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Factoring multivariate polynomials over aigebraic number fields

by

A.K. Lenstra

ABSTRACT

We present an algorithm to factor multivariate polynomials over algebraic
number fields that is polynomial-time in the degrees of the polynomial to
be factored. The algorithm is an immediate generalization of the polynomial-

time aigorithm to factor univariate polynomials with rational coefficients.
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1. Introduction.

We show that the algorithm from [7] to factor univariate polynomials with
rational coefficients can be generalized to multivariate polynomials with
coefficients in an algebraic number field. As a result we get an algorithm
that is polynomial-time in the degrees and the coefficient-size of the
polynoﬁial to be factored.

An outline of the algorithm is as follows. First the polynomial

fe Q(a)[xl,x , ...,Xt] is evaluated in a suitably chosen integer point

2

(X2==52,X3==s3, ...,Xt==st). Next, for some prime number p, a p-adic
irreducible factor K of the resulting polynomial ¥e Q(u)[xlj is deter-
mined up to a certain precision. We then show that the irreducible factor
h0 of f for which KA is a p-adic factor of ﬁo, belongs to a certain

integral lattice, and that h is relatively short in this lattice. This

0

enables us to compute this factor h by means of the so-called basis

0
reduction algorithm (cf. [7: Section 1]).

As [7] is easily available, we do not consider it to be necessary to
recall the basis reduction algorithm here; we will assume the reader to be
familiar with this algorithm and its properties.

Although the algorithm presented in this paper is polynomial-time, we
do not think it is a useful method for practical purposes. Like the other
generalizations of the algorithm from [7], which can be found in [8;9;10;
11], the algorithm will be slow, because the basis reduction algorithm
has to be applied to huge dimensional lattices with large entries. In

practice, a combination of the methods from [6], [14], and [15] can be

recommended (cf. [6]).



2. Preliminaries.

In this section we introduce some notation, and we derive an upper bound
for the coefficients of factors of multivariate polynomials over algebraic
number fields.

Let the algebraic number field @(o) be given as the field of rational
number\s @ extended by a root o of a prescribed minimal polynomial
FeZ[T] with leading coefficient equal to one; i.e. @(a)=@[T]/(F).
Similarly, we define Z[al=Z[T]/(F) as a ring of polynomials in o over
7 of degree < I, where I denotes the degree &F of F.

Let fe Q(a)[xl, Xooaeny Xt] be the polynomial to be factored, with
the number of variables t=2. By Sif=ni we denote the degree of £ in
X., for 1<i<t. We often use n instead of n,. Let JLcO(f) =f. For

i 1

1<i<t we define Qci(f) € @(a) [Xi+1' X,

i42" et Xt] as the leading coef-

ficient with respect to Xi of Q,ci_l(f) , and we put 2c(f) = Sl,ct(f) .

Finally, we define the content cont(£) € Q(a)[xz,x , ...,Xt] of f as the

3
greatest common divisor of the coefficients of f with respect to Xl'
Without loss of generality we may assume that 2< n, < ni-'_1 for

1<i<t, that £ is monic (i.e. Rfc(f)=1), and that Gicont(f)=0
for 2<ics<t.

Let dezZ be such that fe -é'zzra][xl,xz, ...,Xt], and let discr(F)

0

denote the discriminant of F. It is well-known (cf. [15]) that if we take

D=d|discr(F)|, then all monic factors of f are in %Z[oc][xl, Xy veny Xt]

2'
(in fact it is sufficient to take D=ds, where s 1is the largest integer

2
such that s divides discr(F), but this integer s might be too diffi-

cult to compute).



We now introduce some notation, similar to [8: Section 1]. Suppose that we

are given a prime number p such that

(2.1) p does not divide D.

i 2
For G=Zi a; T ez[T] we denote by G, or Gmodp  the polynomial

2
Zi(ai mod pQ)Tle (Z/pZZ)[T], for any positive integer &. Suppose fur-

thermo‘re that we are given some positive integer k, and that p is chosen

in such a way that a polynomial HeZ[T] exists such that

(2.2) H has leading coefficient equal to omne,
(2.3) Hk divides Fk in (ZZ/ka)[T],

(2.4) H1 is irreducible in (Z/pz)[T],

(2.5) (Hl)2 does not divide Fy in (z/pz)[T].

Clearly H1 divides F1 in (Z/pz)[T], and 0<8H<I. 1In the sequel
we will assume that conditions (2.1), (2.2), (2.3), (2.4), and (2.5) are

satisfied.

. . - §H
By IFq we denote the finite field containing g=p elements. From

SH-1 i
o~ o~ : /
(2.4) we have IE(‘I (ZZ/pZZ)[T]/(Hl) {Zi=0 a; oy a, €Z/p 7Z}, where ay
= Tmod (Hl) is a zero of H - Furthermore we put Wk( IE‘q) = (ZZ/ka)[T]/(Hk)
= {ZaH_la ui: a e?Z/kaZ} where o, =Tmod (H,) 1is a zero of H . Notice
i=0 i 'k i ! k k k

, . . k
that Wk( ]F(‘I) is a ring containing gq elements, and that Wl(]lzl) u]lzl.
L
For aeZlal] we denote by amod (p ,HQ) € Wz( IE(‘I) the result of the canon-
ical mapping from Z[ol= Z[T]/(F) to W ( ]F('l) = (Z/pg' ZZ)[T]/(HR) applied

i 2
Te lZ[m][xl:] we denote by gmod (p ’HIL)

a,
to a, for %=1,k. For =X, _LXx
iDp 1 D

the polynomial Zi( ( (D_lmod pl) ai)mod(pg,Hg)) Xll' € WSL( JFq)[ X1] (notice that

D_lmodpz exists due to (2.1)).



We derive an upper bound for the height of a monic factor g of £. Aas

usual, for g=% I ... I Ia Jxlx? L x e p(arlx,, X X1
’ ITT T, 7 T T figdge..igd® 1 T2 % R LR
the height g__  1is defined as maxlailiz...itjl’ and the length |g| as
2 1
(Za )i. Similarly, for a polynomial h with complex coefficients,

i1i2'°'itj

we define its height hmax as the maximum of the absolute values of its
complex coefficients.

For any choice of o« {al,az, ...,aI}, where o,,0Q,, ..., 0 are the

1772

conjugates of o, we can regard g as a polynomial ga with complex

coefficients. We define |lgl|l as max (g ) . From [3] we have
1<i<I "0i max
zti:—1“i
llgll <e el

In [8: Section 4] we have shown that this leads to

t

., n, -
(2.6) g <e U Eg 1 (o1 (TD/2

-1, _, -5
max |F| |discr (F) |

From [13] we know that the length |F| of F is an upper bound for the

absolute value of the conjugates of o, so that

I-1 i
el <g st op|t

. F
max i=0

14

which yields, combined with (2.6},

t

T (1-1)/2

(2.7) g __<e £ I (1-1) 4
max

I-1 A I-1 i
max [P |discr (F) | Zi=O|F| .

The upper bound for the height of monic factors of £, as given by the

right hand side of (2.7), will be denoted by B Because |disecr(F)| =1,

£

we find

. .
2.8 = + + .
( ) log B O(Zi= n, log fmax Ilog(I|F|))

£ 1



3. Factoring multivariate polynomials over algebraic number fields.

We describe an algorithm to compute the irreducible factorization of £ in

Q(a)[xl,x , ...,xt].

2

Let 52,93,...,5 €Z> be a (t-1)-tuple of integers. For g¢e

t 0

Q(a)[xl, X2, .eny Xt] we denote by éj the polynomial gmodulo ((X ),

2752
(X3—s3), ey (Xj-—sj)) eg(u)[xl, Xj+1'xj+2' ...,Xt]; i.e. gj is g with
s, substituted for Xi' for 2<i<j. Notice that F;'l: g and that

g.=g., ,modulo (X.-s.). We put g=g,.
937951 %5785 PAE 979

Suppose that a polynomial Ee?Z[a][xlj is given such that

(3.1) R is monic,
(3.2) fimod (p°,H ) divides Fmod (p,H ) in W (T)I[X. ]

: P By " k' g -1
(3.3) K mod (p,Hl) is irreducible in ]F(‘I[le,

2
(3.4) (R mod (p,Hl)) does not divide ¥ mod (p,Hl) in ]E(‘I[Xl].
1

We put £ = 61H, so 0<2<n. By hOEBZ[a][Xl,Xz, ey Xt] we denote

the unique, monic, irreducible factor of £ such that Hmod (pk,Hk)

.. k .
divides I’iomod (p ,Hk) in Wk(]Fc‘;[)[Xl] (cf. (3.2), (3.3), (3.4)).

(3.5) Let M=M My Myy euey m_ be a t-tuple of integers satisfying

£<m<n and 0<m,<§,%c, ,(f) for 2<i<t, and let M=1+IZF m, N,
i i”i-1 i=1"1 i+l

(where of course Nt+1 =1). We define Lc (Z—DZ—)M as the lattice of rank

M, consisting of the polynomials ge¢ %Z[a][xl, X cer Xt] for which

2"

i < < <igt;
(i) 61g m and Gig n; for 2<i<t;



(ii) for 1<i<t;

= £ <j<i <
If éjlcj_l(g) mj or 1<j<i, then 6i+1£ci(g) m g

(iii) If Gilci_l(g)=mi for 1<i<t, then ALc(g)e Z;

. k . - k .
(iv) Amod (p ,Hk) divides gmod (p ,Hk) in Wk(]F(‘_:[)[Xl].

Here M-dimensional vectors and polynomials satisfying conditions (i), (ii),

and (iii), are identified in the usual way (cf. [8: (2.6); 11: (2.2)]). For

notational convenience we only give a basis for L in the case that mi= n__.L

for 2<ic<t; the general case can easily be derived from this:

{é—pkajxi': 0<j<$8H, 0<i< 4}

%aj'sHH(a) xi: SH<j<I, O0<i<2}

1 s .
u {Boajﬁxi IL: 0<j<I, f&<i<m}
U{—l-ocjxilﬂt (X_-s )ir- 0<j<I 0<i,<m 0<i <n
D 1 =2 "r r : ' 1 ' r- 2y
for 2<r<t, (iz,i3,...,it)_¢(o,o,___,o),

r Ny eeey nt)}

and (il'iZ' 13,...,it)¢ (m,n2 3

m_t n,.
U {X1 ITr=2 (x_ sr) }

(cf. [8: (2.6); 11: (2.19)1, (2.2), and (3.1)).

(3.6) Proposition. Let .
n+m
5 @ 0 ( I-1.3 M)
. = +m) !
(3.7) Bj fmax bmax (n+m) \D N2 (1+Fmax) ni=2 Si / !

m .
fmax denotes (£ _ )™. Suppose that b is a non-zero

for 1<3j<t, where
max

element of L such that

(3.8) s.> ((n+m)n_ +1) B,
J 3 j-1



for 2<j<t, and

kSH 5

(3.9) s g T g fat)I.

Then gcd(f,b) #1 in Q(a)[Xl,X2, ...,xt].

Proof. Denote by R=R(Df,Db) EZZ[(»][XZ, X eey Xt] the resultant of Df

3"

and Db (with respect to the variable Xl) . An outline of the proof is

as follows. First we prove that an upper bound for (ﬁj)max is given by

ﬁj. Combining this with (3.8), we then see that Xj= s, cannot be a zero

of R if R

-1 j-1 #0, for 2<j<t. This implies that the assumption

that R#0 (i.e. gcd(f,b)=1) leads to R#0. We then apply a result
from [6], and we find with (3.9) that Rmod (pk,Hk) # (0. But this is a
contradiction, because Hhmod (pk,Hk) divides both fmod (pk,Hk) and

B mod (pk,Hk) in Wk(%) [X1]. We conclude that R=0, so that gcd(f,b) =1

in Q(a)[xl, Xor aees xt].

If a and b are two polynomials in any number of variables over

©(a), having 5La and SZ,b terms respectively, then

. I-1
<
(3.10) (a b)max < amax bmaxmln(f,a,ﬂ,b) (1+ Fmax) .

From (3.10) we easily derive an upper bound for (ﬁj)max' because

Rj €ZZ[ajtxj+1

X, ceer X i . . d Db.:
Xy , t] is the resultant of ij an EJ

= m n .
(3.11) (Rj)maxs (ij)max(DBj)max(n+m).N

r.1+m-—1(1_|_F ) (I-1) (n+m-1),.
j+1 max

n.
It follows from fj=fj_ modulo (X.-s.), that (E.) < (F ) (nj+1)sjjr

1 j 3 j max j=-1"max
so that
J nj
(3.12) (E.) <f T, (n,+1)s,.—.
j max max i=2 i i



Combining (3.11), (3.12), and a similar bound for (Bj)max’ we obtain

sr.li)n+m (1+F ) (I-1) (n+m-1) ’
i m

~ n ' J
(3.13) (R, __ <€ Db (n#m)!(DN,TT;_ o

Jj max max 2

for 1<j<t. (Remark that (3.13) with "<" replaced by "<" holds for
j=t.)

is unequal to

Now assume, for some Jj with 2<j<t, that ﬁj-l

zero. We prove that ﬁj # 0. Because ﬁj = ﬁj-—l

modulo (Xj—sj) , the condition

Rj =0 would imply that all polynomials in ZZ[Xj] that result from ﬁj—l

by grouping together all terms with identical exponents in o and X'+1
up to Xt' have (Xj—sj) as a factor. These polynomials have degree (in

Xj) at most (n+m)nj, so that we get, with the result from [12], that

ls.|S((n+m)n.+1)%(1~Q. ) .
J Jj j-1"max

Combined with (3.13) and (3.7) this is a contradiction with (3.8). We con-
clude that ﬁj 20 if fzj_l #0 for any j with 2<j<t, so that the
assumption gcd(f,b) =1 (i.e. R#0) leads to R#0.

Assume that Hk(T) divides R(T) ez[T] in (Z/kaZ),[T], i.e.

Rmod (pk,Hk) = 0. The polynomial Hk(T) is also a divisor of F(T) in

(Zz/pkz)[T], so that gcd(F(T),R(T))=1 and [6: Theorem 2] lead to

kSH -1, L.
<
) < |Fl (I°R ).

With the remark after (3.13) and (3.7) this is a contradiction with (3.9),

so that Rmod (pk,Hk) # 0. This concludes the proof of (3.6). [J

(3.14) Proposition. Let b,,b,, ...,b  be a reduced basis for L (cf.

1772 M

[7: Section 1]), where L and M are as in (3.5), and let



+m
_ . M-1.n/2( -1 3 n;\"
(3.15)  By= (w2 )V AB DN (1HE VT s ,

for 2<j<t, where B_ 1is as in Section 2. Suppose that

£
L
(3.106) s.2 ((n+m)n ,+1) "B,
J J j-1
for 2<j<t, that
' - L
.17) s gt 1(Ith)I,

and that f does not contain multiple factors. Then

1 1
M 1)—2B

(3.18) (b1) £

< (M2
max

and h divides b

0 17 if and only if h_ce€ L.

0

Proof. If h0 divides b then h_ e L, because b, €L; this proves the

1’ 0 1
"if"-part.

To prove the "only if"-part, suppose that hoe L. Because hO is a J
monic factor of £, we have from (2.7) that (ho)max:SBf. with [7: (1.11)]
and hoe L this gives |b1[S (MZM—l)%B so that (3.18) holds, because
(bl)maxrslbll. Because of (3.18), (3.16), (3.17), (3.15), and the definition
of Bf, we can apply (3.6), which yields gcd(f,b1)¢ 1.

Now suppose that h0 does not divide bl' This implies that hO also

does not divide «r= gcd(f,bl) , Wwhere r can bei assumed to be monic. But
then Hhmod (pk,Hk) divides (/%) mod (pk,Hk) , so that Proposition (3.6)
can be applied with f replaced by £/r. Conditions (3.8) and (3.9) are
satisfied because (f/r)maxs Bf (c£. (2.7)) and because of (3.16), (3.17),
and (3.15). It follows that gcd(f/r,bl) #1, which contradicts r=gcd(f,b1)

because f does not contain multiple factors. [J
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(3.19) We describe how to compute the irreducible factor hO of f. Suppose

that f does not contain multiple factors, and that the polynomial H, the

. k
(t-1)-tuple s,, s, ...,st, and the prime power p are chosen such that

2" 3
(3.1), (3.2), (3.3), (3.4), (3.16), and (3.17) are satisfied with, for (3.16)

and (3.17), m replaced by n-1. Remember that we also have to take care

that conditions (2.1), (2.2), (2.3), (2.4), and (2.5) on p and H are

D

satisfied.
We apply the basis reduction algorithm (cf. [7: Section 1]) to a se-

quence of M.-dimensional lattices as in (3.5), where the M, = 1+-IZF m N,
Jj Jj i=1"1i i+1

run through the range of admissible values for ml,m (cf. (3.5)),

gr e My

in such a way that Mj<:Mj+ (So, for m=24, 2+1, ..., n-1, and mi==0,1,

1

..,Silc (f) for i=¢t,t-1, ..., 2 in succession.) According to (3.14),

i-1

the first vector b that we find that satisfies (3.18) equals #h

1 0

(remember that b belongs to a basis for the lattice), so that we can stop

1

if such a vector is found. If for none of the lattices a vector satisfying I

(3.18) is found, then hO is not contained in any of these lattices according

to (3.14), so that h0==f.

(3.20) Proposition. Assume that the conditions in (3.19) are satisfied.

4 ,
The polynomial h can be computed in O((S,h Z[Nz) k logp) arithmetic

0 170

operations on Iintegers having binary length O(INk logp).

Proof. Observing that log(Ier2k)==o(klog;n (cf. (3.17), (3.15), and
(2.8)), the proof immediately follows from (3.19), (3.5), and [7: (1.26),

(1.37)1. 0O

(3.21) We now show how s_, s

5 .rs, and p can be chosen in such a way

3" " t

that the conditions in (3.19) can be satisfied. The algorithm to factor £

then easily follows by repeated application of (3.19).
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We assume that £ does not contain multiple factors, so that the resultant

R=R(4df,df') of df and its derivative df' with respect to X1 is

unequal to zero. First we choose s_, s

2 €Z>

minimal such that

37 0 S 0

(3.16) is satisfied with m replaced by n-1. It follows from (3.16),
(3.15), (2.8), and logD=0(logd+ Ilog(I|F|) ) (because D=dl|discr(F)|),

that

logs, =0(log((n+m)n.) +log B, ,)
925 g ] 9551

j_

1
= + + + + +
O(InN+n(logB logD +1I log(1 Fmax) }:1=1 nilog si) )

£

O(n(I N+ log(dfmax) +Ilog(I|F]) +Zi=1 nilog si))
for 2<j<t, so that
- j-1
log s O(n(IN+1log(af _ )+I log(I|F|)) m._,(1+n ni))
and

t t-2
(3.22) I/ _,n; logs, =0(n” "N(IN+ log(dfmax) +Ilog(I|Fl))).

From the proof of (3.6) it follows that, for this choice of s_, s

2! S37 e S

the resultant ReZ[a] of df and df' is unequal to zero.

Next we choose p minimal such that p does not divide D or discr(F),

and such that R# Omodulo p. Clearly

g<ddiscr(F) f{m

ﬂq prime, g<p ax

which yields, together with

Ap
>
nq prime, g<p e
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for all p>2 and some constant A>0 (cf. [4: Section 22.2]), that
(3.23) p=0(logd+1I log(IlF])+longaX).

Similar to (3.13) we obtain

2n-1 (I-1) (2n-2)

iy t 0y
(2n-1) 1 (@N, T s.1) (1+F )

R <f 2n-1 nn
max max

so that we get, using (3.22)

. t-1
logR _=0(n" " N(IN+log(df  )+I log(IlF[))).

Combining this with (3.23) we conclude that
t-1
(3.24) p=0(n N(IN+log(dfmax)+Ilog(I|F|))).

Notice that (2.1) is now satisfied. In order to compute a polynomial

Hez[T] satisfying (2.2), (2.4), (2.5), and (2.3) with k replaced by 1,
we factor Fmod p by means of Berlekamp's algorithm [5: Section 4.6.2]

and we choose H as an irreducible factor of Fmodp for which

Rmod (P’Hl) #0; such a polynomial H exists because Rmod p# 0. Conditions
(2.4) and (2.3) with k replaced by 1 are clear from the construction of
H, and because we may assume that H has leading coefficient equal to one,
(2.2) also holds. The condition that discr(F) mod p# 0, finally, guarantees
that Fmod p does not contain multiple factors, so that (2.5) is satisfied.

We choose k minimal such that (3.17) holds, so that
t
= +
k log p O(I(InN+nlog(dfmax) +Inlog(Il|F]) +nZi=2 n,; log si) log p)
(cf. (3.15) and (2.8)), which gives, with (3.22) and (3.24)

(3.25) klogp=0(I nt_l N(I'N+log(dfmax) +1I log(IlF[))).



13

Now we apply Hensel's lemma [5: Exercise 4.6.22] to modify H in such a

way that (2.3) holds for this value of k (this is possible because (2.3)
already holds for k=1), and finally we apply Berlekamp's algorithm as
described in [1: Section 5] and Hensel's lemma as in [14] to compute the
irreducible factorization of fmod(pk,Hk) in Wk(na)txlj' Condition

(3.4) is satisfied for each irreducible factor ﬁnmd(pk,Hk) of fmod‘(pk,Hk)
because ﬁnxxi(p,Hl)i 0, and (3.1), (3.2), and (3.3) are clear from the
construction of HQ.

We have shown how to choose 52,53, cees S and p, and how to satisfy

t

the conditions in (3.19). We are now ready for our theorem.

» X ]

(3.26) Theorem. Let £ be a monic polynomial in lﬁz[a][xl,xz, e X

d

| +] > 1 <n= < < <
with t=2, of degree ni in Xi’ and 2<n nl._nz_....._nt.
The irreducible factorization of £ can be found in
— 5 .
o(n® 1(IN) (IN-klog(dfmaX)+-Ilog(IlF|))) arithmetic operations on integers
t- 2
having binary length O(n 1(IN) (IN+-log(dfmax)+-Ilog(I!F|))), where

N=TI®  (n.+1).
i=1"4i

Proof. If f does not contain multiple factors, then f can be factored
by repeated application of (3.19). In that case (3.26) follows from (3.21).
(3.20), (3.25), and the well-known estimates for the applications of
Berlekamp's algorithm and Hensel's lemma (cf£.[5;1] and [16]).

If f contains multiple factors, then we first have to compute the

monic gcd g of £ and its derivative with respect to X and the

1!
factoring algorithm is then applied to £/g. The cost of factoring £/g
satisfies the same estimates as above, because (f/g)max:SBf (cf. (2.7)),

and this dominates the costs of the computation of g, which can be done

by means of the subresultant algorithm (cf. [2]1). O
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