
Future Trends of TAPSOFT
Hartmut Ehrig Bernd Mahr

Technische Universits Berlin
Franklinstrat3e 28/29, D-10587 Berlin
e-mail: {ehrig, mahr}@cs.tu-berlin.de

January 1997

P r e f a c e a n d S u m m a r y

The TAPSOFT-conferences on Theory and Practice of Software Development
started 1985 in Berlin and were held bi-annually in Pisa, Barcelona, Brighton,
Paris, Aarhus. In 1995 it was decided to combine TAPSOFT with ESOP (Eu-
ropean Symposium on Programming) to the new conference ETAPS (European
Joint Conference on Theory and Practice of Software) which will start 1998 in
Lisbon. For this reason TAPSOFT'97 in Lille is the last TAPSOFT in the old
style combining the conferences CAAP (Colloquium on Trees in Automata and
Programming) and FASE (Formal Aspects of Software Engineering).

During FME'96 (Formal Methods Europe) in Oxford it was decided to create
a new European Association, called EASDS (European Association of Software
Development Science), which will cooperate with EATCS (European Association
on Theoretical Computer Science) on the theoretical issues of software science,
but should especially care about software development from the practical point

of view.

Motivated by these events and an invitation of the first author to the panel
of TAPSOFT'97 on "Theoretical Computer Science and Software Science: The
Past, the Present and the Future" the first author asked a number of colleagues
from different countries concerning their opinion on "Future Trends of Theo-
retical Computer Science and Software Development Science". After a careful
analysis of their replies we have decided to summarize the discussion under the
heading of the following four trends:

- From Diversity of Mathematical Concepts to Unification of Compu-

tat ional Models and Semantic Theories
- From Algebraic Specification to Integration of Formal Techniques
- From Trees to Graphs, Graph Transformations and Visual Languages
- From Abstract Data Types to Object-Oriented Techniques and Con-

tinuous Software Engineering

The subsequent more detailed discussion of these trends expresses our
own opinion and is also meant as a basis for the TAPSOFT'97 panel

discussion.

Acknowledgemen t

For stimulating contributions concerning future trends we would like to thank
Michael Arbib, Ed~Blum, Heiko DSrr, Gregor Engels, Gerhard Goos, Klaus
Grimm, Tony Hoare, Stefan J~hnichen, Hans-JSrg Kreowski, Michael LSwe, Jose
Meseguer, Ugo Montanari, Fernando Orejas, Grzegorz Rozenberg, Horst Reichel,
Herbert Weber and Emo We]zl, Finally, we are grateful to Maike Gajewsky for
struc~t~ring the materia) and final layout.

1 F r o m D i v e r s i t y o f M a t h e m a t i c a l C o n c e p t s t o

U n i f i c a t i o n o f C o m p u t a t i o n a l M o d e l s a n d S e m a n t i c
T h e o r i e s

One of the aims of Theoretical Computer Science is to present suitable math-
ematical models and solutions for different concepts and problems in Practi-
cal Computer Science. In the case of programming paradigms, like functional,
procedural, logical or parallel programming, this leads to a variety of different
compt~tat~o~al mode]s. Moreover, there are different styles of semantic theories,
like operational, algebraic, deaotational or axiomatic, for specification and pro-
gramming and a diversity of formal reasoning tools. This kind of diversity of
mathematical concepts is similar for formal modelling in all areas of Practi-
cal Computer Science. Numerous interesting results have been published in the
literature. For practical applica~tions, however, especially in an industrial envi-
ronment, the d~ve~sity of specification and programming Iangaages with their
different mathematical models is problematic. For practical use also suitable
methodologies and tools supporting the software development process are miss-
ing. It is pointed out by Heiko D6rr and Klaus Grimm from Daimler-Benz that
automation based on formal methods should be pushed for correctness and cost
reasons, but there shou]d be a]imitation to a small number approaches and an
effort on the development of suitable methodologies and tools.

In fact, in practice there is a strong concerttration on those specification and
programming languages, which are supported by efficient and reliable commer-
cial tools. Since this tendency is also shared by most of the European funding
agencies this has become a severe prob]em fo~- basic research_ Certainly we need,
as proposed by Gerhard Goos and others, a better transfer of results from theory
to practice. But in order to transfer interesting new results it is pointed out by
Emo Welzl, that theoreticiarls must be able to continue with research, which is
impossible without further funding for basic research. On the other hand the
diversity of existing mathematical concepts for computational models, semantic
theories and formal reasoning tools should be unified within Theoretical Com-
puter Science. This kind of uaification on the basis of abstract general models
is considered an important future trend by Tony Hoare and Ugo Montanari,
in order to create a better consolidation of theory and successful transfer of
technology.

2 F r o m A l g e b r a i c S p e c i f i c a t i o n t o I n t e g r a t i o n o f F o r m a l

T e c h n i q u e s

Algebraic specification techniques have been very successful for the specification
and reasoning about abstract data types, functional and logic programming,
as well as concepts for structuring and refinement of software systems. Several
useful algebraic specification languages have been developed, implemented, and
applied in numerous research projects. However, due to the diversity of different
concepts and styles and the lack of commercial tools, there are only few applica-
tions in truely practical environments up to now. This unsatisfactory situation
will certainly improve once the new algebraic specification language CASL de-
veloped by the common framework initiative for algebraic specification (CoFI)
is available. On the other hand there are already several other multi-purpose
specification languages, like VDM and Z, and specific techniques and languages
for concurrent, distributed, embedded and reactive systems, like Petri nets, CSP,
CCS, process algebras, statecharts, and temporal logic. Moreover, there is a huge
number of semi-formal specification techniques, like entity-relationship diagrams
and object-oriented design techniques, which are used for software development.
Unfortunately, different techniques are used in different phases of software de-
velopment, like requirement and design, and for different aspects of the system,
like static and dynamic views.

For Theoretical Computer Science it is proposed by Jose Meseguer, Fernando
Orejas, Gregor Engels and others, that interoperability and integration of formal
techniques is an important future trend. For Software Development Science it
is important to allow heterogenity, to have concepts for integration (Gregor En-
gels, Stefan J~hnichen, Herbert Weber) and language independent concepts for
specification and programming in the large (Fernando Orejas, Gerhard Goos).
Modularity, well-studied for algebraic specification languages, is a must for all
kinds of languages, even for new kinds of languages, like the neural simulation
language NSL (Michael Arbib), and must also be extended to integrated speci-
fication techniques, like algebraic high-level Petri nets (Herbert Weber).

3 F r o m T r e e s t o G r a p h s , G r a p h T r a n s f o r m a t i o n s a n d

V i s u a l L a n g u a g e s

The notion of trees is still au important concept in Computer Science and has
been studied in detail especially within the CAAP-conferences for more than
25 years by now. Although the history of graphs and graph grammars in Com-
puter Science also started in the late 60'ies and early 70'ies the importance of
these concepts for Software Science and Development has been recognized by
the scientific community only recently. Today, graphical user interfaces as well
as graphical visualization and animation techniques are standard due to increas-
ingly high performance and capacity of workstations and PC's. On the other
hand the concepts behind these graphical techniques, which are important for

the development of visual languages, are not yet well understood and studied
by computer scientists. Graph grammars and transformations have been inves-
tigated by a small international community up to now, including Azriel Rosen-
feld, Grzegorz Rozenberg, Hans Jiirgen Schneider, Hans-JSrg Kreowski, Manfred
Nagl, Ugo Montanari, Andrea Corradini, Gregor Engels, Jean Claude Raoult,
Bruno Courcelle and several people in Berlin, but the importance as a future
trend is also pointed out by scientists in Software Engineering like Herbert Weber
and Gerhard Goos. The importance of rewriting and rule-based concepts for all
kinds of structures is apparent for numerous aspects of specification, reasoning
and programming in software science, communication technology and artificial
intelligence. Especially rewrite logic (Jose Meseguer) and high-level replacement
systems (Ugo Montanari), a generalization of graph transformations to high-level
structures in suitable categories, seem to be important future trends supporting
the development of formal interoperation of different specification techniques
(Jose Meseguer) and visual languages (Gregor Engels, Hans-JSrg Kreowski).

4 F r o m A b s t r a c t D a t a T y p e s t o O b j e c t - O r i e n t e d

T e c h n i q u e s a n d C o n t i n u o u s S o f t w a r e E n g i n e e r i n g

The notion of abstract data types, developed and formalized already in the
70'ies, is still one of the most important concepts in Computer Science, especially
in Theoretical Computer and Software Development Science. In fact, abstract
data types have been extended by various parameterization, transformation and
modularization concepts which are most important for horizontal and vertical
structuring of software systems. More recently abstract data types, mainly used
to model static aspects, have been extended by state-oriented and dynamic as-
pects, leading to the concept of dynamic algebras and dynamic abstract data
types. On the other hand the object-oriented paradigm has turned out to be
one of the most important concepts for architectural design and programming
of all kinds of software systems, especially supported by the commercial success
of C++. In fact, there are several formal concepts, like classical and dynamic
abstract types, process algebras, co-algebras, actor systems and attributed graph
transformations, which have the capability of modelling certain aspects of object-
oriented techniques. But it is still open and considered as an important future
trend by Horst Reichel, Gerhard Goos and others, to develop a widely accepted
formal model for the object-oriented design and programming paradigm.

Another important aspect in the area of software engineering, database and in-
formation systems as well as communication technology and computer networks
is the problem of continuous change of requirements for already existing software
systems in all areas of administration, commercial services and industry. This
means that today maintenance of software includes re-engineering and hence
continuous software engineering. Although this problem is known and faced in
practice since the very beginning it has become a matter of research only recently.
Unfortunately, formal methods for software development have been almost ne-

10

glected the area of re-engineering up to now. An important problem is that the
adaption of the software means to change the design patterns online, because
shut down of the system is highly undesirable for commercial reasons. Being
involved with these problems in practice it is proposed by Herbert Weber and
Michael L6we that research concerning continuous software engineering and -
even more general - for evolutionary systems in different areas of science is an
important future trend. Most recently it has been shown by Michael LSwe (now
managing director of a software institute, which is a daughter of an important
insurance company) that among all existing semi-formal and formal methods the
theory of graph transformation has the greatest potential to solve the problems
of re-engineering and continuous software engineering mentioned above.

