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Factorir!g multivariate polynomia.ls over a.L9ebraic number fields *) 

by 

A.K. Lenstra 

ABSTRAC'I 

We present an algorithm to factor multivariate polynomials over algebraic 

number fields that is polynomial-time in the degrees of the polynomial to 

be factored. The algorithm is an immediate generalization of the polynomial­

time aigoritlhm to factor univariate polynomials with rational coefficients. 

KEY WORDS & PHRASES: polynomial algorithm, polynomial factorization 

*) This report will be submitted for publication elsewhere. 
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1. Introduction. 

We show that the algorithm from [7] to factor univariate polynomials with 

rational coefficients can be generalized to multivariate polynomials with 

coefficients in an algebraic number field. As a result we get an algorithm 

that is polynomial-time in the degrees and the coefficient-size of the 

polynomial to be factored. 

An outline of the algorithm is as follows. First the polynomial 

f E m (a.) [x1 , x 2 , ••• , xt] is evaluated in a suitably chosen integer point 

(x2 = s 2 , x3 = s 3 , ••• , Xt =st). Next, for some prime number p, a p-adic 

irreducible factor fi of the resulting polynomial f E m (a.) [x 1] is deter­

mined up to a certain precision. We then show that the irreducible factor 

of f for which fi is a p-adic factor of fi0 , belonqs to a certain 

integral lattice, and that h0 is relatively short in this lattice. This 

enables us to compute this factor h0 by means of the so-called basis 

reduction algorithm (cf. [7: Section 1]). 

As [7] is easily available, we do not consider it to be necessary to 

recall the basis reduction algorithm here; we will assume the reader to be 

familiar with this algorithm and its properties. 

Although the algorithm presented in this paper is polynomial-time, we 

do not think it is a useful method for practical purposes. Like the other 

generalizations of the algorithm from [7], which can be found in [8;9;10; 

11], the algorithm will be slow, because the basis reduction algorithm 

has to be applied to huge dimensional lattices with large entries. In 

practice, a combination of the methods from [6], [14], and [15] can be 

recommended (cf. [6]). 
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2. Preliminaries. 

In this section we introduce some notation, and we derive an upper bound 

for the coefficients of factors of multivariate polynomials over algebraic 

number fields. 

Let the algebraic number field m(a.) be given as the field of rational 

numbers m extended by a root a of a prescribed minimal polynomial 

F E2Z[T] with leading coefficient equal to one; i.e. @(a) !::>!@[T]/(F). 

Similarly, we define 2Z[a] =2Z[T]/ (F) as a ring of polynomials in a over 

2Z of degree < I, where I denotes the degree oF of F. 

Let f E @(a.) [x1 , x 2 , ••• , xt] be the polynomial to be factored, with 

the number of variables t ~ 2. By o . f = n. we denote the degree of 
1. 1. 

f in 

X.' 
1. 

for 1 ::;; i ::;; t. We often use n instead of Let For 

1 ::;; i ::;; t we define k.(f)Em(a.)[X. 1 ,x. 2 , ••• ,X] as the leading coef-
1. 1.+ 1.+ t 

ficient with respect to X. 
1. 

of tc. 1 (f), 
1.-

and we put 

Finally, we define the content cont(f) E @(a) [x2 , x3 , ••• , Xt] of f as the 

greatest common divisor of the coefficients of f with respect to x 1 • 

Without loss of generality we may assume that for 

1::;; i < t, that f is monic (i.e. 

for 2::;; i::;; t. 

!/,c(f)=l), and that o. cont(f) = 0 
1. 

Let d E2Z>O be such that 
1 

f E ~[a.][x1 , x 2 , •.. , xt], and let discr (F) 

denote the discriminant of F. It is well-known (cf. [15]) that if we take 

D = d I discr (F) I , then all monic factors of f are in 

(in fact it is sufficient to take D = d s, where s is the largest integer 

such that 
2 

s divides 

cult to compute). 

discr(F), but this integer s might be too diffi-



We now introduce some notation, similar to [8: Section 1]. Suppose that we 

are given a prime number p such that 

(2.1) p does not divide D. 

i R, 
For G= I:. a. T E2Z[T] we denote by G0 or Gmod p the polynomial 

1. 1. J<, 

R, i R, 
I:. (a. mod p )T E ( zz;/p zz;) [T], for any positive integer L Suppose fur­

l. 1. . 
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thermore that we are given some positive integer k, and that p is chos~n 

in such a way that a polynomial H E2Z[T] exists such that 

(2. 2) H has leading coefficient equal to one, 

(2.3) 

(2. 4) H1 is irreducible in ( zz;/p zz;) [T], 

(2. 5) 
2 

(H 1 ) does not divide F 1 in ( zz;/p zz;) [T]. 

Clearly H1 divides F 1 in ( zz;/p zz;) [T], and O < oH :$; I. In the sequel 

we will assume that conditions (2.1), (2.2), (2.3), (2.4), and (2.5) are 

satisfied. 

By lF we denote the finite field containing 
q 

oH-1 i 
(2.4) we have lF Ce! ( 2Z/pzz;)[T]/(H1 ) e!{I:. 0 a. a. 1 : 

q 1.= 1. 

= T mod (H 1) is a zero of H1 . Furthermore we put 

oH 
q=p elements. From 

ai E:2Z/p zz;}, where a. 1 

Wk ( lFq) = ( zz;/pk zz;) [T]/ (Hk) 

oH-1 i k = {L. 0 a. a.k: a. EZZ/p ?Z}, where 
1.= 1. 1. 

that is a ring containing 

a.k = T mod (Hk) is a zero of Hk. Notice 

k 
q elements, and that w1 ( lF ) Ce! lF . 

q q 
R, 

For a E:2Z[a.] we denote by a mod (p ,H1 ) E: w1 ( ~) the result of the canon-

ical mapping from 2Z[a.] = zz;[T]/ (F) to W 1 ( JFq) = ( 2Z/p1 zz;) [T]/ (H1) applied 

a. i 1 R, 
to a, for R, = 1, k. For g = I:. ~ x E -zz;[a.][X ] we denote by gmod (p ,H 0 ) 

1. D 1 D 1 J<, 

-1 R, R. i 
the polynomial I:i ( ( (D mod p ) ai )mod (p ,H1 )) x1 E w1 ( ~)[ x1J (notice that 

-1 R, 
D modp exists due to (2.1)). 
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We derive an upper bound for the height of a monic factor g of f. As 

usual, for 
j i1 i2 it 

g = r r ... r 4 a. . . . a X1 X2 •.• Xt E @(a) [X 1 , X2 , • •. , Xt], 
1 1 1 2 1 tJ 1 11 2··· 1 tJ 

the height g is defined as max I a. . . . I , and the length I g I as 
max 1.11.2 ... 1.tJ 

2 ½ 
(La. . . .) . Similarly, for a polynomial h with complex coefficients, 

1 11 2··· 1 tJ 

we define its height 

complex coefficients. 

h 
max 

as the maximum of the absolute values of its 

For any choice of a E {a 1 , a 2 , ... , aI}, where a 1 , a 2 , ... , aI are the 

conjugates of a, we can regard g as a polynomial ga with complex 

coefficients. We define Ilg II 

t 
L. 1 n. 

11 g II s e 1.= 1 I I f II • 

as max (g ) 
1SiSI ai max 

In [8: Section 4] we have shown that this leads to 

From [3] we have 

( 2. 6) 

t 

g s eLi=l nillf II I (I-1) (I-l)/2 1FII-lldiscr(F) i-\ 
max 

From [13] we know that the length !Fl of F is an upper bound for the 

absolute value of the conjugates of a, so that 

I-1 i 
!If II sf L. 0 1FI , max 1.= 

which yields, combined with (2.6), 

t 

s e Li=l nif I (I-1) (I-1) 12 IF I I-l Jdiscr (F) I-½ LI
1
. =_1

0 IF Ii. (2.7) 
grnax max 

The upper bound for the height of manic factors of f, as given by the 

right hand side of (2.7), will be denoted by Bf. Because ldiscr(F) I~ 1, 

we find 

( 2. 8) 
t 

log Bf = O (L. 1 n. + log f + I log (II FI ) ) . 
1.= 1. max 
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3. Factoring multivariate polynomials over algebraic n1.nnber fields. 

We describe an algorithm to compute the irreducible factorization of f in 

be a (t-1)-tuple of integers. For g e:: 

s. 
l. 

substituted for X.' 
l. 

g. = g . 1 modulo (X . -s . ) . 
J J- J J 

for 

We put 

2:5:i:5:j. 

g = g . 
t 

Notice that 

i.e. 

g = g 
1 

is g with 

and that 

Suppose that a polynomial fi e::2Z[a.][x1 J is given such that 

(3. 1) 

( 3. 2) 

(3.3) 

( 3. 4) 

We put 

fi is manic, 

divides in 

fl mod (p,H1 ) is irreducible in lFiX1], 

2 
(fimod(p,H1)) does not divide fmod(p,H 1 ) in ~[x1J. 

so 0 < R, :5: n. By 

the unique, manic, irreducible factor of f such that 

•.• , Xt] we denote 

k 
fi mod (p ,Hk) 

divides (cf. ( 3. 2) , ( 3. 3) , ( 3. 4)) • 

(3. 5) Let m = m1 , m2 , m3 , ... , mt be a t-tuple of integers satisfying 

.Q, :5: m < n and 0 :5: m. :5: o. R,c. 1 (f) 
l. l. 1.-

for 2:5: i:5: t, 
t 

and let M= 1 + II:. 1m. N.+l 
1.= l. l. 

(where of course Nt+l = 1) . We define L c ( ~) M as the lattice of rank 

1 
M, consisting of the polynomials ge:: O 2Z[a.][x1 ,x2 , ••. ,xt] for which 

(i) o,g:5: n. 
l. l. 

for 2 :5: i :5: t; 
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(ii) If o.flc. 1 (g)=m. for l~j~i, then o. 1!lc.(g}~m.+l for l~i<t; 
J J- J i+ l. l. 

(iii) If o.flc. 1 (g) =m. for 1 ~ i~ t, then !lc(g)E 2Z; 
l. ].- l. 

(iv) divides in 

Here M-dimensional vectors and polynomials satisfying conditions (i), (ii), 

and (iii), are identified in the usual way (cf. [8: (2.6); 11: (2.2)]). For 

notational convenience we only give a basis for L in the case that m. = n. 
l. l. 

for 2 ~ i ~ t; the general case can easily be derived from this: 

1 . - oH i 
u { 0 a J H (a) X l : oH ~ j < I, 0 ~ i < fl} 

1 j i1 t ir 
u {-a xl TT 2 (X -s ) : 

D r= r r 
O~j<I, 0 <. < - i.1 - m, 

for 2~r~t, (i2 ,i3 , •.. ,it)~(O,O, .•. ,O), 

and (i 1 , i 2 , i 3 , •.. , it)~ (m, n 2 , n 3 , ••• , nt)} 

(cf. [8: (2.6); 11: (2.19)], (2.2), and (3.1)}. 

(3.6) Proposition. Let 

(3.7) 
{ I-1 j n. )n+m B. =? bn (n+m) !\DN2 (l+F ) TT. 2 s.i , 

J max max max i= l. 

for 1 ~ j ~ t, where ? denotes 
max 

element of L such that 

( 3. 8) 
½~ s.~((n+m)n.+1) B. 1 J J J-

(f ) m. hat b . Suppose t is a non-zero 
max 



for 2 ::; j ::; t, and 

(3. 9) 

Then gcd ( f, b) 7 1 in gJ (a) [ X l , X 2 , ... , X t] . 

Proof. Denote by R= R(Df,Db) E2Z[a][x2 , x 3 , ..• , Xt] the resultant of Df 

and Db (with respect to the variable x 1). An outline of the proof is 

as follows. First we prove that an upper bound for 

B .• 
J 

Combining this with (3.8), we then see that 

(R.) is given by 
J max 

X. = s. cannot be a zero 
J J 

of R. 1 J-
if R. 1 70, 

J-
for 2::; j ::; t. This implies that the assumption 

that R 7 0 (i.e. gcd (f ,b) = 1) leads to R 7 0. We then apply a result 

from [ 6], and we find with ( 3. 9) that But this is a 

contradiction, because 
k 

fi mod (p , Hk) divides both and 

7 

in R= 0, so that gcd(f,b)7l 

If a and b are two polynomials in any number of variables over 

m (a) ' 

(3 .10) 

havin9 9., and 
a 

9.,b terms respectively, then 

( a b) ::; a b min ( 9., , 9.,b) (1 + F ) I- l . 
max max max a max 

From (3.10) we easily derive an upper bound for (R.) , because 
J max 

R. E2Z[a][x. 1 , X. 2 , ... , X] is the resultant of Df. and Do.: 
J J+. J+ t J J 

(3.11) (R,) ::; (Df.)m (Do.)n (n+m)!N~+ml-l(l+F )(I-l)(n+m-1)_ 
] max J max J max J+ max 

n• 
It follows from f.=f. 1 modulo (X.-s.), that (f.) ::; (f. 1 ) (n.+l)s.J, 

J J - J J J max J - max J J 

so that 

(3.12) 
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Combining (3.11), (3.12), and a similar bound for (6.) , we obtain 
J max 

(3.13) R-.) <? bn ( )'( Tlj nin+m(l+F )(I-l)(n+m-1) 
( n+m · D N2 1· --2 sl.. ) max ' J max max max 

for 1:::;; j < t. (Remark that (3 .13) with "<" replaced by "$" holds for 

j = t.) 

Now assume, for some j with 2:::;; j:::;; t, that R. 1 is unequal to 
J-

zero. We prove that R.~o. 
J 

Because R. = R. 1 modulo (X . -s . ) , 
J J- J J 

the condition 

R. = 0 would imply that all polynomials in 2Z[X.] that result from R. 1 J J J-

by grouping together all terms with identical exponents in a and 

up to xt, have (X. -s.) 
J J 

as a factor. These polynomials have degree (in 

X.) at most (n+m)n., so that we get, with the result from [12], that 
J J 

~ -ls.I:::;; ((n+m)n.+1) (R. 1 ) • 
J J J- max 

Combined with (3.13) and (3.7) this is a contradiction with (3.8). We con­

clude that R. ~ 0 if R. 1 ~ 0 for any j with 2::::; j:::;; t, so that the 
J J-

assumption gcd(f,b) = 1 (i.e. R~ 0) leads to R~ 0. 

Assume that Hk(T) divides R(T) E2Z[T] in 
k 

( 2Z/p 2Z) [T], i.e. 

- k Rmod (p ,Hk) = 0. The polynomial Hk (T) is also a divisor of F(T) in 

( 2Z/pk 2Z) [T], so that gcd (F (T) ,R(T)) = 1 and [6: Theorem 2] lead to 

With the remark after (3.13) and (3.7) this is a contradiction with (3.9), 

so that Rmod (pk,Hk) ~ 0. This concludes the proof of (3.6). D 

(3 .14) Proposition. Let b 1 , b 2 , ... , bM be a reduced basis for L (cf. 

[7: Section 1]), where L and M are as in (3.5), and let 
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(3 .15) 
M-1 n/2( I-1 j ni)n+m 

B. = (n+m) ! (M2 ) 1 Bf D N2 ( 1 + F ) TT. 2 s. , 
J \ max i= i 

for 2 ~ j ~ t, where Bf is as in Section 2. Suppose that 

(3.16) 
½ s. ~ ( (n+m) n. +1) B. 1 J J J-

for 2 ~ j ~ t, that 

(3.17) 

and that f does not contain multiple factors. Then 

(3.18) (b ) < (M2M-l)½B 
1 - f max 

and h 0 divides b 1 , if and only if h 0 E L. 

Proof. If ho divides b 1 , then h 0 E L, because b 1 E L; this proves the 

"if"-part. 

To prove the "only if"-part, suppose that h 0 E L. Because h 0 is a 

monic factor of f, we have from (2.7) that (hO)max~Bf. With [7: (1.11)] 

and h 0 E L this gives I b 1 I ~ (M2M-l /~Bf so that (3 .18) holds, because 

(b1)max~ lb1 1. Because of (3.18}, (3.16), (3.17), (3.15), and the definition 

of Bf' we can apply (3.6), which yields gcd(f,b1 ) ;t 1. 

Now suppose that h 0 does not divide b 1 . This implies that h 0 also 

does not divide r= gcd(f,b1), where r can be assumed to be monic. But 

then fimod (pk ,Hk) divides (f/r} mod (pk,¾), so that Proposition (3.6) 

can be applied with f replaced by f/r. Conditions (3.8) and (3.9} are 

satisfied because (f/r) ~ Bf (cf. (2. 71) and because of (3.16), (3.17), 
max 

and (3.15). It follows that gcd(f/r,b1 ) ;t 1, which contradicts r= gcd(f,b1 ) 

because f does not contain multiple factors. 0 



10 

(3.19) We describe how to compute the irreducible factor h 0 of f. Suppose 

that f does not contain multiple factors, and that the polynomial fi, the 

(t-1)-tuple s 2 ,s3 , .•• ,st, and the prime power 
k 

p are chosen such that 

(3.1), (3.2), (3.3), (3.4), (3.16), and (3.17) are satisfied with, for (3.16) 

and (3.17), m replaced by n-1. Remember that we also have to take care 

that conditions ( 2 . 1 ) , ( 2 • 2) , ( 2 . 3) , ( 2 • 4) , and ( 2 . 5) on p and H are 

satisfied. 

We apply the basis reduction algorithm (cf. [7: Section 1]) to a se­

quence of M.-dimensional 
J 

lattices as in (3.5), where the 
t 

M. = 1 +IL, 1m. N. l 
J 1.= l. 1.+ 

run through the range of admissible values for m1 ,m2 , ... ,mt (cf. (3.5)), 

in such a way that M.<M. 1 . 
J J+ 

(So, for m= JI,, J/,+l, ••• , n-1, and m.=0,1, 
l. 

... , o. J/,c. 1 (f) for i = t, t-1, ..• , 2 in succession.) According to (3 .14), 
l. ].-

the first vector b 1 that we find that satisfies (3.18) equals ±h0 

(remember that b 1 belongs to a basis for the lattice), so that we can stop 

if such a vector is found. If for none of the lattices a vector satisfying 

(3.18) is found, then h 0 is not contained in any of these lattices according 

to (3 .14), so that h 0 = f. 

(3.20) Proposition. Assume that the conditions in (3.19) are satisfied. 

The polynomial can be computed in arithmetic 

operations on integers having binary length O (I .N k log p) . 

Proof. Observing that 
2k 

log(I Np ) = O(k log p) (cf. ( 3. 1 7) , ( 3. 15) , and 

(2.8)), the proof immediately follows from (3.19), (3.5), and [7: (1.26), 

(1.37)]. 0 

(3.21) We now show how s 2 , s 3 , •.. , st and p can be chosen in such a way 

that the conditions in (3.19) can be satisfied. The algorithm to factor f 

then easily follows by repeated application of (3.19}. 
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We assume that f does not contain multiple factors, so that the resultant 

R= R(df,df') of df and its derivative df' with respect to x 1 is 

unequal to zero. First we choose s 2 , s 3 , ••• , st E 2Z>O minimal such that 

(3.16) is satisfied with m replaced by n-1. It follows from (3.16), 

(3.15), (2.8), and logo =O(log d+ I log(IIFI) ) (because D= dldiscr(F) I), 

that 

logs. =O(log((n+m)n.) +logB. 1 ) 
J J J-

. 1 
= 0 ( I n N + n ( log Bf + log D + I log (1 + F ) + I:~ - 1 n . log s . ) ) 

max 1.= 1. 1. 

. 1 
"'O (n (IN+ log (df ) + I log (I IF I) + I:~-l n. logs.)) 

max 1.= 1. 1. 

for 2 ~ j ~ t, so that 

. 1 
logs. =O(n(IN+log(df ) +Ilog(IIFI)) TT~-2 (1+nn.)) 

J max 1.= 1. 

and 

(3.22) 
t t-2 

I: . 2 n . log s . = O ( n N ( I N + log ( df ) + I log ( I I F I ) ) ) • 
1.= 1. 1. max 

From the proof of (3.6) it follows that, for this choice of s 2 , s 3 , ..• , st 

the resultant R EZl[a] of df and df' is unequal to zero. 

Next we choose p minimal such that p does not divide D or discr(F), 

and such that R¢ Omodulo p. Clearly 

TT q ~ d discr (F) R 
q prime, q<p max 

which yields, together with 

TT q > eAp 
q prime, q<p 
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for all p > 2 and some constant A> 0 (cf. [4: Section 22. 2]), that 

(3.23) p = O ( log d + I log ( I I F I ) + log R ) • 
max 

Similar to (3.13) we obtain 

~ 2n-1 n t n, 2n-1 (l + F ) (I-1) (2n-2), R ~f n (2n-l)!(dN2 TT. 2 s. 1 ) 
max max 1= 1 max 

so that we get, using (3.22) 

~ t-1 logR =O(n N(IN+log(df ) +I log(IIFI))). 
max max 

Combining this with (3.23) we conclude that 

(3.24) 
t-1 

p = O ( n N ( I N + log ( df ) + I log ( I I F I ) ) ) . 
max 

Notice that (2.1) is now satisfied. In order to compute a polynomial 

HE:ZZ[T] satisfying (2.2), (2.4), (2.5), and (2.3) with k replaced by 1, 

we factor Fmodp by means of Berlekamp's algorithm [5: Section 4.6.2] 

and we choose H as an irreducible factor of F mod p for which 

Rmod (p,H1) ;t O; such a polynomial H exists because Rmod p ;t O. Conditions 

(2.4) and (2.3) with k replaced by 1 are clear from the construction of 

H, and because we may assume that H has leading coefficient equal to one, 

( 2. 2) also holds. The condition that discr (F) mod p ;t O, finally, guarantees 

that Fmod p does not contain multiple factors, so that (2.5) is satisfied. 

We choose k minimal such that (3.17) holds, so that 

t 
k log p = o ( I ( I n N + n log ( df ) + I n log ( I I F I ) + n :I:. 2 n . log s . ) + log p) 

max i= J. J. 

(cf. (3.15) and (2.8)), which gives, with (3.22) and (3.24) 

(3.25) 
t-1 

k log p = O ( I n N ( I N + log ( df ) + I log ( I I F I )) ). 
max 



13 

Now we apply Hensel's lemma [5: Exercise 4.6.22] to modify H in such a 

way that (2.3) holds for this value of k (this is possible because (2.3) 

already holds for k = 1) , and finally we apply Berlekamp' s algorithm as 

described in [1: Section 5] and Hensel's lemma as in [14] to compute the 

irreducible factorization of in wk ( ~> [xl J. Condition 

(3.4) ,is satisfied for each irreducible factor 
~ k 
hmod(p ,Hk) of 

because Rmod (p,H1) ~ 0, and (3.1), (3.2), and (3.3) are clear from the 

construction of fi. 

We have shown how to choose s 2 , s 3 , .•. , st and p, and how to satisfy 

the conditions in (3.19). We are now ready for our theorem. 

(3.26) Theorem. Let f 

iv.i th t 2'. 2, of degree 

be a monic polynomial in 

n. 
1. 

in x., 
l. 

and 

The irreducible factorization of f can be found in 

O(nt-l(IN) 5 (IN+log(df )+Ilog(IIFI))) arithmetic operations on integers 
max 

t-1 2 
having binary length O(n (IN) (IN+log(df ) +Ilog(IIFI))), where 

max 
t 

N=TT. 1 (n.+1). 
1.= l. 

Proof. If f does not contain multiple factors, then f can be factored 

by repeated application of (3.19). In that case (3.26) follows from (3.21). 

(3.20), (3.25), and the well-known estimates for the applications of 

Berlekamp's algorithm and Hensel's lemma (cf.[5;1] and [16]). 

If f contains multiple factors, then we first have to compute the 

monic gcd g of f and its derivative with respect to x 1 , and the 

factoring algorithm is then applied to f/g. The cost of factoring f/g 

satisfies the same estimates as above, because (f/g) ~Bf (cf. (2.7}), 
max 

and this dominates the costs of the computation of g, which can be done 

by means of the subresultant algorithm (cf. [2]). 0 
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