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Abstract 

Elementary formal system (EFS for short) is a kind of logic program directly 

dealing with character strings. In 1989, we proposed the class of variable- 

bounded EFS's as a unifying framework for language learning. Responding to the 

proposal, several works have been developed. In this paper, a brief summary of 

these works on learning elementary formal systems, Shapiro's model inference 

approach, inductive inference from positive data, Valiant's PAC (probably 

approximately correct) learning approach, and applications to Molecular Biology, 

is presented. 

* This work is partly supported by Grant-in-Aid for Scientific Research on Priority Areas 

(No. 03245104), the Ministry of Education, Science and Culture, Japan. 



Elementary Formal Systems 

The elementary formal systems (EFS's for short) were introduced by Smullyan to 

develop his recursion theory [24], and i t  is known that they can be used to define 

languages as generators [4]. Since EFS's can be considered as logic programs [ll] 

over character strings [27], they are also used as acceptors for languages. In the 

field of language learning, many contributions have been made [3], using various 

frameworks such as regular grammars, context-free and context-sensitive 

grammars, finite automata, pushdown automata, etc. However, with EFS's we 

can discuss both generators and acceptors of formal languages, taking full 

advantage of results obtained in the theory of formal languages and automata as 

well as those in the theory of logic programs. Thus, we have proposed EFS's as a 
unifying framework for language learning [5]. 

The following is an example of EFS which consists of three definite clauses, 

where a, b, c are constant symbols from an alphabet Z, x, y, z are variables, and p, 

q are predicate symbols. 

p(a, b, c)+, 

= { piax, by, ~ 2 )  +pix, Y, d, 
q(xyz) + p(x, Y, 2) i 

In EFS's we use two inference rules, the substitution of nonempty words for 

variables, and the modus ponens. The language defined by I' and q is 

L(r,  q) = { w C Z + I p(w) is provable from I' } = { aabncn I n 1 1 }. 

In this paper, we demonstrate how efficiently our framework of EFS's works 

for language learning, by presenting results obtained within the framework. 

Variable-Bounded EFS's and Model Inference 

A definite clause A + B1, ... , B, is said to be variable-bounded if variables in B1, 
... , B ,  also appear in A. A variable-bounded EFS is a finite set of variable- 

bounded clauses. The restriction on variable-bounded EFS's does not essentially 

affect the descriptive power of EFS in the sense that  every recursively 

enumerable language is definable by a variable-bounded EFS. The EFS I' in the 

example above is variable-bounded. 

For variable-bounded EFS's, derivations based on resolution principle provide 

a complete refutation procedure [27]. The Figure 1 illustrates a refutation. Note 



v 20 : = a,  yo : = baa) 

Figure 1. An EFS I' and a refutation 

that the number of unifiers for an atom and a ground atom is finite while i t  may 

be infinite for two atoms in general. To decide whether a word w is in the 

language defined by a variable-bounded EFS, only ground goals of the form 

+p(w) should be refuted. As far as variable-bounded EFS's are concerned, any 

subgoal appearing in a derivation from a ground goal is always ground. 

Shapiro's Model Inference System (MIS for short) [16] synthesizes logic 

programs form their models. One of the most important features of MIS is that i t  

fully utilizes the tight relation between syntax and semantics of logic programs. 

Since variable-bounded EFS's have nearly the same properties as usual logic 

programs, we can naturally consider a learning algorithm based on Shapiro's 

theory of model inference. 

By using the following procedure MIEFS (Model Inference for EFS), variable- 

bounded EFS's can be synthesized from their models in a similar manner to MIS. 
The hypothesis H is too strong if H proves some negative example. H is too weak if 

H cannot prove some positive example. 

To guarantee MIFES correctly infers EFS models, it is sufficient that CBA 
works for EFS's and a complete refinement operator is available. CBA detects a 

false clause from an EFS using a refutation of a false fact in the model. 

Refinement operator provides an effective enumeration of clauses in the direction 

from general to specific. For more details the reader should be referred to [5]. 



Procedure MIEFS; 
begin 

H : =  {O}; 
repeat 

read next example; 

while H is too strong or too weak do begin 
while H is too strong do begin 

apply CBA to H and detect a false clause C in H; 

delete C from H; 

end; 
while H i s  too weak do 

add a refinement of a clause deleted so far to H; 
end; 
output H ;  

forever; 
end; 

Length-Bounded EFS's and Inferability from Positive Data 

A definite clause A + B1, ... , B, is called length-bounded if the total length of 

BIB, ... , B,@ does not exceed the length of A0 for any substitution 8, where the 

length of an atom is total length of terms in it. Both of two examples above are 

length-bounded. The class of languages definable by length-bounded EFS's 

coincides with the class of context-sensitive languages [5]. 

Inductiue inference is a process to guess an unknown language or rule from its 

positive and negative examples, and i t  is said to be successful if the sequence of 

guesses produced by the process converges to a correct representation of the 

target. Examples contained in the language or explained by the rule is called 

positive, and the others negative. 

Gold [9] indicated that inductive inference from positive data is strictly less 

powerful than that from positive and negative data, by proving any super-finite 

class, that includes all finite languages and a t  least one infinite language, is not 

possible to be inferred from positive data. Angluin studied inductive inference of 

languages from positive data and gave a useful necessary and sufficient condition 

for languages to be inferable from positive data [I, 21. The class of pattern 

languages is one of the most important classes shown by her to be inferable from 



positive data. A pattern is a string consisting of constant symbols and variables. 

The language of a pattern n is a set of constant strings obtained by substituting 

nonempty constant strings for variables. For example, n = axbx is a pattern and 

defines L(n) = { awbw I w E Z + }. Obviously, any pattern language can be defined 

by such an EFS as { p(axbx) +- }. Thus, the class of languages defined by EFS's is a 
natural extension of pattern languages. 

Shinohara showed that the class of unions of two pattern languages and the 

class of languages defined by EFS's with just two clauses are inferable from 

positive data [20, 211. Wright proved that the unions of three or more pattern 

languages are also inferable by using a notion of finite elasticity, which is a 

sufficient condition for inferability from positive data [26,13]. 

Using the framework of EFS's more explicitly, we can show that any class of 

minimal models or languages defined by length-bounded EFS's consisting of a t  

most rn clauses is inferable from positive data, for an arbitrarily fixed n [22]. 

One of the most important properties of length-bounded EFS's is that there are 
only finitely many inequivalent EFS's that explain a given finite set and do not 

contain any redundant clauses. This property is also used to prove PAC 

learnability, which will be discussed later. It should be noted that preventing 

substitutions from erasing variables is essential for our discussion on length- 
bounded EFS's. If we allow erasing substitutions, we need another discussion as 

in [19]. 

From this result, we can show the same results for grammars and Prolog 
programs [23] as for EFS's. That is, the class of languages defined by context- 

sensitive grammars with a t  most rn production rules is inferable from positive 
data, and so is the class of linear Prolog programs [I71 (or reducing programs [7]) 

with a t  most rn clauses. 

Figure 2 illustrates the Chomsky hierarchy and EFS languages. A clause is 

called regular if i t  is of the form p(n) + ql(xl), ... , qn(xn), where p, ql, ... , q, are 

unary predicates, n is a regular pattern containing variables x i ,  ... , x,. A regular 
clause is called left (right) linear if the pattern n in the head is of the form wx (xw), 

where x is a variable and w is a string. 

Hereditary EFS's and PAC Learnability 

We can also discuss Valiant's PAC (probably approximately correct) [25] 

learnability of languages by using the framework of EFS's. We call a subset of a 

universe U a concept. When we take the set C* as the universe, a concept is a 
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Figure 2. Chomsky hierarchy and EFS languages 

language. By U s  n, we denote the set of elements in the universe U whose sizes 

are at most n. A class of concepts is polynomial time learnable if there exists an 

algorithm A that satisfies the following conditions: 

(I) A runs in polynomial time with respect to the length of the input. 

(2) There exists a polynomial p(* ,  -, *) such that for any integer n 2 0, any 

concept c, any real number E, 6 (0 < E, 6 < I),  and any probability 

distribution P on 7.75 n, whenever A takes p(n ,  118, 1/6) examples randomly 

chosen according to P, A produces a hypothesis h such that P(cG3h) < E 

with probability a t  least I - 6, where (33 means a symmetric difference. 

For a class C and an integer n, we define dimC, = log21C,I, where C, = { c n 
US n I c C C }. A class C is of polynomial dimension if there exists a polynomial 

d ( n )  such that dimCn 5 d ( n )  for all n. It is known that a class C is polynomial 
time learnable only if C is of polynomial dimension [14]. As stated above, the 



class of languages defined by length-bounded EFS's with a t  most m clauses has 

the property that there are only finitely many languages containing a finite set of 

strings. More precisely, i t  can be easily shown the class is of polynomial 

dimension. If we do not restrict the number of clauses in EFS's, the dimension of 

the class clearly exceeds polynomial, because any finite set can be defined. 

A pattern is regular [18] if each variable appears a t  most once in it. In [12], we 

showed that even a class of regular pattern languages, which is the simplest class 

of EFS languages, is not polynomial time learnable under the assumption NP + 
RP. This result indicates that it  is natural to put the bound on the number of 

variable occurrences. In fact, for any (possibly not regular) pattern with at  most k 
variable occurrences, we can construct a polynomial time learning algorithm in a 

straightforward way. When we restrict the number of variable occurrences, we 

can show that more general classes of EFS's are polynomial time learnable. 

A clause is hereditary if any pattern in the body contains a t  least one variable 

and is a subword of a pattern in the head. The examples we have shown so far are 

all hereditary. It should be noticed that in hereditary EFS's any proof or 

refutation of a ground goal +p(w) does not contain words other than subwords of 

w. We can prove that the class LB-H-EFS(rn, k) of languages defined by length- 

bounded hereditary EFS's consisting of a t  most rn clauses such that the number of 

variable occurrences does not exceed k is polynomial time learnable for 

arbitrarily fixed m and h. 

The class LB-H-EFS(rn, h) is not very large but even LB-H-EFS(2,2) contains 

infinitely many languages such as { a2" I n 2 1 }, { anbn I n 2 1 }, unions of two 

pattern languages with at  most 2 variable occurrences, and so on. Any context- 
free language is contained in LB-H-EFS(m, 2) for some rn. Hence, our result 

shows that the range of polynomial time learnable is large enough if m and k are 

appropriately chosen. 

Applications to Molecular Biology 

One of the most important objectives in learning theory is to develop 

applications of theoretical results to practical problems. Recently, we have 

proposed learning algorithms for EFS's as methods for analyzing amino acid 

sequences and nucleotide sequences in Molecular Biology [6]. We made 

experiments on identification of transmembrane domain in amino acid sequences 

with EFS's. Because of the limitations on computational resources, we restricted 

candidate hypotheses to EFS's consisting of several atoms with regular patterns. 



That is, we tried to identify the feature of transmembrane domains by a union of 

several regular pattern languages. From not so many positive and negative 

examples randomly chosen from PIR database [15], our algorithm found a 

reasonable hypothesis in the sense that it  explains more than 90% of all examples 

from PIR. 

Strictly speaking, however, the algorithm used in the experiments is not based 

on the theoretical results discussed above, but on the theory of Occum algorithms 

[8]. The following is a sketch of the implemented algorithm: 

Procedure FIND-UNION; 

input: Pos, Neg; { positive and negative examples } 

begin 
S:= 0; 
I : = Pos; 

E : = Neg; 
foreach pattern with n0 = w for some w < I and 0 do 

if n excludes almost all examples in E then S : = S U { n }; 
Find a minimal subset I' of S covering I; 

end; 

The problem of finding minimal set cover is NP-complete, but can be solved in 

polynomial time when an approximation is allowed. According to [lo], we can 

find a set cover of size a t  most M logM in polynomial time, when M is the size of 

minimum set cover. 

The identification of transmembrane domains is one of the most important 

protein classification problems. Most approaches in Molecular Biology have been 

dealing with only positive examples and have not achieved success rates more 

than 80%. Figure 3 presents an example of amino acid sequence containing four 

transmembrane domains, which are indicated by bold face letters. 

Based on the fact that the lengths of transmembrane domains vary from 20 to 

30, we use sequences consisting of transmembrane domains as positive examples 

and choose sequences of length around 30 randomly cut from the other parts as 

negative examples. The numbers of positive and negative examples from PIR are 

689 and 19276, respectively. To reduce the hypotheses space, we transform 

sequences according to hydropathy plot symbol by symbol, as shown in Table 1. 
Figure 4. shows the transformed sequence. Further, we restrict the forms of 

patterns to xwlz, xwlyw2z and xwlyl w~2w3z, where wl ,  w2, w3 are nonempty 

strings over {*, + , -1, x, y, yl, y2, z are distinct variables, and x and z are allowed to 

be substituted by empty string. Table 2 gives a collection of regular patterns 



MDVVNQLVAGGQFRVVKE(PLGFVKVLQWFA1FAFATCGSY)TGELRLSVECANKTESALNIEVEFEYPFRLHQVYFDA 

PSCVKGGTTKIFLVGDYSSSAE(FFVTVAVFAFLYSMGALATYIFL)QNKYRENNK(GPMMDFLATAVFAFMWLVSSSAW 
A)KGLSDVKMATDPENIIKEMPMCRQTGNTCKELRDPVTS(GLNTSWFGFLNLVLWGNLWFVF)KETGWAAPFMRAPP 

GAPEKQPAPGDAYGDAGYGQGPGGYGPQDSYGPQGGYQPDYGQPASGGGGYGPQGDYGQQGYGQQGAPTSFSNQM 

Figure 3. An amino acid sequence from a membrane protein 

Amino Acids Hydropathy New Symbol 

A M C F L V I  1.8 - 4.5 * 
P Y W S T G  -1.6 - -0.4 + 

R K D  E N Q H  -4.5--3.2 - 
w 

Table 1. Transformation rules 

Figure 4. The sequence obtained by the transformation 

Table 2. Collections of regular patterns 

Patterns Positive Negative 

X*-Y1--Y2-Z 12 (1.7%) 13669 (71.0%) 

x++y+-+z 21 (3.0%) 6094 (31.6%) 

X**Ys+-Y2+-Z 21 (3.0%) 9482 (49.2%) 

total 43 (6.2%) 17340 (90.0%) 

Table 3. Collections of regular patterns for non-transmembrane domains 



found by our learning algorithm FIND-UNION from 70 positive examples and 

100 negative examples, and their success rates evaluated by all positive and 

negative examples. 

The results from experiments have some problems that they achieve high 

success rates for positive data (90.7%) but relatively low for negative (77.3%). 

However, when we try to find patterns from the reverse side, that is, find patterns 

explaining negative examples, our learning algorithm can find more reasonable 

patterns. The result for non-transmembrane domains in Table 3 shows that both 

positive and negative examples are explained by only three patterns in high 

success ratio (93.8% and 90.0%). 
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