} as in the proposition. one can suppose m.1.0.g. that $Y \nless R_{z}$ (dividing R_{z} on the greatest possible power of the variable Y).

Regard a certain representation of the union $U_{\gamma_{F}} V_{p_{F}}=\left\{S_{0}=\ldots\right.$ $\left.=S_{K^{\prime}-1}=0\right\}$ for suitable polynomials $S_{i} \in \bar{F}\left[Y, Y_{0}, Y_{s-m+2}, \ldots, Y_{s+1}\right]$ homogeneous relatively to $Y_{0}, Y_{S-m+2}, \ldots, Y_{s+1}$. Considering a system $S_{i}\left(0, Y_{0}, Y_{S-m+2}, \ldots, Y_{S+1}\right)=0 ; 0 \leqslant i \leqslant K^{\prime}-1$ and basing on the proposition (see also lemma $16 \S 5$ [3]), one proves that $R_{z}\left(0, U_{0,} U_{s-m+2}, \ldots, U_{s+1}\right)=\prod_{i} L_{i}^{c_{i}}$ and moreover the linear forms $L_{i}=\Sigma_{j} \xi_{j}^{(i)} U_{j} \quad$ correspond bijeclively to the points $\left(\xi_{0}^{(i)}: \xi_{s-m+2}^{(i)}: \ldots: \xi_{s+1}^{(i)}\right) \in W_{z}^{\prime} \subset \mathbb{p}^{m} \quad$ where the cone $\cos \left(W_{z}^{\prime}\right)=\left(U_{\gamma_{F}} V_{\gamma_{F}}\right) \cap\{Y=0\}$. Thereupon it is not dipficult to check that $\mathcal{\Omega} \in W_{z}^{\prime}$ (cf. lemma $13 \S 5$ [3]). Summarizing and utilizing the notations introduced above, we have acertrained the following.

LहाMA 1. The formula $\exists X_{1} \ldots J X_{S}\left(\&_{1 \leqslant j \leqslant k}\left(f_{j}=0\right) \&(g \neq 0)\right)$ is valid in a point $z \in F^{n-S}$ ifs for appropriate $0 \leqslant m \leqslant S+1$ there exist such indices $1 \leqslant i_{1}<\ldots<i_{m} \leqslant N^{\prime}$, a set of linear forms $\left(Y_{1}, \ldots, Y_{s-m+1}\right) \in M$ and a point $\Omega=\left(z,\left(\xi_{0}: 0: \ldots: 0: \xi_{s-m+2}: \ldots: \xi_{s+1}\right)\right)$ $\in U_{z} \cap\left\{X_{0} \neq 0\right\}$ (in the coordinates $Y_{0}, Y_{1}, \ldots, Y_{S+1}$, that the linear form $\left(\xi_{0} U_{0}+\xi_{s-m+2} U_{s-m+2}+\ldots+\xi_{s+1} U_{s+1}\right) \mid R_{z}\left(0, U_{0}, U_{s-m+2}, \ldots, U_{s+1}\right)$.

Now make more precise the definition of a version of Gaussian algorithm ($\nabla . G . a)$ for reducing the matrices to the generalized trapezium form (cf. [7]).V.G.a. is determined by a succession of pairs of indices (pivots) $\left(i_{0}, j_{0}\right),\left(i_{1}, j_{1}\right), \ldots,\left(i_{\rho}, j_{\rho}\right) \quad$. Herewith $i_{\alpha} \neq i_{\beta}$ and $j_{\alpha} \neq j_{\beta}$ if $\alpha \neq \beta \quad A^{(0)}$ Poi) any initial matrix $A^{(0)}$ v.G.a. yields the chain of matrices $A^{(0)}, A^{(1)}, \ldots, A^{(\rho+1)}$. Introduce a notation $A^{(d)}=\left(a_{i j}^{(\alpha)}\right)$. Apart that $a_{i_{d j}}^{(\alpha)} \neq 0$ and $a_{i j}^{(\alpha)}=a_{i j}^{(\alpha)}+$
 i_{0}, \ldots, i_{ρ} or $i=i_{\alpha}, j=j_{\beta}$ and $\alpha>\beta$, besides that $a_{i_{\alpha} j_{\alpha}}^{(p+1)}=a_{i_{\alpha} j_{\alpha}}^{(\alpha)} \neq 0$.

Denote by $\Delta_{i j}^{(\alpha)}$ the determinant of $(\alpha+1) \times(\alpha+1)$ matrix formed by the rows with the indices $i_{0}, \ldots, i_{\alpha-1}, i$ and the columns with the indices $j_{0}, \ldots, j_{\alpha-1}, j$ provided that $i \neq i_{0}, \ldots, i \neq i_{\alpha-1}$ and $j \neq j_{0}, \ldots, j \neq j_{\alpha-1}$. Then $a_{i j}^{(\alpha)}=\Delta_{i j}^{(\alpha)} / \Delta_{i_{\alpha-1} j_{\alpha-1}}^{(\alpha-1)} \quad$ (see e.g.
lena 7 [7]).
flow we turn ourselves to considering an arbitrary point $z \in$ A^{h-S}. Pix for some time $0 \leqslant m \leqslant 5+1$ indices $1 \leqslant i_{1} \leqslant \ldots<i_{m} \leqslant N^{\prime}$ and a set of linear forms $\left(Y_{1}, \ldots, Y_{s-m+1}\right) \in \mathcal{M}$ (see Lemma 1). By
\uparrow denote the number of rows of the matrix A. Produce a certain succession of v.G.a.s $\Gamma_{1}, \Gamma_{2}, \ldots$ over a field $F\left(Y, Z_{1}, \ldots, Z_{n-5}, U_{0}\right.$, $U_{s-m}+2, \ldots, U_{s+1}$) and a succession of polynomials $P_{1}, P_{2}, \ldots \in$ $F\left[Y, Z_{1}, \ldots, Z_{n-s}, U_{0}, U_{s-n+2}, \ldots, U_{s+r}\right]_{t h}$ hereto v.G.a. Γ_{i} can be applied
correctly to the matrix A_{z} for all points $z=\left(z_{1}, \ldots, z_{n-s}\right)$ of (possibly empty) quasiprojective variety ([14]) $W_{i} \subset A^{n-s}$ which is defined by the following conditions: inequality $0 \neq P_{i}\left(Y, z_{1}, \ldots\right.$, $\left.z_{n-s}, U_{0}, U_{s-m+2}, \ldots, U_{s+1}\right) \in F\left[Y, U_{0}, U_{s-m+2}, \ldots, U_{s+1}\right]$ and equalities $0=P_{j}\left(Y, z_{1}, \ldots, z_{n-s}, U_{0}, U_{s-n+2}, \ldots, U_{s+1}\right)$ for $1 \leqslant j \leqslant i-1$ are fulfilled. Apart that the variety $\left\{\left(z_{1}, \ldots, z_{n-s}\right): P_{i}\left(Y_{, z_{1}, \ldots, z_{n-s},}, U_{0}, U_{s-m+2}, \ldots, U_{s+1}\right)=0\right.$ for all $i\}=\varnothing$, henceforth $U_{i} W_{i}=\mathbb{A}^{n-s}$. Exposed below construction is close to the proof of the lemma 9 [7].

Later on we apply the v.G.a.s $\Gamma_{1}, \Gamma_{2}, \ldots$ to the initial matrix A. As Γ_{1} one can take an arbitrary v.G.a. Set a polynomial $P_{1}=\prod_{0 \leqslant d \leqslant \rho_{1}}$
$\Delta_{i_{\alpha} j_{\alpha}}^{(d)} \quad$ (for v.G.a. regarded at the current step the same no cations as above are utilized). assume that $\Gamma_{1}, \ldots, \Gamma_{i} ; P_{1}, \ldots, P_{i}$ are already produced. Then as Γ_{i+1} we take $v . G . a$ in which for every $0 \leqslant \alpha \leqslant \rho_{i+1}$ the column index j_{α} of the pivot in the matrix $A^{(\alpha)}$ is the least possible, moreover $j_{\alpha}>\dot{j}_{\alpha-1}$ and the polynomials $P_{1}, \ldots, P_{i}, \prod_{0 \leqslant \beta \leqslant \alpha} \Delta_{i \beta j \beta}^{(\beta)}$ are linearly independent over F. Pially, put $P_{i+1}^{0 \leqslant \beta \leqslant \alpha} \prod_{0 \leqslant \alpha \leqslant \rho_{i+1}} \sum_{i \beta j \beta}^{(\alpha)} \Delta_{i_{\alpha, \alpha}}$. The algorithm stops producing v.G.a.s $\Gamma_{1}, \Gamma_{2}^{i+1}, \ldots$ when it is impossible to produce Γ_{i+1} satiseying formulated above requirements (if $\rho_{i+1}<\tau-1$ then $W_{i+1}=\varnothing$).

One can ascertain that if $W_{i} \neq \varnothing$ then for each $z \in W_{i}$ the polynomial R_{z} (see proposition) is obtained as the value in the point z of the polynomial $\operatorname{det} \Delta_{i}$ (up to a factor γ^{ε} for a suitable ε), where $\gamma \times \gamma$ submatrix Δ_{i} of the matrix A is generated by the columns with the indices j_{0}, \ldots, j_{r-1} corresponding to v.G.a. Γ_{i}. This follows from the fact that in the matrix $\left(A^{(\alpha)}\right)_{z}$ an entry $a_{\beta j}^{(d)}=0$ when $\beta \neq i_{0}, \ldots, i_{\alpha-1}$ and $j<j_{\alpha}$ in force of the choice of j_{d}. Therefore, if for an appropriate d a cell $\left(i_{d-1}, j_{d-1}\right)$ belongs to the number part A^{\prime} of A and a cell (i_{α}, j_{α}) belongs to the formal part $A^{\prime \prime}$ of A_{d-1} then $\operatorname{vg}\left(\left(A^{\prime}\right)_{z}\right)=\alpha$ Write $\operatorname{det} \Delta_{i}=\Sigma_{\varepsilon} \Delta_{i}^{(\varepsilon)} \bigvee \varepsilon$, herewith $\Delta_{i}^{(\varepsilon)}\left(Z_{1}, \ldots, Z_{n-s}\right) \in F\left[Z_{1}, \ldots, Z_{n-s)}\right.$ $\left.U_{0}, U_{s-m+\ell}, \ldots, U_{s+1}\right]$. Introduce varieties $W_{i}^{(\varepsilon)}=\left\{\left(z_{1}, \ldots, z_{n-s}\right) \in W_{i}: \Delta_{i}^{(0)}\left(z_{1}\right.\right.$, $\left.\left.\ldots, z_{n-s}\right)=\ldots=\Delta_{i}^{(\varepsilon-1)}\left(z_{1}, \ldots, z_{n-s}\right)=0 ; \Delta_{i}^{(\varepsilon)}\left(z_{1}, \ldots, z_{n-s}\right) \neq 0\right\}$ for $\varepsilon \geqslant 0$. The variety $W_{i}^{(\varepsilon)}$ is quasiprojective as the intersection of two quasiprojective varieties, namely, if $\Xi(j)=\left\{\&_{\beta}\left(G_{\beta}^{(j)}=0\right) \& V_{\gamma}\left(C^{(j)} \neq 0\right)\right\} ; j=1,2$
 Moreover $W_{i}^{\left(\varepsilon_{1}\right)} \cap W_{i}^{\left(\varepsilon_{\ell}\right)}=\varnothing$ for $\varepsilon_{1} \neq \varepsilon_{2}$ and $\bigcup_{\varepsilon} W_{i}^{(\varepsilon)}=W_{i}$. Thereupon represent $\Delta_{i}^{(\varepsilon)}=\sum_{0 \leqslant 1 \leqslant D_{2}} e_{i}^{(\varepsilon, j)} U_{0}^{D_{2}-j} \quad$ where $e_{i}^{(\varepsilon, j)}\left(Z_{1}, \ldots, Z_{n-s}\right) \in F\left[Z_{1}, \ldots, Z_{n-5}, \mathcal{U}_{s-m+2}, \ldots, \mathcal{U}_{s+1}\right]$. Consider quasiprojec-

Hive varieties $W_{i}^{(\varepsilon, j)}=\left\{\left(z_{1}, \ldots, z_{n-s}\right) \in W_{i}^{(\varepsilon)}: e_{i}^{(\varepsilon, x)}\left(z_{1}, \ldots, z_{n-s}\right)=0, \quad 0 \leq x<j ;\right.$ $\left.e_{i}^{(\varepsilon, j)}\left(z_{1}, \ldots, z_{n-s}\right) \neq 0\right\}$, then $W_{i}^{\left(\varepsilon, j_{1}\right)} \cap W_{i}^{\left(\varepsilon, j_{2}\right)}=\varnothing$ when $j_{1} \neq j_{2}$ and $U_{0 \leqslant j \leqslant D_{2}} W_{i}^{(\varepsilon, j)}=$ $W_{i}^{(k)}$. Observe that the proposition and the ascertained earlier entail that $\left(\Delta_{i}^{(\varepsilon)}\right)_{z}=\Delta_{i}^{(\varepsilon)}\left(z_{1} \ldots, Z_{n-5}, U_{0}, U_{s-m+2}, \ldots, U_{s+1}\right)=\Pi_{x} L_{x}^{c_{x}} \quad$ is a product of linear forms for $z \in W_{i}^{(\varepsilon)}$. This implies that for $z \in W_{i}^{(\varepsilon, j)}$ the polynomial $\left(e_{i}^{\left(\varepsilon_{i} j\right)}\right)_{z}$ equals to the product of powers $L_{x}^{c_{x}}$ of all linear forms L_{x} in which the coefficient at U_{0} vanishes. Henceforth $\left(e_{i}^{(l, j)}\right)_{z} \mid\left(\Delta_{i}^{(\varepsilon)}\right)_{z}$ in the ring $\bar{F}\left[U_{0}, U_{s-m+2}, \ldots, U_{s+1}\right]$. Our nearest purpose is to calculate the quotient $\left(\Delta_{i}^{(\varepsilon)}\right)_{z} /\left(e_{i}^{(\varepsilon, j)}\right)_{z}$ for $z \in W_{i}^{(\ell, j)}$. If $I=\left(I_{s-m+2}, \ldots, I_{s+1}\right)$ is a multinndex then denote $U^{I}=U_{s-m+2}^{I_{s-m+2}} \ldots U_{s+1}^{I_{s+1}}$, apart that by $I<J$ denote the lexicographical order on multiindices. Write $e_{i}^{(\varepsilon, j)}=\sum_{I} \gamma_{I} U^{I}$ and let $0 \neq \gamma_{I} \in F\left[Z_{i}, \ldots, Z_{n-s}\right]_{\text {for }}$ a certain I (fixed in further speculations). Introduce a quasiprojective variety $W_{i, I}^{(\varepsilon, j)}=\left\{\left(z_{1}, \ldots, Z_{n-s}\right) \in W_{i}^{(\varepsilon, j)}\right.$:
$\gamma_{J}\left(z_{1}, \ldots, z_{n-s}\right)=0 \quad$ when $J>I$ and $\left.\gamma_{I}\left(z_{1}, \ldots, z_{n-s}\right) \neq 0\right\}$
$W_{i, I_{1}}^{(\varepsilon, j)} \cap W_{i, J_{1}}^{(\varepsilon, j)}=\varnothing \quad$ if $I_{1} \neq J_{1}$ and $U_{I} W_{i}^{(\varepsilon, j)}=W_{i}^{(\varepsilon, j)}$. Evidently
paint $\left(z_{1}, \ldots, z_{n-s}\right) \in W_{i, I}^{(\varepsilon, j)}$ the quotient $\left(\Delta_{i}^{(\varepsilon)}\right)_{Z} /\left(e_{i}^{(\varepsilon, j)}\right)_{z}$ can be any
obtained by means of the described below process of dividing polynominal on polynomial and after that substituting the coordinates Z_{1}, \ldots, Z_{n-5} instead of variables Z_{1}, \ldots, Z_{n-s}.

Let $0 \neq \psi \in F\left(Z_{4}, \ldots, Z_{n-s}\right)\left[U_{s-m+2}, \ldots, U_{s+1}\right]$. Denote by $\ell=x(\Psi) \neq 0$ the monomial of ψ in variables' $U_{s-m+2}, \ldots, U_{3+1}$ for which in Ψ - lex (Ψ) occur only the monomials less than lex (ψ), set $\bar{\psi}=\psi\left(U_{s-m+i}^{m}, U_{s-m+3}^{m-1}, \ldots, U_{\delta+1}\right)$ and $\sigma(\psi)=\operatorname{deg}(\bar{\psi})$. Delete from $e_{i}^{(\sigma, j)}$ all the monomials $\gamma_{y} U^{J}$ (except $\gamma_{I} U^{I}$) with $\sigma\left(U^{J}\right) \geqslant \sigma^{\sim}\left(U^{I}\right)$
and denote obtained polynomial by $\widetilde{\widetilde{e}}_{i}^{(\varepsilon, j)}$. Then $\left(e_{i}^{(\varepsilon, j)}\right)_{z}=\left(\widetilde{e}_{i}^{(\epsilon, j)}\right)_{z}$, when $z \in W_{i, I}^{(\varepsilon, j)}$ since $\left(e_{i}^{(\varepsilon, j)}\right)_{z}$ is the product of linear forms. For any index $j<x \leqslant D_{2} \quad$ the algorithm designs a succession of nonzero polynomials $\psi_{0}=e_{i}^{(\varepsilon, x)}, \psi_{1}, \ldots, \psi_{\rho}$. Represent uniquely $\psi_{t}=\psi_{t}^{(1)}+\psi_{t}^{(2)}+$ $+\psi_{t}^{(3)}$, herewith $\overline{\psi_{t}^{(1)}}, \bar{\psi}_{t}^{(s)}$ are homogeneous, $\sigma\left(\psi_{t}^{(3)}\right)<\sigma\left(\psi_{t}\right)=\sigma\left(\psi_{t}^{(1)}\right)=$ $=\sigma^{\prime}\left(\psi_{t}^{(4)}\right)$ and $\psi_{t}^{(1)} / U^{I} \in F\left(Z_{1}, \ldots, Z_{n-s}\right)\left[U_{s-m+2}, \ldots, U_{s+1}\right]$, lastly each monomial from $\psi_{t}^{(2)}$ is not divided by U^{I}. Then $\psi_{t+1}=$ $-\gamma_{I}\left(\psi_{t}-\psi_{t}^{(2)}\right)-\psi_{t}^{(1)} \widetilde{e}_{t}^{(\epsilon, j)} / U^{I}$ for every $0 \leqslant t \leqslant \rho-1$ (obviously, $\sigma^{\prime}\left(\psi_{t+1}\right)<$ $<r^{r}\left(\psi_{t}\right)$. Regard a polynomial $\psi_{i, I}^{(\varepsilon, j, x)} \sum_{0 \leq t \leq \rho-1} \psi_{t}^{(1)} \gamma_{I}^{\rho-t-1} / U^{I} \in$ $F\left[Z_{1}, \ldots, Z_{n-s}, U_{s-m+2, \ldots,}, U_{s+1}\right]$ and $\operatorname{set} \psi_{i, I}^{(\epsilon, j)}=\gamma_{I}^{\rho} \mathcal{\gamma}_{0}^{\rho} \mathcal{D}_{2}-j+\sum_{j<x \leqslant J_{2}} \Psi_{i, I}^{(\varepsilon, j, x)} u_{0}^{D_{2}-x}$. one can check that $\left(e_{i}^{(\varepsilon, x)}\right)_{z} /\left(y_{I}^{-\rho} e_{i}^{(\varepsilon, j)}\right)_{z}=\left(\psi_{i, I}^{(\epsilon, j, x)}\right)_{z}$ for $z \in W_{i, I}^{(\varepsilon, j)}$ and therefore $\left(\Lambda_{i}^{(\varepsilon)}\right)_{z} /\left(e_{i}^{(\varepsilon, j)}\right)_{z}=\left(\gamma_{I}^{-\rho} \psi_{i, I}^{(\varepsilon, j)}\right)_{z} \quad$ equals to the product of $L_{\mu}^{c_{\mu}}$ for all linear forms L_{μ} in which the coefficient
at the variable U_{0} does not vanish.
Thereupon remind that $\operatorname{con} W_{z}^{\prime}=U_{p_{F}} V_{p_{F}} \cap\{Y=0\} \quad$ and int-
produce $W^{\prime}=U_{\left.z \in W_{i, 1}^{(\xi, i)}\right)}\left(\{z\} \times\left(W_{z}^{\prime} \cap\left\{Y_{0} \neq 0\right\}\right)\right.$) (as above we fix i, ε, j,
I). observe that $W^{\prime}=\left\{\left(z_{1}, \ldots, z_{h-s},\left(y_{0}: y_{s-m+2}: \ldots: y_{s+1}\right)\right) \in W_{i, I}^{(\varepsilon, j)} \times\right.$ $A^{m}(\bar{F}) \subset W_{i, I}^{(\varepsilon, j)} \times \mathbb{P}^{m}(\bar{F}): 0=\left(\psi_{i, I}^{(\varepsilon, j)}\left(-\Sigma_{s-m+2 \leqslant \alpha \leqslant s+1} U_{\alpha} y_{d}, y_{0} U_{s-m+2}, \ldots, y_{0} U_{s+1}\right)\right)_{k}$ $\left.\in \bar{F}\left[U_{s-m+2}, \ldots, U_{s+1}\right]\right\}$. Representing the polynomial
$\psi_{i, I}^{(\mathcal{E}, j)}\left(-\sum_{s-m+2 \leqslant \alpha \leqslant s+1} U_{\alpha} Y_{\alpha}, Y_{0} U_{s-m+2, \ldots}, \ldots, Y_{0} U_{s+1}\right)=\sum_{J} E_{J} U^{J} \quad$ leads to an equality $W^{\prime}=\left\{\&_{J}\left(E_{J}=0\right)\right\} \cap\left(W_{i, j}^{(\varepsilon, j)} \times A^{m}\right)$. Because of
the subset W^{\prime} is closed in the quasiprojective variety $W_{i, j}^{(\varepsilon, j)} \times A^{\text {that }}{ }^{m}$ Consider the natural linear projection $\mathscr{I}_{2}: A^{n-5} \times\left(\mathbb{P}^{m} \cap\left\{Y_{0}^{i, 1} \neq 0\right\}\right) \rightarrow A^{n-s}$ defined by the formula $g_{2}\left(Z_{1}, \ldots, Z_{n-s},\left(Y_{0}: Y_{s-m+2}: \ldots: Y_{s+1}\right)\right)=\left(Z_{1}, \ldots, Z_{n-s}\right)$, Let a orphism $\mathscr{I}_{1}: W^{\prime} \rightarrow W_{i, I}^{(\varepsilon, j)}$ be the restriction of $\mathcal{S i n}_{2}$ on W^{\prime}. Our nearest goal is to show that $g r_{1}$ is finite ([14]). Obviously, the inverse image $\pi_{1}^{-1}(V) \subset W^{\prime}$ of any open affine subset $V \subset W_{i, I}^{(\varepsilon, 1)}$ is isomorphic to $\left(V^{*} A^{m}\right) \cap W^{\prime}$, henceforth $\operatorname{gV}_{1}^{-1}(V)$ is open in
W^{\prime} and besides that $g_{1}^{-1}(V)$ is affine since $\pi_{1}^{-1}(V)$ is closed in the open affine set $\bigvee \times \mathbb{A}^{m}$ ([14]). Now we check that every coordinate function $Y_{\mathfrak{x}} / Y_{0}$ on the variety $g_{1}^{-1}(V)$ satisfies a suitable relation of integral dependence over the ring $\bar{F}[V]$ where $s-m+2 \leqslant x \leqslant s+1 \quad$. Let $\psi_{i, I}^{(\varepsilon, j)}=\psi_{i, I}^{(\varepsilon, j)}\left(U_{0}, U_{s m+\lambda}, \ldots, U_{s+1}\right)$. Then $\psi_{i, I}^{(\varepsilon, j)}\left(Y_{x} / Y_{0}, 0, \ldots, 0,-1,0, \ldots, 0\right)=0$ on W^{\prime}, herein -1 is substituted instead of the variable U_{X}. Taking into account that $\left(\gamma_{I}\right)_{z} \neq 0$ when $z \in W_{i, I}^{(\varepsilon, j)}$ this yields an equation of integral dependence. So, we infer that the morphism $\delta \mu_{1}$ is finite.

Utilizing the notations from the lemma 1 one concludes that a set $V_{i, 1}^{(\varepsilon, j)}$ consisting of all such points $Z=\left(z_{1}, \ldots, z_{n-s}\right) \in W_{i, I}^{(f, j)}$ that there exists ${ }^{\text {a }}$, $\left.\varepsilon, j\right)$ point $\Omega=\left(z,\left(\xi_{0}: 0: \ldots: 0: \xi_{s-m+2}: \ldots: \xi_{s+1}\right)\right) \in U_{z} \cap\left\{X_{0} \neq 0\right\}$ is closed in $W_{i, I}^{(\varepsilon, i)}$ as $V_{i, I}^{(\varepsilon, j)}$ coincides with the image under projection \mathcal{T}_{1} of the closed in the domain of definition of $\mathbb{S i}_{1}$ (i.e. in W^{\prime}) set $\pi_{1}^{-1}\left(W_{i, I}^{(\varepsilon, j)}\right) \cap\left\{\tilde{f}_{0}=\ldots=\tilde{P}_{x}=0\right\}$ where $\mathcal{f}_{x}\left(Y_{0}, Y_{5-m+\lambda}\right.$, $\left.\ldots, Y_{S+1}\right)=\hat{f}_{x}\left(Y_{0}, 0, \ldots, 0, Y_{s-m+2}, \ldots, Y_{S+1}\right)$ and $\hat{f}_{x}\left(Y_{0}, Y_{1}, \ldots, Y_{s+1}\right)=\bar{f}\left(Z_{1}, \ldots, Z_{n-s,}, X_{0}, \ldots, X_{s+1}\right)$ for $0 \leqslant x \leqslant K$ and since the image of the closed set under a pinite morphism is again closed ([14]).

Now we describe a procedure for $^{(\varepsilon, j, j)}$ constructing the required $V_{i, I}^{(\varepsilon, j)}$. Let the quasiprojective variety $W_{i, I}^{(\varepsilon, j)}=\left\{\&_{\beta}\left(G_{\beta}=0\right) \&\left(V_{\gamma}\left(C_{\gamma} \neq 0\right)\right)\right\}$, herewith the polynomials $G_{\beta}, C_{\gamma} \in F\left[Z_{i} \ldots, Z_{n-s}\right]$ were actually produced earlier. Denote the closure of the projection $\overline{g_{\rho}\{ }\left\{\ell_{\beta}\left(G_{\beta}=0\right) \overline{\&}\right.$ $\left.\&_{j}\left(E_{j}=0\right) \& \& 0 \leq x \leq k\left(\tilde{f}_{x}=0\right)\right\}=V_{i, T}(\varepsilon, j) \quad$. On the other hand in force of the aforesaid the equalities hold $V_{i, I}^{(\varepsilon, j)}=V_{i I}^{(\varepsilon, j)} \backslash\left\{\&_{\gamma}\left(C_{\gamma}=0\right)\right\}$
$=\prod_{i, I}^{(\varepsilon, j)} \backslash\left\{\&_{\gamma}\left(C_{\gamma}=0\right)\right\} \quad$. Thus, it remains only to design the afsine variety $V_{i, I}(\varepsilon, j)$.

Involving the theorem 2 (see section 1) the algorithm finds the general points of the compounds F of the variety $\left\{\&_{\beta}\left(G_{\beta}=0\right) \&_{J}\left(E_{J}=0\right)\right.$ \& $\&_{0 \leqslant x \leqslant K}\left(\tilde{f}_{x}=0\right)$, It is sufficient for each \mathcal{P} to construct the plosure of its projection $\mathrm{gil}_{\ell}(\vec{\Gamma})_{-\infty}$. Notice that there is an imbedding of the fields of functions $F^{-\infty}\left(\overline{\pi_{2}(Y)}\right)=F^{q^{-\infty}}\left(Z_{1}, \ldots, Z_{n-5}\right) \in F^{q^{-\infty}}\left(Z_{1}, \ldots, Z_{n-5}\right.$, $\left.Y_{4} / Y_{0}, \ldots, Y_{s+1} / Y_{0}\right)=F^{q^{-\infty}}(\Omega)$. Therefore, the algorithm can produce the general point of $\overline{g_{a_{2}}(Y)}$ yielding firstly a trascendental basis and after that a primitive element (cf.(1), section 1). Searching a transcendental basis and also a primitive element is based on the procedure for calculating a polynomial relation over F (if it exists) between the elements $a_{1}, \ldots, a_{\rho+1} \in F\left(t_{1}, \cdots, t_{n-m_{1}}\right)[\theta] \subset F^{q^{-\infty}}(\mathcal{J})$ provided that a_{1}, \ldots, a_{ρ} are algebraically independent over F, the procedure in its turn is reducible to solving a linear system whose indeterminates are the coefficients of the relation (cf. § 1 [2] , $\oint \oint 4 b, 6$ [3]). Thereupon with the help of the remark just after the theorem 2 the algorithm computer a representation $\overline{\pi_{2}(\Omega)}=\left\{\alpha_{\gamma}\right.$ $\left.\left(B_{j}=0\right)\right\}$ where the polynomials $B_{\delta} \in F\left[Z_{1}, \ldots, Z_{n-s}\right]$.

We summarize the results of the present section in the following lemma, in which bounds are obtained making use of the theorem 2. LRMMA 2. An algorithm is suggested which outputs the construetive set $\Pi=\operatorname{qL}\left(U \cap\left\{X_{0} \neq 0\right\}\right)=\left\{\left(z_{1}, \ldots, z_{n-s}\right) \in A^{n-s}(\bar{F}): \exists X_{1} \ldots X_{5}\left(\&_{1 \leqslant x \leqslant k}\left(f_{x}\left(z_{1}, \ldots, z_{n-s}\right.\right.\right.\right.$, $\left.\left.X_{1}, \ldots, X_{s}\right)=0\right) \& g\left(z_{\left.\left\{r, \ldots, z_{n-s}, X_{1}, \ldots, X_{5}\right) \neq 0\right\} \text {, i.e. the projection in the form }}\right.$
 $\left.8\left(C^{(\mu)} \neq Q\right)\right\}$. Thereat $\operatorname{deg}_{Z_{i}, \ldots, Z_{n-s}}\left(B_{\delta}^{(\mu)}\right) \leqslant d^{4(n+2)(2 s+3)}, \operatorname{deg}_{T_{1}} \ldots, T_{l}\left(B_{\delta}^{(\mu)}\right) \leqslant$ $d_{\ell} P\left(d^{(s+1) n}, d_{1}\right)$, lengths of descriptions $l\left(B_{\delta}^{(\mu)}\right) \leqslant\left(M_{1}+M_{2}+(n+l) \log d_{2}\right) x$ $\mathcal{P}\left(d^{(s+1) n}, d_{1}\right)$. Apart that $\operatorname{deg}_{z_{1}}, \ldots, z_{n-s}\left(C^{(\mu)}\right) \leqslant(3 d)^{(2 s+3)}, \operatorname{deg}_{T_{1}}, \ldots, T_{l}\left(C^{(\mu)}\right) \leqslant$ $d_{2} P\left(d^{(s+1)}, d_{1}\right)$ and $l\left(C^{(\mu)}\right) \leqslant\left(M_{1}+M_{2}+(n+l) \log d_{2}\right) P\left(d^{(s+1)}, d_{1}\right)$.
Besides that, $\delta^{2}<(s+1)^{2}(3 d)^{4(2 s+3)(n+2)}, \mu \leqslant d^{12(s+2)(n+s+3)}$. The running time of the algorithm can be estimated by $\rho\left(M_{1}+M_{2}, d^{s n(n+l)},\left(d_{1}+d_{2}\right)^{n+l}, q\right)$.

3. Subexponential-time deciding the first order theory of algebraically closed fields

Let a Boolean formula Q with N atoms of the kind $f_{i}=0$ where $f_{i} \in F\left[X_{1}, \ldots, X_{n}\right]$ satisfies the same bounds as in the section 1 , be given, $L_{q}(Q)$ denotes the size of Q. Firstly we exhibit a procedure reducing Q to a disjunctive normal form.

Following [7] name $\left(g_{1}, \ldots, g_{\rho}\right)$-cell for $g_{1}, \ldots, g_{\rho} \in F\left[X_{1}, \ldots, X_{n}\right]$ any nonempty quasi projective variety of the kind $\left\{\&_{j \in y_{1}}\left(g_{j}=0\right)\right.$ \& $\left.\&_{j \in y_{2}}\left(g_{j} \neq 0\right)\right\} \subset \mathbb{A}^{n}(F) \quad$, herewith $y_{1} \cup y_{2}=\{1, \ldots, \rho\}, y_{1} \cap y_{2}=\varnothing$. By means of the Bezout inequality [14] it is ascertained in [7] that a number of all $\left(g_{1}, \ldots, g_{\rho}\right)$-cells is less or equal to $\left(1+\operatorname{deg} g_{1}+\ldots\right.$ $\left.+\operatorname{deg} g_{\rho}\right)^{n}$. We shall describe the method for decomposing the space A^{n} on $\left(g_{1}, \ldots, g_{\rho}\right)$-cells by recursion on ρ. Assume that we are supplied with all $\left(g_{1}, \ldots, g_{\rho-1}\right)$-cells $(\rho \geqslant 1)$. Every $\left(g_{1}, \ldots, g_{\rho}\right)$-cell is of the form either $K \cap\left\{g_{\rho}=0\right\}$ or $K \cap\left\{g_{\rho} \neq 0\right\}$ for a pertinent $\left(g_{1}, \ldots, g_{\rho-1}\right)$-cell K. Henceforth it is sufficient to pick out (involwing the theorem 2 from the section 1) all nonempty sets among quasiprojective varieties of the forms $K \cap\left\{g_{\rho}=0\right\}$ and $K \cap\left\{g_{\rho} \neq 0\right\}$.

Applying the just described method the algorithm yields all $\left(\left\{\left\{_{i}\right\}_{1 \leqslant i \leqslant N}\right)\right.$-cells. Again repeatedly making use of the theorem 2 by induction on the number of logical signs in Q the algorithm for each $\left(\left\{f_{i}\right\}_{1 \leqslant i \leqslant N}\right)$-cell checks, whether this call is contained in the constructive set $\Pi_{Q}=\{Q\} \subset A^{n}$ determined by the formula Q, and thereby represents Π_{Q} as a union of $\left(\left\{f_{i}\right\}_{1 \leqslant i \leqslant N}\right)$-cells $K^{(\mu)}$ that means reducing Q to a disjunctive normal form $V_{\mu}\left(\& \delta^{2} \geqslant 1\right.$ $\left.\left.\left(f_{\delta}^{(\mu)}=0\right)\right) \&(f(\mu) \neq 0)\right)$. Moreover $1 \leqslant \mu \leqslant(1+N d)^{n}, 1 \leqslant \delta \leqslant N$, any polynomial $f_{j}(\mu)=f_{i}$ for a relevant i and $f_{0}^{(\mu)}=\Pi_{j \in j} f_{j}$ for an appropriate $y \subset\{1, \ldots, N\}$. The working time of the exhibited procedure can be estimated according to the theorem 2 by $\mathscr{P}\left(L_{2}(Q), N^{n},\left(d^{n} d_{1} d_{2}\right)^{n+l}, q\right)$.

Finally we pass to the general case. Let an input formula of the first order theory

$$
\begin{equation*}
\exists Z_{1,1} \ldots \exists Z_{1,5,} \forall Z_{R, 1} \ldots \forall Z_{R, s_{2} \ldots} \ldots \exists Z_{a, 1} \ldots \exists Z_{a, s_{Q}} Q \tag{3}
\end{equation*}
$$

be given where the formula Q is of the kind as at the beginning of the section, $f_{i} \in F\left[Z_{1}, \ldots, Z_{s_{0}}, Z_{1,1}, \ldots, Z_{a, s_{a}}\right]$, herein $Z_{1}, \ldots, Z_{s_{0}}$ occur free, $n=s_{0}+s_{1}+\ldots+s_{a}$, by L_{ℓ} denote the size of (3). Applying to (3) alternatively the just exhibited procedure for reducing to a disjunctive normal form and the lemma 2 (section 2) the algarithm arrives after performing \mathscr{F} steps at equivalent to (3) formula

$\operatorname{deg}_{T_{1} \ldots, T_{l}}\left(f_{i j}^{(x)}\right) ; g(x)=N^{(x)} K^{(x)} d^{(x)} ; M_{2}^{(x)}=\max _{i j} \ell\left(\psi_{i j}^{(x)}\right) ; \sigma=s_{a-x+1}$. Then in force of the theorem 2 and the lemma 2 the inequalities hold: $d^{(X)} \leqslant$

 $x P\left(\sigma_{1}^{(x-1)}, d_{1}\right) \leqslant d_{2} P\left(\mathcal{q}^{(\mathscr{P})}, d_{1}^{(x)}\right), M_{2}^{(x)} \leqslant\left(M_{1}+M_{2}+l \log d_{2}\right) \mathcal{P}\left(q_{1}^{(x)}, d_{1}^{\mathscr{X}}\right)$. Lastly the sumaing time of the algorithm (after x steps) is less than $P\left(M_{1}+M_{2},\left(N d^{n}\right)(4 \& n / x)^{x}\left(\sum_{a-x+1 \leqslant j \leqslant a}^{\left.\left(s_{j}+8\right)\right)^{2}(n+l)},\left(d_{1}^{x} d_{2}\right)^{n+l}, q\right)\right.$.

Performing a steps completes the prool of the following THEOREK 3. An algorithm is proposed which for a formula (3) outputs an equivalent to it a quantifier-free one $V_{1 \leqslant i \leqslant \kappa}\left(\&_{1 \leqslant j \leqslant k}\right.$ $\left.\left(g_{i j}=0\right) \&\left(g_{i 0} \neq 0\right)\right)$ where $g_{i j} \in F\left[Z_{1, \ldots,} Z_{s_{0}}\right]$, herewith $\operatorname{deg}_{z_{11}, \ldots, Z_{50}}\left(g_{i j}\right)$ $\leqslant\left(N d^{n}\right)^{(48 n(n+8 a) / a)^{2}}=D, \operatorname{deg}_{T_{1}}, \ldots, T_{l}\left(g_{i j}\right) \leqslant d_{2} G\left(D, d_{1}\right) ; \quad$ besides that $\left.l\left(g_{i j}\right) \leqslant\left(M_{1}+M_{2}+l \log d_{2}\right) \mathcal{F}^{(D)} d_{1}^{a}\right) \quad$. The integers $\mathcal{N}, \mathcal{K} \leqslant D_{0}$. Pinally, the algorithm works within the time $\mathscr{P}\left(L_{2}, L_{2}(\varphi),\left(N d^{n}\right)(48 n(n+8 a) / a)^{a}(n+l)\right.$, $\left.\left(d_{1}^{a} d_{q}\right)^{n+l}, q\right)$.

REPERENCES

1. Chistov A.L., Grigor'ev D.Yu. Polynomial-time factoring of the multivariable polynomials over a global field. - LOMI preprint E-5-82, Leningrad, 1982.
2. Chistov A.L., Grigor'ev D.Yu. Subexponential-time solving systems of algebraic equations. I. - LOMI preprint E-9-83, Leningrad, 1983.
3. Chistov A.L., Grigor'ev D.Yu. Subexponential-time solving systems of algebraic equations. II. - LOMI preprint E-10-83, Leningrad, 1983.
4. Chistov A.L., Grigor'ev D.Yu. Polynomial-time factoring of polynomials and subexponential-time solving systems and quantifier elimination. - Notes of Scientific seminars of LOMI, Leningrad, 1984, Vol. 137.
5. Collins G.R. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. - Lect. Notes Comput.Sci., 1975, vol.33, p.134-183.
6. Grigor'ev D.Yu. Multiplicative complexity of a bilinear form over a commutative ring. - Lect.Notes Comp.Sci., 1981, vol.118, p.281286.
7. Heintz J. Definability and fast quantifier elimination in algebraically closed fields. - Prepr.Univ. Frankfurt, Weat Germany, December, 1981.
8. Kaltofen E. A polynomial reduction from multivariate to bivariate integral polynomial factorization. - Proc.14-th ACM Symp.Th. Comput., May, N.Y., 1982, p.261~266.
9. Kaltofen E. A polynomial-time reduction from bivariate to univariate integral polynomial factorization. - Proc.23-rd IEEE Symp.Found Comp.Sci., October, N.Y., 1982, p.57-64.
10. Lazard D. Algébre linéaire sur $k\left[X_{1}, \ldots, X_{k}\right]$ et élimination. Bull.Soc.Math.France, 1977, vol.105, p.165-190.
11. Lazard D. Résolutions des systèmes d'équations algébriques. Theor Comput. Sci., 1981, vol.15, p.77-110.
12. Lenstra A.K., Lenstra H.W., Lovasz L. Factoring polynomials with rational coefficients. - Math.Ann., 1982, vol.261, p.515-534.
13. Lenstra A.K. Factoring multivariate polynomials over finite fields. - Preprint Math.Centrum Amsterdam, IW 221/83, Februari, 1983.
14. Shafarevich I.R. Basic algebraic geometry. - Springer-Verlag, 1974.
15. Wüthrich H.R. Ein Entscheidungsverfahren für die Theorie der reellabgeschlossenen Körper. - Lect.Notes Comput.Sci., 1976, vol.43, p.138-162.
16. Zariski 0., Samuel P. Commutative algebra, vol.1, 2. - van Nostrand, 1960.
