
Conservative Extensions, Interpretations Between Theories

and All That! (*)

T S E M a l b a u m
Department of Computing

Imperial College
180 Queen's Gate

London SW7 2BZ UK
tsem@doe.ic.ae.uk

Abstract. About twenty years ago, together with a group of collaborators, some
conjectures were developed about the fundamental principles of a theory of specification.
These principles included the use of interpretations between theories to underpin the
concept of representation and parameterisation, conservative extensions to underpin the
concept of modularity and extraiogieal equality to deal with multiple representations. It
was quickly realised that there were fundamental metalogical properties which amounted
to 'laws' of specification. An example is provided by the role of Craig interpolation in the
composability of implementations and parameter instantiation. Further work on institutions
added some fundamental ideas about generalising some of these concepts to logics other
than many sorted first order Iogie and pointed out the eategorieal nature of many of the
constructions. Recent work has highlighted the possibility of 'intemalising' some of the
meta concepts involved and led to a re-examination of the fundamental principles. For
example, extralogieal equality and general interpretations are not as fundamental as we
thoughttwenty years ago. The purpose of the paper is to present a retrospective on this
work and outline the basic principles of a general theory of specification as we now see
it.

1 Introduction
It is now about 20 years since I started work on specification. About 10 years ago, I was

asked to give an invited talk at IFIP'86 in Dublin and I used it as an opportunity to rehearse

the ideas and philosophy underlying the work of myself and my collaborators over that

first 10 years. The kind invitation to present this invited talk has given me the

opportunity to look back over the last 20 eventful years and critically assess the ideas,

philosophy, and technical cornerstones of the approach. Which of these has stood the test

of time? Which now appear less fundamental and, perhaps, even been dumped overboard?

Which ideas and technical perspectives have had to be added?

My interest in specification began at about the time I first went to visit the Pontiffcia

Universidade Cat61ica do Rio de Janeiro (PUC/RJ) where there were not too many

algebraists around, but there were some clever logicians with a deep interest in Comput ing

(namely, Paulo Veloso and Roberto Lins de Carvalho). We began ([8]) by trying to
assess how the ideas about abstract data types which had appeared during the mid to late

'70s could be recast in (many sorted) first order logic (FOL). The motivation was s imply

that FOL was more expressive and that this could not but help the engineer in the

specification task. Very early on, we had developed an abiding interest in understanding
what specification was for.. Hence, we saw this increased expressivity as a potent ia l ly

useful easing of the difficulties inherent in writing specifications.

(*) This work was partially supported by the Esprit WG 8319 (MODELAGE) and through the EPSRC

grants GR/K67311, GR/K68"/83, and GR/G57895.

41

The analysis of the seminal report [14] by Hans-Dieter Ehrich was also a very important

element in the process of establishing our foundational notions. Why did correct
implementations no.__!t compose correctly in all cases? What were the engineering

assumptions on which the technical developments were based? What results were

dependent on the formalism used (some variant of equational logic or FOL or whatever) and

which were 'universal'?

We quickly established the following paradigm for specification activity as a rational

reconstruction of software engineering practice, as perceived through our formalistically

tinted glasses: Let us consider program development by means of stepwise refinements.

Here one postulates some abstract data type (ADT), suitable for the problem at hand, which

has to be implemented on the available system. The end product consists of (the text of) an

abstract program manipulating the postulated ADT, together with a suite of (texts of)

modules implementing successive ADTson more concrete ones until reaching the available

executable level. See also [31,35,43]. Now one needs some knowledge about the relevant

properties of the abstractions involved. This is provided by the axioms in the

specifications of the ADTs. The proof that the abstract program does exhibit the required

behaviour consists of syntactical manipulations that derive the verification conditions

from the ADTspecification. Similarly, the correctness of the implementations of the ADTs

is verified by syntactical processes, as we shall elaborate upon in the sequel.

Let us examine more closely what is involved in implementing an abstract data type A on

(in terms of) another one, C. The result will be a module representing objects of A in terms

of those of C, and operations and predicates of A by means of procedures using operations

and predicates of C. We can abstract a little from the actual procedure texts by replacing

them by specifications of their input-output behaviours. These amount to (perhaps

incomplete) definitions of the operations and predicates of A in terms of those of C and can

be regarded as axioms involving both the symbols of A and of C. Similarly, the

representation part describes the abstract sorts in terms of the concrete ones, which can be

abstracted into axioms introducing the new sorts and capturing (some of) the so-called
representation invariants [30,29].

With this abstraction in mind, we are ready to describe this situation in terms of formal
specifications, i. e. theories presented by axioms [50,41].

One extends the concrete specification C by adding symbols to correspond to the abstract

ones in A, perhaps together with some auxiliary symbols. Since one does not wish to
disturb the given concrete specification C, this extension B should not impose any new

constraints on C. This can be formulated by requiring the extension 13 of C to be
conservative [46] in the sense that B adds no new consequence to C in the language of the
latter. " - -

One then wishes to correlate the abstract symbols in A to corresponding ones in B, much

as procedure calls are correlated with their corresponding bodies. But, the properties of A

are important, for instance in guaranteeing the correctness of the abstract program

supported by A. Thus, in translating from A to B, one wishes to preserve the properties of

A as given by its axioms. Hence, one needs a translation i:A----B that is an interpretation of

theories [46] in the sense that it translates each consequence of A to a consequence of B.

42

We thus arrive at the concept of an implementation of A on C as an interpretation i of A
into a conservative extension B (sometimes called a mediating specification) of C [41].

This is depicted as an implementation "triangle' below and is often called a "canonical

implementation step" [50].
i

C

In stepwise development, it is highly desirable to be able to compose refinement steps in a
natural way. Let us consider the situation depicted below. Here, one has a first

implementation of A on C (with mediating specification B) and a second implementat ion
of C o n E(with mediating specification D). See figure la below. Now, one would like to

compose these two implementations, in an easy and natural manner, so as to obtain a

composite implementation of A directly on E. An immediate question that arises is: what

would its mediating specification be?
i k

A ~B A ~ i ,--M

C

E
E

Figure la Figure lb

This is where an important property, the so called Modularisation Property, comes in to
play. It will allow one to obtain such a mediating specification M, together with an
interpretation k of B into M and a conservative extension g of D into M. In other words, i t

will enable one to complete the rectangle, thereby obtaining a composite implementa t ion

of A directly on D, consisting of acomposite interpretation of A into M together with a

composite conservative extension of Einto M. See figure lb above.

Thus, an immediate benefit of this view is the ability to iterate implementation steps: an
implementation of A by C "composes" naturally with one of C by E to yield an
implementation of A by E. Here it is worthwhile noting that this composition mimics
exactly what a programmer does in simply putting together the corresponding modules

(with appropriate l inking information).

Another dividend stems from the fact that this view concentrates on the logical aspects of
implementation. For, recall that in passing from C to B we add formulae rather than
programs. These formulae record the design decisions taken in the implementation, no t
yet their actual coding into a program text. Therefore, we achieve orthogonality: the
process of coding actual modules is independent of - and can proceed in parallel with - the

43

process of further (logical) refinement, say, in implementing C by E. The successive

refinements record the various design decisions.

We saw the purpose of this specification activity (directed to abstract data types) as

supporting, and being driven by, program verification. The axioms asserted for a data type
were only useful to the extent that they were required in order to prove the correctness of a
program using the data type (by whatever verification method was being employed to affect
this) and to the extent that they then prescribed required characteristics of an
implementation of the data type.

This pragmatics was complemented by another observation about the assumptions
underlying data type theory (as then expressed). The early papers motivated the use of
initial algebras by stating that the specifier would have in mind a specific algebra whose
complete description he/she wanted to construct. Here, 'complete' is used in the logical

sense: all atomic sentences are decided (as they of course must be in a model). From a

software engineering perspective this is completely unrealistic. Firstly, specifiers

never(?) have a complete description of what they specify. Most often, one of the main
uses of the specification activity is to build a better understanding of what is being

specified. The expectation from traditional science and engineering disciplines is that

complex phenomena have no complete descriptions, in the logical sense 1. Secondly, if
the design activity really is about adding implementation oriented detail, then the only

way in which this detail can be added sensibly is by making the design more complete. The
motivation of supporting program verification by having data types with appropriate
properties to affect this just reinforces the idea that specifications should be as 'complete
as necessary, but no more so'!

One could then go on to argue that, almost always, even an implementation (of some
specification) is not complete in this logical sense. There are some (many?) details left

undecided in a program as they are deemed irrelevant to making the program 'work'. This
observation then implies that implementations cannot possibly be algebras or models, but
are classes of such.

Moreover, we cannot actually work directly with algebras/models in an engineering sense.

We can only work with their descriptions. (Of course, wedo work with algebras/models in
a mathematical or scientific sense.) This analysis may then lead one to posit that

specification and software engineering are activities focused on proof theoretic/syntactic
manipulations and not on manipulation of their semantic counterparts. These latter are, of

course, an indispensable aid to understanding and possibly analysis, but not central to
software engineering pragmatics ([37,41,39,50]).

2 A Specification Praxis

In the end, we focused on the following assumptions and tools. They can be classified into
methodological/philosophical assumptions and technical assumptions and tools.

1
Worse than this, physics has theories about related phenomena which are actually inconsistent at
some of the overlaps!

44

Methodological /Phi losophical Assumptions:

(i). Specification supports an engineering activity and this activity consists of
manipulating descriptions. Hence, from the point of view of engineering, specification i s

a proof theoretic pursuit;

(ii). Because of the need for intellectual and engineering economy, the process of design i s
based on capturing only essentials at any point in the design process. Hence, ' loose'
semantics is mandatory and any requirement for (logical) completeness is inherently

unsound;

(iii). As in the case of programming languages, there is no prospect of there being a single
universally accepted formalism for all specification work. Different problem
characteristics will demand different tools for their solution. Given the possible

proliferation of specification formalisms, there is some requirement on developing a
'science' of specification. That is, we are interested in finding universal laws which

characterise the formalisms or their use, independently of the specific characteristics of an

individual formalism.

Technical Assumptions and Tools:

(i). The units of construction of specifications are not terms (as in languages like CCS) or

formulae (as in Z), but theories.

Notes: This is simply because substitution (of terms for variables), on the one hand,

and use of logical connectives, on the other, are not expressive/general enough for
specification construction. The use of logical connectives for specification construction
is common (as in Z or various formalisms for concurrency [1, also related is 58]), but is

clearly ill-suited to software engineering requirements, if only because they do not help us

deal well with scoping of extralogical symbols, renaming, hiding, etc.

(ii). The basic operations for building specifications would appear to be extensions of

theories and interpretations between theories.
Notes: Extensions are mainly of use in building individual specifications, by adding

further application specific (extralogical) symbols and/or properties. There are two
specific subclasses of extensions which play important roles in specification
construction: definitional extensions (and their generalisations) and conservative
extensions. The former enable the introduction of abbreviations for concepts without

essentially changing the underlying theory.

(iii).Conservative extensions form the logical basis of modularity in specification,

certainly, and possibly in software engineering, generally.
Notes: Conservative extensions are essential for explaining parameterisation

[38,39,40,41,50] (as the 'body' of the parameterised specification is a conservative

extension of the specification of the formal parameter) and the concept of implementation.

(iv).The concept of representation/refinement in software engineering is based on

interpretations between theories.
Notes: The usual conception of representation was based on a combination of a

language translation (signature morphism), which is a syntactic map from the "abstract'
language to the 'concrete' one, combined with a required map from models/structures

45

associated with the 'concrete' domain to corresponding models/structures of the 'abstract'

one. We observed that what we were really interested in doing was preserving the required
properties of the abstract entity, so as to not invalidate any proofs of program properties

based on it. This is exactly what interpretations between theories capture directly,
inducing (indirectly) the map from 'concrete' structures to 'abstract' ones. This direct
manipulation of required properties contrasts sharply with the indirect map from 'concrete'
models to their 'abstract' counterparts. Interpretations can also be used to explain
parameter instantiation. The requirement that a formal parameter is correctly instantiated

by an actual parameter is captured exactly by the condition that the instantiation is affected
by an interpretation.

(v). Equality must be extralogical because, like other predicates, it must be refined during
implementation. This is because 'abstract' values usually have multiple 'concrete'

representatives and 'abstract" equality cannot simply be associated with 'concrete'
identity.

Notes: The problem with equality was revealed in early work on data types as a

'structure clash'. Certainly, the fact that equational logic is based on a logical equality

prevented the choice actually available in FOLbetween the version with logical equality

and the version without. In fact, the adoption of boolean valued functions in the algebraic
approach was motivated by two different (but related) issues: how to deal with the
requirement for 'tests'/relations in a setting which allows only functions and how to deal

with the problem of representing equality. This expedient solution introduced a
methodological problem which has not been resolved, namely the relation between the
(meta)logical notion of truth in logic, as realised by the iudgements of the logic, and the

internalised (extralogical) notion of truth, as realised by boolean valued functions. (But
see also [11].)

(vi). Relativisation predicates (required in the usual definitions of interpretations to
characterise the potentially reduced domains of 'abstract' values as represented by some

subset of the corresponding 'concrete' values) provide a simple and logically neat meahs of
dealing with subsorting.

Notes: Subsorting is introduced to deal with relationships between domains and

subdomains of values. So, they are used, essentially, to deal with sets and subsets. Subsets
are characterised by predicates (properties) and the subset relationships may be represented
by the connective of implication. The use of relativised quantifiers (i.e., quantifiers which
are relativised to a subdomain of values as characterised by some property) is a simple and
straightforward extension of FOL which then deals directly with the issues raised by
subsorting.

T h e A p p e a r a n c e o f a U n i v e r s a l L a w

It soon became clear that the composability of implementations and instantiation of
parameters required the same underlying mechanism. That is, given figure 2a, (where, for

parameter instantiation i is the 'fitting' interpretation and e is the insertion of the formal
parameter into the parameterised one, and for composing implementations e is the
conservative extension used in the first implementation step and i is the interpretation part
of the second), we required that we can complete the diagram automatically to figure 2b:

46

(S is then the result of the instantiation operation for a parameterised specification and, in
the case of implementation composition it is the mediating specification of the composed
implementation.) The conjecture that the above result (i.e. that given (A), one can always

obtain 03)) was true for FOLwas put forward in 1981. It was also observed that the result
was no..._St true for the combination of equational logic and initial algebraic semantics and

that this accounted for the negative results in [14] concerning composition of
implementat ions .

(A) 03)
e E

P i b'R i ~ R

Figure 2a Figure 2b

The first proof of what became known as the Modularisation Property was put forward in
1982-3 and was based on an observation of Martin Sadler. (See [41] for early attempts at
the proof.) What was very surprising indeed to us was that the requirement that from (A)
one can obtain 03) in FOL was equivalent to a very important and well-known meta
property of FOLencapsulated in what is known as the Craig Interpolation Lemma. This
property has a number of formulations, all equivalent for FOL, but we used the most

common one:

Let A, B, C be formulae of FOLand L^, I~a n d Lcthe collections of extralogieal symbols

appearing in A, B and C, respectively. If A,FoLC (i.e., A derives C in FOL), then there

exists B such that A,FOL B, B,FoLCand I-~..CL^NLe That is, if we can derive C from A, then

there is a proof of C from A which uses an intermediate result B such that the extralogical
symbols which appear in B occur in both A and C. A computer scientist would recognise
this as a kind of modularity result: those symbols not in A and C cannot "interfere' in the

proof. What was very surprising was that this meta property of FOL, developed completely
outside the scope of software engineering, was a necessary and sufficient condition for a

construction which was directly motivated by software engineering concerns 2.

Interestingly, equational logic does no.__.~t have the interpolation property and we ascribed

the problems identified in [14] to the absence of this meta property. An obvious question
to ask if one's favourite formalism does not possess this crucial modularity property is

how to 'fix' it. There are two obvious possibil i t ies3: either extend the formalism to one

In fact, the first proof of this result was based on Robinson's Joint Consistency theorem and its
connection with interpolation first aroused our interest.
Interpolation properties may be seen as expressing completeness properties with respect to the
logical connectives. One needs the existence of some connectives to express interpolants for
formulae involving others. For example, for equality one may need a "conjunction' and an
'implication'- either at the object or the metalevei. Hence, conditional equational logic will have
some forms of interpolation properties which normal equational logic will not have. Thus,
expanding the logic to regain interpolation properties may be seen as "completing'the expressivity

of the logical connectives.

47

which does have the property or, alternatively, restrict the specifications which are

'acceptable' to a subclass which does enjoy this property. Therefore, we were not surprised

when the work on persistence emerged, reflecting the latter 'design' choice. (Of course, the

work on persistence was not directly connected by its inventors with the interpolation and

modularity properties.)

Some years later, the important r61e of the Craig Interpolation property was independently
observed by the group working with Bergstra [3]. They attributed the lack of certain

modularity properties in their formalisms to the absence of the interpolation property.
Further work on this revealed an important observation [44]. The various formulations of

the Craig Interpolation property for FOLare equivalent. However, for other logics, such as

equational logic, the various formulations are not necessarily equivalent. In particular,

equational logic does have some versions of the property, but not the crucial one. This
version of the property, called Splitting Interpolation in [44], is the following:

(CIP) For formula A and sets of formulae G and G', if Gt.JG',FOL A, then there are formulae

B 1 B, such that:

a) G, voLBifor 1-:i.~n,

b) G'LI{B l B,},FoLA, and

e) Ltal..~,;~C(LGk3L~I)CILA (where I_ u, for set of formulae H, is the obvious

generalisation of L^, for formula A).

Hence, if A can be proved from GUG', then there is a set of interpolants {B~ B,}, each of

which is a consequence of the first part of the premises G, and such that A is a consequence
of the second part of the premises together with the set of interpolants and such that each Bi
only contains extralogical symbols common to GUG' and A. Crucially, neither equational

logic nor conditional equational logic have this property.

Of even greater import for future developments, it was then noted that the modularisation
result was actually asserting the preservation of conservative extensions by pushouts in

the category of first order theories (or presentations) and interpretations. In retrospect,
this is straightforward, but it was a bit of surprise to us category-phobes! The observat ion

having been made, there was an obvious route to generalisation (first mooted in [38]), in
terms of n-institutions ([18]). These latter are a proof theoretic generalisation of

institutions, with consequence replacing satisfaction as the focus of a t tent ion 4.

This result could appear to have the status of a Universal Law. Consider the fol lowing
generalisation of CIP: A ~t-institution has the CIP if for every pushout diagram (in the
underlying category of signatures)

The .satisfaction condition of institutions is replaced by the structurality principle: for every signature
morplusin o :L--~L. if G,LA , then Gram(c)(G),L, Gram(o)(A). Notice that , is indexed by
languages/signatures. A generalisation of this is the concept of weak structurality, required to deal
with many common situations. We require that for each o:L ~L' there is a set loc(o) of formulae
(over L) such that if G,LA , then Gram(o)(G),loc(o),L.Gram(o)(A). (There are also some
compositionality requirements on loc with respect to composition of morphisins.) The purpose of
loc(o) is to internalise structural/meta constraints for structures over L via formulae over L" For
FOL this includes nonemptiness of the domains of relativisation predicates and closure of the
domains of relationisation predicates under the 'concrete' operations corresponding to abstract ones.

48

We say that art-institution has the Craig Interpolation Property (CIP)iff for every pushout
diagram in the category of signatures

o I

I
Z - . - - - -~ Z 2

~2

the following property holds: for every Gl~:orm('s G2--CForm(X2), A2~-Form(X2) such

that o 1 (G1),cr2(G2),~(Ol),(I)(o2),~# o2(A2), there is a family I~:orm(X) (of interpolants)

such that

�9 G1, ~(~tl),Xl p4 (w) for every B~I

�9 G2, ~(Ix2),tx2(D,~2A 2

Notice the use of the pushout construction to formalise the notion of "common language"

that is required for stating the property (as in [49]) 5 . The universal law may then be stated

as follows:

The M o d u l a r i s a t i o n T h e o r e m : For a given ~-institution, CIPif and only if MP.

More recently, in the context of FOL, Pauio Veloso has been studying very carefully the

role of the CIP and its interaction with the deduction rule (another very important

metalogical principle) and the modularisation property, [53,52]. These are interest ing

results and point to very fertile areas of farther research.

The effective use of this result should be seen in the adoption of appropriate design
principles for specification formalisms. If CIP is not present, we can expect difficulties

with parameterisation and implementation. The evidence supporting the important role of

interpolation in relation to modularity is now very strong. This area requires much further

at tent ion.
3 Equality, Subsorting, Relativisation, ere
There can no longer be any doubt that our early adoption of loose semantics for

specifications has been vindicated by developments. None of the work on non-algebraic

formalisms adopted this technical tool. (This is obvious in work on program synthesis ,
program construction, reactive system specification via modal and temporal logics. It is
also the modus operandi for 'competing' formalisms such as Z and VDM.) Even in work
arising from the algebraic tradition, adoption of loose semantics is almost universal (and

adopted by some very early on, e.g. PLUSS).

It may be observed that one instruction on loose semantics which is gaining some

If the ~,-institution satisfies the (strong) strueturality property, then the definition simplifies to: if
ot(Gl),o2(G2),g# o2(A 2) there is a family 1__.Form(Z) (of interpolants) such that GI,Z 1 IXl(B) for
every wEl and G2,1x2(I),x~A2. This is more akin to the formulation we would expect. The
definition we gave was to'be expected because, in non structural ~-ins~itutions, language is
interpreted not directly on the target language but on a theory of the target language. Note the use of
pushouts to formalise the notion of common language in earlier formulations of CIP.

49

popularity is the use of L~w to characterise finitely generated structures. 6 This was adopted

in the early 80's ([39,41]) so as to recapture a useful aspect of initiality - being able to

underpin some forms of induction. It was easily demonstrable that the usual inductive

schemes for standard data structures were a straightforward consequence in L~o, of adopt ing

axioms characterising finite generability. This logic had many nice characteristics akin to

FOL, including the CIP. The pachage of loose specifications, extralogical equality, lqDL

formulations of required properties and using I ~ , to characterise finite generability was

reinvented in [57]. Recently, L,~,~ appears to have generated renewed interest in the

specification community [4]. A different, but potentially very exciting, use of it is made in
[11] where it plays the role of a development logic used to express aspects of design

undertaken in the framework of FOL. For example, it may be used to capture in a ' f ini te '

presentation in L ~ t h e o r i e s which may not be finitely presentable in FOL, but are required

as intermediate steps in a development. Examples of such theories are the results of hiding

operations or pullbacks of presentations in FOL. A nice feature of the work is that the

entailment relation of the development logic is a conservative extension of the enta i lment

for the specification logic, thus reusing at the 'specification of logics' level the modularity

encapsulated via conservative extensions within the specification formalism (i.e., at the
level of theories within the logic being specified).

It would appear that extraiogical equality is also gaining some adherents as the appropriate

way of dealing with the equivalence problem ([36,32]). It is therefore of some interest to

note that recent work of Paulo Veioso shows that its role is not as fundamental as

originally thought. In fact, extralogical equality may still be enormously useful from an

engineering point of view, but mathematically its use can be obviated, in a very precise

sense. This is also true for the use of relativisation predicates in interpretations between

theories (making the presentations of and reasoning about interpretations technical ly

simpler) and also subsorting via (relativisation) predicates 7.

The interesting result is that the introduction of such a symbol by definition defines a

conservative extension of the original theory and, further, that this extension is

inessential, in the sense that for any formula involving the new symbol there is a log ica l ly

L~o , is an extension of FOL in which one is allowed countably infinite conjunctions and disjunctions
m constructing formulae. The number of quantifiers in a formula must still be finite. The associated
proof calculus has an infinitary rule of some kind (allowing an infinite set of premises from which to
draw a finite conclusion). Finitely generated structures can be characterised by asserting that, for
any variable, it must be equal to a variable free term. For finite languages, this can be done via a
countable disjunction.

It has been demonstrated in [42] that the classical theory of definitions, addressing the introduction
into an extralogical FOL language of function and relation/predicate symbols can be extended to
enable the introduction by definition of new sorts. Classically, a definition in FOL extends a
language L with a (function or relation) symbol a (with appropriate typing) and a corresponding
definine axiom (of the form a(xl, ,x.)=y--~A(x, ,x~ for a function symboland a(xl, ,x~)--~A(xl,
,x n) for a relation symbol. In the former case, the formula A must satisfy some strict criteria to
ensure thst it describes a function. In both cases, AEForm(L) and so recursive definitions are not
allowed. There is, however, a large body of literature about such recursive definitions and when
they make sense.

50

equivalent formula in the unextended language 8. What Paulo Veloso has demonstrated

([42]) is that sorts can also be introduced 'by definition' into a language L. The crucial

observat ion is that the introduction of a new sort requires the simultaneous introduction of

new function and relation symbols to 'connect' the new sort with the old ones.

Let us first describe how an extension by introduction of a product sort is constructed. We

have a specification P=<:L,G> whose language includes sorts s 1 and s 2, but neither sort t

nor operations P l or P2' We first extend language L by introducing sort t and operat ions

Pl , from sort t to s 1, and P2, from sort t to s 2. We then extend axiomatisation G to

GLl{(pjs),(pji)}:

(VXl: Sl)(Vx2: s2)(:iy:t)[pl(Y)=Xl ^p2(Y)fX2] (pjs)

(Vy,y ' : t) [(p l (y)=pl (Y ')hP2(y)=p2(y ')) - - 'y=y '] (p j i)

The new sort t contains 'pairs' of values from s I and s 2 with ((pjs),(pji)} charaeterising P l

and P2 as the usual project ions.

Let us now describe the construction of an extension by introduction of a sum sort. We

have a specification P = < L , G > whose language includes sorts s 1 and s 2, but neither sort t

nor operations i 1 or i 2. We first extend language L by introducing sort t and operations i 1,

from sort s 1 to t, and i 2, from sort s 2 to t. We then extend axiomatisation G to

GU{(ij s), (idi) ,(i i l) , (ii2)}.

(Vy:t)[(::lxl: sl)Y=i l(Xl)V (3x2: s2)Y.,i2(x2)] (ijs)

(Vx 1: Sl)(Vx2: s2)~i I (x1) ' i2 (x2) (idi)

(VXl,Ul: Sl) [il (x 1)=i 1 (Ul)_,x 1 =Ul] (i i l)

(Vx2,u2: s2)[i2(x2)=i2(u2)_,x2=u2] (ii2)

The new sort t contains the 'disjoint union' of sorts s 1 and s 2 via the injections i I and i 2.

We now consider the construction of an extension by the introduction of a sort which is a

subsort of an existing one. Consider a language Lwith unary predicate r over sort s, as well

as a specification P- -<L,G>. We shall say that predicate r is an appropriate relativisation
predicate for specification P iff the non voidness of r is derivable frm G. In such a case, i f

sort t and operation j are not in L, we extend language Lby introducing sort t and operat ion

j, from sort t to s. Wethen extend axiomatisation Gto GLl{(jr),(ij)}:

In fact, definitional extensions are special cases of expansive extensions: for every model of the
theory over language L, there is an expansion (simply adding a new function/relation) to a model of
the definitional extension. In fact, what makes definitions special is that for any model over L there
is a unique expansion to interpret the defined symbol. Also, interestingly, conservative extensions
properly subsume expansive extensions. Many examples of useful extensions are conservative but
not expansive. Further, there is no simple proof theoretic counterpart to expansiveness and the
model theoretic counterpart to conservative extension is problematic. See [55,561 for extensive
details. See [10] for an amusing attempt to define the difference out of existence!

51

(Vx: s)[r(x),--,(3y: t)x.,j(y)] (jr)

(Vy ,y ' : t) [j (y) , . j (y ') - ,y=y '] (i j)

The new sort contains only values in the nonempty subdomain of s defined by r.

Finally, we look at the introduvtion of a quotient sort. Consider a language Lwith binary

predicate qover sort s, as well as a specification P- -~L,G>. We shall say that predicate q

is an appropriate equivalence predicate for specification P iff the usual congruence

properties of qare derivable from G. In such a case, if sort t and operation p are not in L, we

extend language L by introducing sort t and operation p from s to t. We then extend

axiomatisation G t o GLl{(sp),(pq)}:

(Vy: t)(3x: s)y-p(x) (sp)

(Vx,x ' : s) [p(x)=p(x ')~q(x ,x ')] (pq)

The new sort contains values which are quotient classes of the values of s generated by q.

The properties of these sort definitions are exactly analogous to the usual definit ions.

They allow us to internalise the main constructions which we use to build data types from

existing ones 9.

So what are the ramifications of this? Firstly, the ability to introduce quotient sorts means

that we can work with FOLwith (logical) equality by encapsulating the congruence defined

by anse of extralogical equality over an exiting sort as logical equality over a newly

introduced quotient sort. The connection between the congruence over the old sort and

logical equlity over the new one allows us to use conventional equality reasoning in the

result of an implementation step. Secondly, the use of a relativisation predicate and

corresponding relativised quantifiers and formulae may be obviated by the introduction of a

new sort which is a 'subsort' of an existing sort. For interpretations, this means that we

can replace a translation which maps an 'abstarct' sort to a subdomain of a 'concrete' one

by a map to a new sort which represents the subdomain. (An analogous statement may be

made about replacing subsorting via predicates by a new sort representing the 'subsort ' .)

Thirdly, the requirement to use concrete versions of functions (or relations) which reflect

the need for component based value representations (as in representing 'abstract' stacks by

'concrete' arrays and pointer pairs) may be obviated by the use of product sorts.

The scientif ic conclusion is that we can avoid the complications introduced by these

mechanisms by simply extending our languages by definitions. We can then do our (meta

and object level) reasoning in a much simpler mathematical worldwhich is inessent ia l ly
different from the original. This is a very nice mathematical result, but it may not say very
much about engineering prcatice. It is likely(?) that the more (mathematically)

cumbersome setting of extralogicalequality, subsorting via relativisation and the lack of

explicit product sorts is a more effective engineering tool. More work (of a
methodological nature) will need to be done to decide this question.

4 From Configuring Systems to Configuring Programs
In the late '80"s, the observation that the Modularisation Property was actually based on

the existence of pushouts in the appropriate category of specifications and interpretations

9 Work is proceding to extend these ideas to allow the introduction of inductively defined sorts.

52

led to an interest in an understanding of how systems were constructed from component
parts. This focus on configuration was motivated by the need to distinguish between and to

explain the act of using a pre-existing specification as a basis for defining an extended one
(i.e., providing language mechanisms to reflect the construction of an extension) and the
activity of causing some components to share (in a 'physical' sense) some subcomponent.
The former is illustrated by extending a specification of natural numbers to a stack of the

same, while the latter is illustrated by configuring a producer/consumer system to
communicate through a shared buffer. Making this distinction in the setting of FOL (or
algebraic formalisms) is difficult as the idea of behaviour appears to be inherent in

understanding the intention of sharing subcomponents in this sense 10.

In the early 70's, J.Goguen proposed the use of categorical techniques in General Systems
Theory for unifying a variety of notions of system behaviour and their composition

techniques [25,27]. His approach has been summarised in a very simple but far reaching

principle: "given a category of widgets, the operation of putting a system of widgets
together to form a super-widget corresponds to taking a colimit of the diagram of widgets

that shows how to interconnect them'.

The evidence that we have been able to obtain over the last 7 or 8 years would suggest that
this 'maxim' would appear to have the status of a universal law. Its ramifications have led

to interesting insights and new developments which open exciting avenues of research.

The technical motivation for the work was the following question: How could the
observation that a large system, described in terms of its overall behaviour, cannot be
given whole because of its size be ameliorated by constructing the overall behavioural

description from that of its parts? In our work on requirements engineering using Modal
Action Logic, industrial experiments demonstrated that structuring of specifications was an

engineering necessity. It was clear, that parameterisation was an orthogonal issue and the

crux of the problem was the one outlined above - sharing of subeomponents by parts of the
system. Given that we were ever more wedded to the idea that specification wa.._.~s theory

manipulation and that relationships between theories were established via interpretations

between theories, the categorical connection became obvious and, together with Jos6

Fiadeiro, we explored how this could actually be done.

We shall now illustrate the approach using linear temporal logic [28,17] using a mixture of
both propositional and first order versions, as convenient. In wishing to model reactive

systems, computations provide us with a semantic domain in which we can reason about
the properties of a system (safety and liveness) using a temporal logic [1,17]. In
preparation for relating specifications and the programs as defined in the previous section,
we shall illustrate the categorical account of specifications through a category of temporal

theories as in [17].

Specifications are themselves built over signatures (the extralogical language of the
specification). In the case of the temporal logic that we have in mind, these consist just of
pairs of sets, "~=(FI, A), of nonrigid (state dependent) constants - corresponding to attribute

and action symbols, respectively. A morphism o:(1-l,A)---~(Ir,A') is a pair of total

10 This may be seen as a reappearance of the old philosophical canard - use versus mention.

53

functions Oil: H o r I ' , OA: A~A' . Temporal signatures constitute a category ~-SIGN The

temporal language defined over a signature is as follows: Given a temporal signature
x=(H, A), the language of terms over a sort s~S is:

t s : : = a I c I f (t l s 1 tnsn) I Xt s foraEH s, c E ~ o , s a n d f ~ < s 1 Sn>, s.

The language of temporal propositions is, for p~dk:

d~ : := (t l s=s t2s) I p I (~IDt~2) I (~l^d~2) I (--~) I b e g I Xd~ I ~ l U ~ 2

The special operators are b e g (denoting the initial state), X (Xr holds in a state when O 0

holds in the next state), and U (t~Uxp holds when ~p will hold sometime in the future and dp

holds between now and then). A temporal theory is a pair (~,~) where ~ is a set of z-

propositions such that t~E~ for every ~ , ~ . A presentation of a theory (-~, ~) is a pair (-~,tI0

such that ~={d~: ku, x9 }. By ,x we mean the usual consequence relation for linear, discrete

temporal logic [e.g., 28] 11. Morphisms between theories (and presentations) also require
a translation between the temporal languages: Given a sigature morphism ~.'~---,x':

o(t) : := o(a) I c I f (o(t l) O(tn)) I Xo(t)

o(~p) : := (O(tl)=O(t2)) I o(p) I (o(~pl)E~o(~2)) I --,o(~) I b e g I Xo(Op) I (o(dPl)UO (

~2))

A morphism of theory presentations o: (z1,~1)--~(-~2,~2) is a signature morphism o: z 1

--" "~2 such that ~2,z2o(~) for every ~fE~ 1. Theory presentations and their morphisms

constitute a category S~/~:r That is, a morphism of presentations is a signature morphism

that defines a theorem preserving translation between the two theories. It is a

generalisation of interpretations between theories. These are standard not ions within
institutions [26,45,49]. For instance, it is a property of institutions that if the category of
signatures admits colimits, so does the category of theory presentations. Hence, SP'EC

admits colimits of finite diagrams (i.e. is finitely cocomplete).

Colimits of specification diagrams are computed over the colimit of the underlying

signature diagram: a pushout of two morphisms btl: (0,(I))---*(01,(I)1) and

Ix2: (0,(I))--*(02,~2)is given by the specification (0 ' ,~ ') and morphisms o 1 and o 2 such

that 0', o I and o 2 are a pushout of bq and ~2 as signature morphisms and
~ ' = o 1 (rI) 1)Uo2(~2).

That is, the set of axioms of the composite specification is the union of the translations of

the axioms of the components. Because the union of sets of formulae has the same logical
value as their conjunction, the categorical approach complies with the "composition as
conjunction" idea put forward in [1] for parallel composition of reactive systems and also,
in a related sense, in [58]. However, we should stress that our approach is more "structured"
in the sense that formulae are not being considered individually as units of construction but

il
That is to say, a theory over a signature is a set of propositions closed under consequence (it
contains all of its theorems). A presentation of a theory is a set of propositions whose closure (set of
theorems that can be derived) is that theory.

54

are organised into modules (theories) that have a meaning in terms of the structure of the

system - hence the use of morphisms for establishing interconnections through the

language of these theories, something that cannot be achieved at the level of individual

formulae.

That reactive system specification can be presented modularly via temporal or modal log ic

theories and colimits is no longer a surprise, although perhaps- not yet commonly

accepted. (As noted immediately above, it is still stuck in the more pr imit ive,

unmodularised settings where formulae and connectives rule.) A perhaps more radical and

much more surprising application of the same ideas is possible in the world of programs.

The original observation that this is possible is due to Jos6 Fiadeiro and it helps to

demonstrate the ubiquity of Goguen's original observation (lending weight to its being a

universal law) and point ing to a possible answer to a very old question: How do programs

fit into this w o r d of specifications and designs?

In [22], we showed how parallel program design in the language COMMUNITY (similar to

UNITY [9] and IP - Interacting Processes [24], but using a richer model of system

interconnection and superposition) can be formalised using the same categorical

techniques 12. From a categorical point of view, programs are objects and morphisms

capture superpositions. The colimit construction corresponds to a generalised parallel

composit ion operator with synchronisation constraints (i.e., to superimposition in the

sense of [24]).

A cgMMUNI~ program P has the following structure:

P = data x

read R

var v

in i t I
do II,ger g: [B(g) ---, II,.~) a:=F(g,a)]

where: Z represents the data types that the program uses, given through a signature (S ,~) in

the usual algebraic sense [12]. For simplicity, we shall assume that the data types are fixed

and omit the data clause from programs; R is the set of external attributes, i.e. the

attributes that the program needs to read from its environment (open attributes in the sense

of IP); V is the set of local attributes (the program "variables'); A is the union (assumed

disjoint) of R and V, the set of attributes of the program; attributes are typed - every

attribute a~_A has an associated sort s; As will denote the set of attributes of sort s; the

distinction between the two classes of attributes is necessary to formalise superposi t ion,
namely forms of program interconnection that result from superposing regulators over

base programs - a regulator can read the attributes of the base program but cannot update

them; F is the set of action names; each action name has an associated statement (see

below) and can act as a rendezvous point for program synchronisation; I is a condition on

the attributes - the init ialisation condition; for every action g~F, B(g) is a condition on

12 The underlying computational model is also similar to Action Systems [2], but we should point out
that the Action Systems approach, at least in relation to transformational development, is oriented to
decomposition of systems into components. Our focus is on composition.

55

the attributes - the guardof the action; for every action gEF, D(g)_V is the set of attributes

that action g can change; we also denote by D(a), where aEV, the set of actions that can

change w, for every action g E F and local attribute a(EE)(g), F(g,a) is an expression that has

the same type as o~

Formally, aprogram signature is a triple (V,R, F) where V and R are S-indexed families of

sets and F is a 2V-indexed family of sets. All these sets of symbols are assumed to be f ini te

and mutually disjoint. Attributes are used as atoms in the definition of terms: Given a

signature 0-(A,I ') , the language of terms is defined as follows: for every sort sES, for

a E A s, cEV~<~, s, and fEQ<s 1 Sn>, s:

t s : : = a I c I f (t l s 1 tnsn)

The language of propositions is defined as follows:

q : : = (t l s=s t2s) I (0plD02) I ($1Aq2) I (--~)

Terms and propositions are used to define programs 13. Given a signature (A=V~R,F) , and

a subset V'C__V, a W-command F maps every attribute aCV' s to a term F(a) of sort s.

Commands model multiple assignments. The term F(a) denotes the value that is assigned

to a~ If V' is empty (which is the case, for instance, for some communication channels), the
only available command is the empty one: s f ~ .

Aprogram is a pair (0,A) where 0 is a signature (A,F) and A, the body of the program, is a

triple (I,F,B) where: I is a 0-proposition (constraining the initial values of the attributes);

F assigns to every action g E F a D(g)-command; and B assigns to every action g E F a 0-
proposition (its guard).

It is easy to recognise in this definition the basic features of parallel programs, namely

guarded simultaneous assignments: each action g defines the guarded command

[B(g) --, Ila~_r~g) a:=F(g,a)]

There are, however, some distinguishing features of COMMUNITY that should be discussed:

the typing and the naming of actions. Each domain D(g) consists of the attributes to which

action g can make assignments. We shall also work with the dual notion, i.e. we define for
every attribute aEV the set of the actions that can assign to a - D(a)={g@r I aCD(g)}.

There is a difference between the fact that an attribute ais not in the domain of action g and

the fact that g performs the assignment a:=a. The difference between these two situations i s

important from the point of view of concurrency within programs. But, the idea is that

actions are allowed to occur concurrently (i.e. as part of the same event), e.g. actions that

come from two program components that were put together in parallel. Hence, an act ion

presents only a partial view of the transformation that is performed by a (global) event ,

namely it is concerned with only a subset of the attributes of the program. The ass ignment

of specific domains to actions is, thus, a means of controlling the interference between
different program components .

13 For simplification, every boolean term b will be used as an abbreviation of the proposition (b=true).

56

The separation between action names (i.e., the set F) and the guarded commands they

execute (as given by F and B) is important for the definition of superposition and also to

support interaction in the sense of IP. COMMUNITY differs from IP in that every action is a

potential point of interaction. Indeed, interaction names in COMMUNITY are not global as in

IP: interaction is established outside the programs, at "system configuration time", by

identifying action names belonging to different component programs.

An example of a program is the fol lowing:

pr E read x : in t

var a:int; d:bool

d=false ^ a=0

do t : [-~dAx=a--~d:=true] [] r : [-~d^x;~a -*a:= x]

Intuitively, this program is capable of successively reading (action r) the value of the

external attribute x, stopping (action t) whenever it consecutively reads the same value or

the first value it reads is 0.

Having defined programs over signatures, we now define signature morphisms as a means

of relating the "syntax" of two programs: Given signatures 01=(AI=VI~)R1,F1) and

02=(A2=V2t~R2,F2), a signature morphism o from 01 to 02 consists of a pair

(ocx:A1--.A2, oy:F1----F2)of (total) functions such that ot~(V1)C_V2 and, for every act ion

g~r, o(~ (D 1(g))~332 ((s~/(g)).

Morphisms are intended to capture the relationship that exists between a program (system)

and its parts (components). Hence, a signature morphism maps attributes of a program to

attributes of the system of which it is a component, and the same for actions. Because the

system "contains" the component, attributes of the component program cannot be read

attributes of the system, thus justifying the restriction oct(V1)CV2. No restriction is put

on R1 because read attributes of the component program can be attributes of another

component program for the same system and, hence, elements of V 2. The restriction over

action domains just means that the type of each action is preserved by the morphism.

Notice that more attributes may be included in the domain of an action via a morphism.

This is intuitive because, within a system, an action of a component may be shared with

other components and, hence, have a larger domain. For simplicity, we shall ommit the

indexes ct and' l when referring to the components of a morphism. Program signatures and

their morphisms constitute a category Slq. Signature morphisms provide us with the

means for relating a program with its superpositions. However, superposition is more

than just a relationship between signatures 14, i.e. more than "syntax".

14 To capture its intended semantics, we have to analyse the bodies of the two programs involved.
Given two programs (01,At) and (02,A 2) and a signature morphismo: 01--'02, we have to look for
relationships between A t and A 2 such that (02,A 2) can be considered a superposition of (01,A 1) via
o, i.e., for o to be considered as a superposition morpbism. We need a way of relating the models
of the two programs as wetl as the terms and formulas that are used to build them. Given a signature
morphism o: 01 ---" 02 and a 02-interpretation structure 5=(%~,q) (with q" a transition system, ~t an
assignment of state dependent values to attributes and q mapping action symbols to sets of events),

57

Signature morphisms define translations between the languages associated with each

signature in the obvious way: given a signature morphism o: 01 ---, 02,

o(t) : := o(a) I c I f (o(t l) O(tn))

o(~b) : : = (o(tl)=O(t2)) I (O(~l)DO(92)) I (o(qq)^o((~2)) --,o((~)

There are several notions of superposition in the literature [5,9,34,23,24], corresponding

to different meanings of "preservation of the underlying program'. We consider, in the

first instance, regulative superposition in the sense of [24].

Viewed as a transformation (which is the view captured by morphisms), regulative

superposition requires that the functionality of the base program be preserved in terms of

the assignments performed on its variables, but it allows for the guards of its actions to be

strengthened. This characterisation leads to the following definition of a (regulative)

superposition morphism: A superposition morphism cx. (01,A1)----(02,A2) is a signature

morphism cx. 01----02 such that

1. Forevery g l E F 1 a n d a l E D l (g l) , ,02B2(O(gl))DO(Fl(gl ,al))=F2(O(gl) ,O(al)) ;

2. ,02(12Do(11));

3. For every g l E F 1 , ,02(B2(O(gl))DO(Bl(gl)));

4. For every a lEV1, D2(O(al))_Co(Dl(al)).

Requirements 1 and 2 correspond to the preservation of the functionality of the base

program: the effects of the instructions are preserved and so are the in i t ia l i sa t ion

conditions. Requirement 3 allows guards to be strengthened but not to be weakened.

Requirement 4 corresponds to a locality condition: new actions cannot be added to the

domains of attributes of the source program. That is to say, no new actions can change the

old attributes. Together with the fact that signature morphisms preserve the domains of

actions, it implies that the domains of the attributes remain the same up to translation, i.e.

D 2 (o(a 1))=o(D 1 (a 1)) for every a 1EV 115.

As an example of a superposition morphism consider the following programs where
% ap: i nt, int---int are operations of the underlying data type:

15

its a-reduct, SIo, is the 01-interpretation structure (T,.qla,G[o) where ..~lo(a) = A(o(a)), and GIo(g)
= q (o (g)) .

That is, we take the same transition system and interpret attribute and action symbols in the same
way as their images under o. Reducts provide us with the means for relating the behaviour of a
program with that of the superposed one. Then, given a 01-formula ~ and a 02-interpretation
structure ,s=(W,A,9.), we have for every wE'd. (&w),o(~) iff (,51o, w), ~. Readers familiar with
institutions[26,45,49] willhave recognised in this proposition the "satisfaction condition'. Although
the formalism that we work with in this paper is not an institution (s~eto sensu), we shall make use
of many of the categorical techniques that have been populafised by institutions.
This condition implies the following property: Let cr: (01,AI)-~(02,A2) be a superposition morphism.
Then, the reduct of every locus of (02,A2) is also a locus of (01,A1). Here locus is a model in which
a change in a program variable occurs only in transitions which witness an action of the program.
This is a semantic characterisation of encapsulation. See [1"/,19,20,22].

58

Pb =- var a,b: in t P s t

a>O^ b>0

do f : [true---a:=q~(a,b)]

H g : [true----b;=~(a,b)]

vat a,b,ao:int; d:bool

/n~ a>0A b>0h d=falseA ao=0

do fr : [-~dAao;~a--+a:=q~(a,b)lIao:=a]

[] g : [true ---- b := W(a,b)]

[] t : [-~d h ao=a ---, d := true]

All the conditions above are satisfied by the mapping <alia, btib, ftifr, gdg>, so that A s is a

(regulative) superposition of A b. Notice that, according to this definition, it is poss ib le

for the "old" actions to assign to "new" (superposed) variables. For instance, f i , the image

of f , assigns to the new attribute ao. However, the new actions, like t, cannot assign to the

old attributes, like ~ Moreover, the guard of an old action, like J, can be strenghtened.

Significantly, programs and superposition morphisms form a category RE G. That is to

say, superposition morphisms compose (i.e., we can support iterated superposition), and

the identity morphism (a kind of "empty" superposition) is a unit for composition. As we

have already mentioned, there are other notions of superposit ion 16.

An interesting class of morphisms are those which do not allow guards to be strengthened.

Such superposition morphisms are called spectative in [23]. They also correspond to the

notion of superposition used in UNrrY [9]. A spectative superposition morphism ~.

(01,AI)---~(02,A2) is a signature morphism ~ 01---,02 such that o is injective over

attributes and actions, and the augmented requirements (with I and 4 as above):

2. ,02(I2E)o(I1)) and, for every formula q, in the language of 01, if ,02(1223o(9)) then

,Ol(I1Dq);

3. For every g l E F 1 , ,02(B2(O(gl))Eo(Bl(gl))) ;

Injectivity of omeans that no confusion is introduced among attributes nor among act ions

of the superposed program. Condition 3 now requires that guards remain unchanged and
condition 2 requires that the strenghtening of the initial condition be conservative, i.e. i t

cannot put further constraints on the initial values of the attributes of 01. This is indeed an

interesting and posssibly surprising reoccurrence of the idea of conservative extension.

Spectative superposition morphisms define acategory S~E:, where the objects are s t i l l

programs, i.e. the categories RE G andS~/; just differ on the morphisms. It is, however, the

morphisms that characterise the structural properties of a category, meaning that the

different notions of superposition will have different algebraic properties 17. The

16

17

lnvasive superposition allows for new actions to update old attributes. Hcnce, they are not required
to satisfy the locality condition (4). This is a potentially inappropriate breaking of encapsulation and
its role in program construction may be problematic.
We can prove a fundamental property of spectative superposition: that it is model expansive. This
property means that spectative superposition does not change the base program, i.e., through o, the
base program is extended without affecting its underlying behaviour: Let o:(01,A1)--'(02,A2) be a
spectative superposition morphism. Then, for every model .5 of (01,AI), there is a model S' of
(02,A2) such that .5~$1 o. (There is an interesting conundrum here: whereas the requirement of
conservativeness on the strengthening of guards is an obvious logical condition, programs are not
theories and, hence, we cannot simply assert that one is a conservative extension of the other.
However, programs" models can be related via model expansion!)

59

difference between these these classes of morphisms has also been characterised [23] in

terms of the preservations of the safety and liveness properties of programs.

We can illustrate the idea of using colimits to construct programs from components by
imposing a regulator Pr over the program Pb via 'channel' C, which synchronises the

actions b and g of Pb with actions x and ro f Pr, respectively, on the one hand and ditto a, f

and x,r on the other. (The program Ps illustrated above is then (up to isomorphism) the

pushout of Pb and Pr via C using the second synchronisation.) The resulting program

would detect situations in which b--ap(a,b) and situations in which a=q~(a,b). However, i t

does not necessarily detect a situation in which both a=~(a,b) and b---ap(a,b). In order to

achieve this, we need to synchronise the actions that detect the local fixpoints, i.e., the
different occurences of t in the two different uses of Pr- This can be done by adding another

communication channel C' to the configuration diagram of figure 3a, where C' -=

do h: [sPd~].

t(-q h h O t ti-~h h O t
Pr -~ C' ~ pr Pr --~ C' ~ Pr

C C C C

sO s sOg ~ �9 f~-~s

Pb Pb -~1- - - - - C . > ~ h p ~
f,-4s

Figure 3a Figure 3b

The resulting program Ps' is the result of the double superposition. It is isomorphic to:

zlar

i n i t

do
[]
[]
[]

a,b, ao, b o : int; ad, bd : b o o l

a>O A b>O A ad=false ^ bd=false A ao=O h bo=O

fr : [-~ad ^ ao~a --, a := q0(a,b) [[ao := a]

gr : [~bd ^ bomb ~ b := xp(a,b) [[bo := b]

ft : ['~ad ^ ao=a ---, ad := true]

gt : [-~bd A bo=b --- bd := true]

Now, we m a y w i s h to impose an ' obse rve r ' on th i s p r o g r a m w h i c h c o u n t s t h e

n u m b e r o f a s s i g n m e n t s to a n e c e s s a r y to r e a c h t h e f ixpo in t . W e ca l l t h i s

c o m p o n e n t a n o b s e r v e r b e c a u s e we wou ld n o t e x p e c t i t to a l t e r in a n y w a y t h e

b e h a v i o u r o f t h e p r o g r a m t o w h i c h i t is appl ied . A s p e c t a t i v e m o r p h i s m is i n

o r d e r a n d we u s e t h e f o l l o w i n g p r o g r a m w h i c h c o u n t s t h e n u m b e r o f times
which an action occurs:

P o z var c : in t ;

i n i t c=0

d'o h : [t rue---c:=c+l]

60

We need to synchronise incrementing c in Po with f in Pb. We do this via C a _= do

s : I s l e] . Werequire that the morphism from C a to 1='o be spectative (and surjective on

attributes and actions). This then gives us the diagram of figure 3b.

One of the main purposes of this construction is to introduce new attributes that may

account for the observations that are required by the specification of some intended system.

The ability to reuse an existing piece of software (program) to satisfy a specif icat ion

should allow for both the superposition of a regulator, to tune the behaviour of the

underlying program to the behavioural requirements of the specification, and the

superposition of an observer over the regulator+program system, to account for the state

observations required by the specification.

We can demonstrate a very important result: given such a spectative superposition PS of a

base program laB, if PB is independently extended to PB' (e.g., as a result of superposing a

regulator) then there is a canonical spectative superposition PS' of PI3' that provides for the

observations addedto PB through PS.

P S - - - - ~ P s

I

PB ~ PB'

This property is an instance, for the world of programs, of the Modularisation Property

discussed above 18. It implies that any spectative superposition of a program is reflected

in a unique way on any system of which the program is a component. Hence, it is poss ib le

to identify a system with its configuration diagram as done above in the context of
regulative superpositions. That is to say, for the interconnection of Po as above, the order

in which the superpositions are made, including the spectative one, is immaterial. This

means that the superposition of regulators and of monitors "commutes ' , i.e., bo th

configuration techniques can be used as part of an incremental development process. We

can superpose a monitor over a base program and later on superpose a regulator over the

same base program without affecting the "status" of the first extension as a spectat ive

superposi t ion.

What now can be said about connecting programs and the specifications which they are to

satisfy? Briefly, define for every program signature 0=(A=V@R, D, the temporal signature

5pec(0)=(A,F). This mapping extends trivially to a functor 5pec: Sl G ~ ~-5IGN by mapping

morphisms of program signatures to themselves. That is to say, we map a program
signature to a temporal signature by taking the attributes as the non-rigid constants and the

actions as the atomic proposi t ions 19.

18

19

Since programs are not theories, the immediate connection of this result with interpolation is not
obvious. However, interconnection of some kind there must be!
This is a good example of a mapping between two formalisms that are -at different levels of
abstraction: the information about which attributes are local and which are exteruai is lost during the
mapping process because the notion of temporal signature is not strong enough Io capture it. Indeed,
temporal logic is a formalism that can be associated with many other program design languages and,
hence, its logical symbols do not commit the specifier to any particular encapsulation discipline.

61

A consequence of this is that the "semantics" of the programming formalism will have to

be translated, in part, to extralogical axioms in temporal logic. (Put in another way,

conditions imposed on each program implicitly by the formalism of programs will have to
be made explicit in the corresponding specification since the latter formalism does no t

impose the same 'discipline' of encapsulation20.) Indeed, the mapping that really is of
interest is the extension of S/~c to a functor between ~-'~:G and SP'EC defined by: map every

program (0, A) to the theory presentation Spec(O, A)whose signature is Spec(0) and whose set

of axioms Spec(A) consists of:

�9 the proposition (b e gDI);

�9 for every action g ~ F and every a~_D(g), the proposition (gDXa=F(g,a));

�9 for every g~F, the proposition (g D B(g));

�9 for every a~V, the proposition ((V g)vXa=a)
' $ E ~ (a)

These (extralogical) axioms do capture the semantics of the program: the first axiom
establishes that I is an initialisation condition; the second set of axioms formalises

assignment - if g is about to occur, the next value of attribute a is the current value of

F(g,a); the third establishes B(g) as a necessary condition for the occurrence of g; and the
last axiom (the locality axiom) captures locality (encapsulation) of attributes: if, in a
given state, none of the actions of the domain of an attribute occurs, that attribute remains
invariant during the next state transition [17]. For instance, the program Ps introduced in

section 3 admits the following presentation:

S/~C(Ps) i b e g23a>0 ̂ b>0^ d=falseA no=0

fr3Xa=q~(a, b) frDXao=a

frD-~d^ acao gDXb---ap(a, b)

tDXd=true tD-,d^ a=ao

fry Xa=a fry Xao=ao

gvXb=b tvXd=d

We have thus defined a mapping Spec from the objects of RE G to the objects of S ~ t ~ C . In

order to prove that this mapping extends to morphisms and, hence, defines a functor, it i s
sufficient to see that, given a program morphism ~. (0,A)---~(0',A'), the conditions laid

down in the definition for program morphisms together with the axioms of Spec(0, A) imply
the axioms ofSpec(0',A')21.

20

21

This should remind the reader of the weak stmcturality principles for specification morphisms,
capturing via extralogical axioms over the target language the meta constraints over the domain
language.

Notice that if a different notion of superposition (i.e. of program morphism) had been chosen, ,Spec
might not be a functor, i.e. it might not map the program morphisms (of this new category) to
specification morphisms. Indeed, the "semantics" of the programming language is more encoded in
the morphisms than in the objects.

62

For this mapping to be really useful, we want structure preservation between programs and

specifications. Composi t ional i ty , in a nutshell, is a property of the relat ionship be tween

specifications and programs which ensures that a problem of correctness for a compos i t e

system can be decomposed into similar problems of correctness for the components of the

system. Hence, composi t ional i ty requires a suitable relat ionship between the

construct ions available for building systems and the notion of correctness between

systems and speci f ica t ions .

We indicate how the functor defined above allows us to formalise the not ion of sa t i s fac t ion

(correctness) between programs and specifications and to define composi t iona l i ty as an

algebraic property of the two formalisms - programs and specifications. A realisation of a

specification S is a pair <o,P> such that P:REG and o is a specification m o r p h i s m

S---~Spec(P) 22. Now consider the SP'EC diagram given by q01 and r i n t e r c o n n e c t i n g

specif icat ions S 1 and S 2 via a channel S. Let <~,P>, <rl 1,P1 >, <~q2,P2 > be realisations of

S, S 1 and S 2, respectively (i.e., rl: S---~Spec(P), vii: Si--~S/~c(Pi)), interconnected in a way

that is consis tent with the interconnect ion of the specifications, i.e., Ixi: P--"Pi are such

that rl;S/~eC(lai)--q~i;~i . Then, there is a unique way in which the pushout program P' is a

realisation of the pushout specification S', i.e. there is a unique rl':S'---,S/~ec(P') such tha t

lSi;rl'=rli;Spec(oi) 23. See figure 4 below. See also [19 ,20 ,16 ,22] .

We now have an answer to the 'age old quest ion '24: how are programs and spec i f ica t ions

related in the general setting of specification formalisms as general as FOL, a lgebra ic

languages and temporal/modal logics. This development was not foreseen when deciding

to represent configurat ion of systems from components by colimits of configurat ions of

22 This notion of realisation is a generalisation of the satisfaction relation between programs and
specifications. Traditionally, we say that a program P satisfies a specification S, P,S, if every
computation of P is a model of S. Alternatively, in some calculi prorams and specifications are
formulae and the morphism above is replaced by logical implication. Realisations generalise this
notion by allowing the program and the specification to be over different signatures. More
concretely, the program is allowed to have features that are not relevant to the specification. Hence
the morphism from S to 5pec(P) corresponds to the way in which P realises S, i.e., intuitively, it
records the design decisions that lead from S to P (seen as a design exercise carried out in 5a'EC).

23 Of course, we intend that this generalises to colimits. We should point out that this result holds for
any funetor Spec between categories of programs and of specifications. That is to say, it does not
depend on the nature of the program design language (as long as it can be defined as a category) or
of the specification logic (as long as it can be defined as an institution).

24 We had serious worrie starting 20 years ago about how programs arose from specifications and
refinements. There was discussion about how development should proceed to the point where the
lasttarget language of a refinement was directly realisable in a programming language. But this
begged two important questions: firstly, how was this last step actually realised when there was
normally a change of logic (from that of the specification formalism to that of the programming
language) involved and, secondly, what about the modules/clusters corresponding to each of the
previous steps? In the terminology of the first section, the latter question can be r eph ra sed as: The
mediating specification B used in implementing A in terms of C specifies the data representations
and operation implementations required to realise the development step; how exactly are these

realised by programs7

63

componen t descriptions, but it should be seen as the emergence of a discipline (universal

principle or law) about the relat ionship between programs and speci f ica t ions 25.

SPEC

1
~ q

Sz

~ Spq~ (v~

Spec (e) 5pee (~I

P2

v~

Figure 4

~z

p.o. ~ l

J , 131 I

i n .
I
I

nl S~_c (o~ ~ 5 p e c (P')

S~ (P~

%

/
Pl

5 Concluding R e m a r k s

Some twenty years ago, a group of us focused on an alternative framework from that b e i n g

developed around the initial algeabraic ideas put forward in [29,30,31,14,6] . It was a l so

different from the frameworks used for VDM and Z. As I hope I have demonstrated above ,

the ideas have generally stood the test of time and have been general enough to meet

unforseen demands. What has emerged is a general theory of specification, design and

programming which would appear to be fit for purpose and which is underpinned by
'universal laws ' .

The use of (presentat ions of) theories as units of construction, combined with loose
semantics, provides an appropriate level of abstraction for the semantic domain used in

25
Notice that if a different notion of superposition (i.e. of program morphism) had been chosen, Spec
might not be a functor, i.e. it might not map the program morphisms (of this new category) to
specification morphisms. Indeed, the "semantics" of the programming language is more encoded in
its morphisms than in the. It is also in this sense that we can talk about the classes of properties that a
given notion of snperposition preserves. For instance, if guards are allowed to be weakened, then
~pec as defined above is nota functor because the property (gDB(g)) is not necessarily preserved
by program morphisms. On the other hand, if condition 3 is strengthened, e.g., by replacing the
implication by an equivalence, as for spectative morphisms, Spec may be more ambitious, for
instance by abstracting liveness properties from programs (regulative snperposition only preserves
safety properties). Hence, it is in the preservation of morphisms that the "correctness" of the functor
as a mapping between formalisms lies. Of course, if there is no functor, this may be because the
'willingness "for program components to cooperate is not reflected in the corresponding notion for
specifications.

64

design theories 26. The missing framework of operations over this domain is provided by

category theory, which focuses on interpretations between theories as the appropriate
relationship in terms of which the structure of specifications may be analysed. Extensions

are the special eases of interpretations defined by injections. A particular kind of

extension, the so called conservative extension, turns out to be the essence of modularity

in design. The particular combination of conservative extension and interpretation used to
underpin implementation composition and parameter instantiation requires that a certain
universal construction (reflected in the Modularisation Property) is supported in the
corresponding category of specifications and interpretations. The property of the
formalism corresponding to this construction is a version of the well known meta property
of logics, called the Craig Interpolation Property. As one studies the literature on

specification theory and theoretical computing, one notices more and more the occurrence

of interpolation properties and their role in explaining phenomena which are related

clearly to modularity.

Some of the technical tools adopted in the eady work (extralogical equality, subsorting and

relativisation) turned out to be less fundamental, in that their use could be internalised via
appropriate (inessential) extensions to the framework. Thus, from a scientific point of

view, these techniques are unnecessary and avoidable. However, it would appear that, for
all intents and purposes, they are still a required engineering tool, avoiding "clutter' in

design.

The emergence of the categorical framework for specification prompted us to demonstrate
the ubiquity of another principle, originally put forward by Goguen, what might be called
'the widget principle'. This proposes that systems may be built from components by

using colimits of diagrams of components. The assertion that this works for
specifications in various formalisms (and ,further, that frameworks for formalisms, such as

VDM, B and Z, which were not originally envisaged as part of such a framework, can be

straightforwardly adapted to the framework) now has extensive evidence to support it.

More surprisingly, it also works for program construction in some interesting languages

(ones likely to be of greater use in mobile, distributed systems). This widget principle

should, therefore, be raised (no pun intended) to a universal law of specification. The
principle and the categorical framework also allow us to relate design to programming and,
more generally, frameworks based on different formalisms which, nevertheless, must be

used together in the construction of a single system.

A c k n o w l e d g e m e n t s and d i s c l a i m e r s : Many people have contributed to the work

outlined above, some with seminal ideas. I would like to thank particularly Jos6 Fiadeiro,
Martin Sadler and Paulo Veloso. I would like to thank also Ed Ashcroft, Juan Bicearegui,
Roberto Lins de Carvalho, Paulo Cunha, Antonio Furtado, Armando Haeberer, Samit
Khosla, Kevin Lano, Carlos Lucena, Mike Levy, Tarcisio Pequeno, (the late) Atendolfo

Pereda, Doug Smith, Sheila Veloso, and Eric Wagner and others. Although the ideas in this

paper are mine, the mistakes are of course theirs!

R e f e r e n c e s
1. M.Abadi and L.Lamport, .Composing Specifications", ACMTOPLAS 15(1), 1993, 73-132.

26 See [47,48] for work which is in very much the same spirit.

65

2. R.Back and R.Kurki-Suonio, "Distributed Cooperation with Action Systems", ACM TOPLAS
10(4), 1988, 513-554.

3. J.A.Bergstra, J.Heering and P.Klint, "Module Algebra', J.ACM37(2), 1990, 335-372.
4. M.Bidoit, R.Hennicker and M.Wirsing, "Behavioural and Abstractor Specifications', Science of

Compute r Programming 25(2-3), 1995, 149-186.
5. L.Boug~ and N.Franeez, "A Compositional Approach to Superimposition', in Proc. 15th ACM

Symposium on Principles of Programming Languages', ACM Press 1988, 240-249.
6. M.Broy, and M.Wirsing, "Partial abstract data types', Acta Informatica 18(1), 1982, 47-64.
7. R.BurstaU and J.Goguen, "Putting Theories together to make Specifications", in 1LReddy (ed)

Proc F~h International Joint Conference on Artificial Intelligence, 1977, 1045-1058.
8. R.L.Carvalho, T.S.E.Maibaum, T.H.C.Pequeno, A.A.Pereda and P.A.S.Veloso, "A Model

Theoretic Approach to the Semantics of Data Types and Structures", in Proc. International
Computer Symposium, Feng Chia University, Taiwan, December 1982.

9. K.Chandy and J.Misra, Parallel Program Design - A Foundation, Addison-Wesley 1988.
10. R.Diaconescu, J.Goguen and P.Stefaneas, "Logical Support for Modularisation', in H.Huet and

G.Plotkin (eds) Proc. 2nd BRA Logical Frameworks Workshop, Edinburgh 1991.
11. T.Dirnitrakos, AFormalTheoryfor(ComputerAided)lnformationEngineering, PhD dissertation,

University of London, 1997, in preparation.
12. H.Ehrig and G.Mahr, Fundamentals of Algebraic Specification 1: Equations and Initial

Semantics, Springer-Vedag 1985.
13. H.B.Enderton, A Mathematical Introducaon to Logic. Academic Press; New York 1974.
14. H.-D.Ehrich, "On the theory of specification, implementation and parameterization of abstract

data types", J. ACM29(1), 1982, 206-227.
15. J.Fiadeiro, "On the Emergence of Properties in Component-Based Systems', in M.Wirsing and

M.Nivat (eds) AMASl~96, LNCS 1101, Springer-Veflag 1996, 421-443.
16. J.Fiadeiro, A.Lopes and T.Maibaum, "Synthesising Interconnections', in D.Smith and J.P.Finance

(eds) Proc. IFIP TC2 Working Conference on Algorithmic Languages and Calculi, Chapman Hall,
in print.

17. J.Fiadeiro and T.Maibaum, "Temporal Theories as Modularisation Units for Concurrent System
Specification', Formal Aspects of Computing 4(3), 1992, 239-272.

18. J.Fiadeiro and T.Maibaum, ~Generalising Interpretations between Theories in the Context of
(~-)institutions', in G.Burn, S.Gay and M.Ryan, eds,, Theory and Formal Methods 1993, Springer-
Verlag Workshops in Computing, 1993, 126-147.

19. J.Fiadeiro and T.Maibaum, "Interconnecting Formalisms: supporting modularity, reuse and
inerementality', in G.E.Kaiser (ed) Proc. 3rd Symposium on Foundations of Software Engineering,
ACM Press 1995, 72-80.

20. J.Fiadeiro and T.Maibaum, "A Mathematical Toolbox for the Software Architect", in J.Kramer
and A.Wolf (eds)Proc. 8th International Workshop on Software Specification and Design, IEEE
Computer Society Press 1996, 46-55.

21. J.Fiadeiro and T.Maibaum, "Design Structures for Object-Based Systems", in S.Goldsack and
S.Kent (eds) Formal Methods in Object Technology, Sringer-Verlag, in print.

22. J.Fiadeiro and T.Maibaum, "Categorical Semantics of Parallel Program Design", Science of
Computer Programming, in print

23. N.Francez and I.Forman, "Superimposition for Interacting Processes", in CONCUR'90, LNCS
458, Springer-Vedag 1990, 230-245.

24. N.Francez and I.Forman, Interacting Processes, Addison-Wesley 1996.
25. J.Goguen, "Categorical Foundations for General Systems Theory', in EPichler and R, Trappt

(eds) Advances in Cybernetics and Systems Research, Transcripta Books 1973, 121-130.
26. J.Goguen and 1LBurstall, "Institutions: Abstract Model Theory for Specification and

Programming', dournal of the ACM39(1), 1992, 95-146.
27. J.Goguen and S.Ginali, "A Categorical Approach to General Systems Theory', in G.Klir (ed)

Applied General Systems Research, Plenum 1978, 257-270.
28. R.Goldblatt, Logics of Time and Computation, CSLI 1987.
29. J.A.Goguen, J.W.Thateher, and E.G.Wagner, "An initial algebra approach to the specification,

correctness and implementation of abstract data types', in R.T.Yeh, ed., Cltrrent Trends in
Programming Methodology, vol. IV: Data Structuring, Prentice Hall, Englewood Cliffs 1978.

30. J.V.Guttag, ~Abstract data types and the development of data structures",
Comm.A~soe.Comput.Mach. 20(6), 1977, 396-404.

31. J.V.Guttag and J.J.Horning, 'q'he algebraic specification of abstract data types " ,Acta
Informatica 10(1), 1978, 27-52.

66

32. R.Hennicker and C.Schmitz~ "Object-Oriented Implementation of Abstract Data Type
Specifications', proc. 5th Intern.ConfAMAST'96, LNCS 1101, 1996, 163-179.

33. S.Katz, "A Superimposition Control Construct for Distributed Systems", ACM TOPLAS 15(2),
1993, 337-356.

34. R.Kurki-Snonio and H.J~irvinen, "Action System Approach to the Specification and Design of
Distributed Systems", in Proc~ 5th Int. Workshop on Software Specification and Design~ IEEE Press
1989, 34-40.

35. B.Liskov and S.Zilles, "Programming with abstract data types', ACM SIGPLAN Notices 9(4),
1974, 50-59.

36. Z.Lno, "Program Specification and Data Refinement in Type Theory', Proc. TAPSOFT'91,
LNCS493, 1991, 143-168.

37. T.S.E.Maibaum, "The role of abstraction in program development', in H.-J.Kugler, ed.
Information Processing '86, North-Holland, Amsterdam, 1986, 135-142.

38. T.S.E.Maibanm and M.R.Sadler, "Axiomatising Specification Theory", Proc. 3rd Abstract Data
Type Workshop, Faehbereieh Informatik 25, Springer Verlag 1984.

39. T.S.E.Maibaum, M.ILSadler, and P.A_S.Veloso, "Logical specification and implementation', in
M.Joseph and R.Shyamasundar, eds. Foundations of Software Technology and Theoretical Computer
Science. Springer-Verlag, Berlin, 1984, 13-30.

40. T.S.E.Maibaum and W.M.Turski, "On what exactly is going on when software is developed step-
by-step'~ Proc. 7th Intern. Conf. on Software Engin. IEEE Computer Society, Los Angeles, 1984,
528-533.

41. T.S.E.Maibaum, P.A.S.Veloso, and M.R.Sadler, "A Theory of Abstract Data Types for Program
Development: Bridging the Gapg" in H.Ehrig, C.Floyd, M.Nivat and J Thatcher (eds) TAPSOF'P85
LNCS 186, 1985, 214-230.

42. M.C.Mer~ and P.A.S.Veloso, "Definition-like extensions by sorts", Bull. IGPL, $ (4), 1995, 579-
595. (Abstract in Workshop on Logic, Language, Information and Computation WoLLIC '94,
Recite, 1994.}

43. T.H.C.Pequeno and C.J.P.Lucena, "An approach for data type specification and its use in
program verification', Information Processing Letters 8(2), 1979, 98-103.

44. P.H.Rodenburg and R.J.vanGlabbeek, "An Interpolation Theorem in Equational Logic",
Technical Report CS-R8838, Department of Compuetr Science, Centre for Mathematics and
Computer Science, Amsterdam 1988.

45. D.Sannella and A.Tadecki, "Building Specifications in an Arbitrary Institution", Information and
Control76, 1988, 165-2t0.

46. J.R.Shoenfield, Mathematical Logic. Addison-Wesley, Reading 1967.
47. D.ILSmith, "Constructing Specification Morphisms", Journal of Symbolic Computation 15~5-6),

1993, 571-606.
48. Y.Srinivas and R.Jiillig, "Speeware~: Formal Support for Composing Software ", in B.Mrller, ed.,

Mathematics of Program Construction, LNCS 94?, Springer-Verlag 1995.
49. A.Tarlecki, "Bits and Pieces of the Theory of Institutions', Proc. Workshop on Categoriy Theory

and Computer Science, LNCS 240, Springer-Verlag 1986.
50. W.M.Turski and T.S.E.Maibaum, The Specification of Computer Programs. Addison-Wesley,

Wokingham 1987.
51. P.A.S.Veloso, "Yet another cautionary note on conservative extensions: a simple example with a

eomputing flavour', Bull. EATCS, 46, 1992, 188-192.
52. P.A.S.Veloso, "From Extensions to Interpretations: Pushout Consistency, Modularity and

Interpolation', Tech.Rep.MCCO1/95, DI/PUC, to appear in Information Processing Letters, 1997.
53. P.A.S.Veloso and T.Maibaum, "On the Modularisation Theorem for Logical Specifications',

Information Processing Letters 53, 1995, 287-293.
54. P.A.S.Veloso, T.S.E.Maibaum, and M.R.Sadler, "Program development and theory manipulation",

in Proc. 3rd Intern. Workshop on Software Specification and Design. IEEE Computer Society, Los
Angeles, 1985, 228~232.

55. P.A.S.Veloso and S.R.M.Veloso, "Some remarks on conservative extensions: a Socratic
dialogue', Bull. EATCS43, 1991, 189'198.

56. P.A.S.Veloso and S.R.M.Veioso, "On conservative and expansive extensions", 0 que no faz
pensar: Cadernosde Filosofia 4, 1991, 87-106.

57. M.Wirsing and M.Broy, "A Modular Framework for Specification and Implementation", Proc
TAPSOFT'89, LNCS 351, 1989.

58. P.Zave and M.Jackson, "Conjunction as Composition', ACM TOSEM 2(4), 1993, 371-4t L

