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Abs t rac t .  A conditional term rewriting system is called logical if it 
has the same logical strength as the underlying conditional equational 
system. In this paper we summarize known logicality results and we 
present new sufficient conditions for logicality of the important class of 
oriented conditional term rewriting systems. 

1 I n t r o d u c t i o n  

Conditional te rm rewriting ([4, 6, 8]) provides a useful framework for the study 
of a wide range of problems in computation and programming. In this paper 
we investigate the logical strength of conditional rewrite systems. A conditional 
rewrite system is called logical if it has the same logical strength as the underlying 
conditional equational system. Logicality is important  because it implies that  an 
equation s .~ t is provable by rewriting (s ~ *  t) if and only if it is valid in all 
models of the underlying conditional equational system. 

Three main types of conditional rewriting are considered in the literature. In 
a natural system the conditions in the conditional rewrite rules are checked by 
allowing rewriting in both directions. This is very close to equational reasoning 
in the underlying conditional equational system and hence it is not surprising 
that  natural  systems are logical. However, from a rewriting point of view, natural  
systems are unnatural  because the bidirectional use of rewrite rules in the con- 
ditions goes against the spirit of rewriting. In a join system the applicability of 
conditional rewrite rules is determined by joinability of the conditions. Most of 
the literature on conditional rewriting addresses join systems. Kaplan [8] showed 
that  join systems are logical, provided they are confluent. Recently, oriented sys- 
tems emerged as the most natural type of conditional rewriting when modeling 
logic and functional programming, especially when allowing extra variables in 
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the conditions and right-hand sides of rewrite rules (e.g. [2, 7, 10]). In contrast  
to join systems, confluence is insufficient for ensuring logicality of oriented sys- 
tems. In this paper we show that  under suitable additional conditions logicality 
is recovered and we argue that these conditions are not too restrictive. 

The remainder of this paper is organized as follows. In the next section we 
briefly recall conditional equational reasoning and we present the basic defini- 
tions and properties of conditional term rewriting systems. In Section 3 we give 
simple proofs of logicality for natural and for confluent join systems. In Section 4 
we present two new sufficient conditions (Theorems 12 and 18) for logicality of 
oriented systems. The usefulness of these conditions is shown in Section 5, where 
we show that  our results cover the classes of conditional rewrite systems consid- 
ered by Avenhaus and Loria-S~nz [2] and Suzuki et al. [10]. 

This paper extends and corrects unpublished work [1] of two of the four 
authors, cf. the footnotes in Section 4. 

2 Preliminaries 

We assume the reader is familiar with the basic notions of (unconditional) te rm 
rewriting. (See [5, 9] for extensive surveys.) We start  this preliminary section 
with a very brief introduction to conditional equational logic. 

A conditional equation is a pair (1 ~ r, c) consisting of an equation I ~ r 
and a possibly empty sequence c = Sl ,~ t l ,  . . . ,  s,~ ,~ t,~ of equations. We write 
l ~ r r c instead of (I ~ r, c). If the conditional part  c is empty  we simply 
write 1 ~, r. A conditional equational system (CES for short) over a signature 
j r  is a set g of conditional equations over terms in T ( j r ,  V). We write s --e t if 
the equation s ~ t can be deduced from the inference rules of Table 1. Let j r  

T a b l e  1. 

reflexivity t ~, t congruence 

s ~ t  
application symmetry t ~, s 

transitivity 
s ~ t , t ~ u  

Sl ~ ~l~...,Sn ~ n  

f ( ~ , . . . ,  ~ )  ~ f( t~, . . . ,  t , )  
if f E j r  is n-ary 

81 O- ~ t l t Y  , . . . ~ s n ~  ~tnO" 

Icr ~ r~ 
i f l . ~ r ~ s l ~ t l , . - . , s , ~ t -  E g  

be a signature. An F-algebra A = (A, { fa} lE~)  consists of a set A, the carrier 
of .4, and operations f.4: A n ~ A for every n-ary function symbol f G jr .  An 
assignment a is a mapping from V to A. A conditional equation l ~ r ~= c is 
valid in .4 if [a](l) = [a](r) for every assignment a that  satisfies [a](s) = [a](t) 
for all s ~ t in c. Here [a] denotes the unique homomorphism from 7"(jr, V) to 
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A that  extends a, i.e., [a](t) = a ( t ) i f t  E V and [a](t) = f~ ( [a] ( t l ) , . . . ,  [a](t~)) 
i f t  = f ( t l , . . .  ,tn). In particular,  an unconditional equation l ~ r is valid in ,4 
if [a](l) = [a](r) for every assignment a.  An algebra A is a model of a CES g 
if every conditional equation in 8 is valid in .4. Birkhoff's theorem states tha t  
s = c  t if and only if the equation s ~ t is valid in every model of 8. 

Conditional rewrite rules are conditional equations l ~ r r c tha t  are used 
to rewrite terms by replacing an instance of the left-hand side l with the corre- 
sponding instance of the right-hand side r provided the corresponding instance 
of the conditional part  c is satisfied. To express this directed use of conditional 
equations we denote conditional rewrite rules by l ---* r .r c and CESs con- 
sisting of conditional rewrite rules are called conditional t e rm rewriting systems 
(CTRSs for short).  Depending on the interpretation of the equality sign ~ in 
the conditional par t  of conditional rewrite rules, different rewrite relations can 
be associated with a given CTRS. The most common interpretat ions are con- 
vertibility ( ~ * ) ,  joinability (~), and reduction (---**). 

The  rewrite relation ---*T~ of a natural CTRS ~ is defined as follows: s ---~7r t 
if and only if s - - - ~  t for some n />  0. The minimum such n is called the depth 
of s ---+T~ t. Here the relations --+n~ are inductively defined as follows: 

= { ( C [ l a ] ,  c E r a ] )  I l - - ,  r c �9 with ca C ~ *  - -  T ~ n } "  

Here ca  denotes the set {(sa, t a )  [ s ~ t belongs to e}, so co- C_ ~ with c = 
sl ~ t l ,  .. ., s,, ~ t,~ is a shorthand for s l a  ~*n= t t a ,  . . .  , s,~a ~--+'7r t,~a. If  we 
replace ca C_ ~*n= by ca C_ IT~ we obtain the rewrite relation of a join CTRS 
and if we replace ca C ~--~* by co" C ---** 

- ~ - T~ we obtain the rewrite relation of an 
oriented CTRS.  This classification of CTI~Ss goes back to Bergstra and Klop [4] 
who use the terminology type I, II, and III.  Natural  CTRSs are also called semi- 
equational in the literature and join CTRSs are sometimes called s tandard.  Note 
tha t  we don' t  put  any restrictions on the distribution of variables among the 
different parts  of conditional rewrite rules. In particular, we allow ext ra  variables 
in the r ight-hand sides as well as in the conditions of conditional rewrite rules. 

In the following we frequently compare different types of CTRSs associated 
with the same CES. Hence it is convenient to make the explicit notat ional  con- 
vention of writing 7~ ~ (7~J, 7~ ~ if the 7~ is considered as a natural  (join, oriented) 
CTRS.  Furthermore we abbreviate ---,n= to ---*n (~no to 1o, ~--~j to ~j*, etc.). 
We write 7~ and ---+~ if something applies to all three kinds of CTRSs (e.g., when 
defining properties of CTRSs).  

The following basic fact is easily proved by induction on the depth of condi- 
tional rewrite steps. 

L e m m a  1. The relation ---+~ of a CTRS T~ is closed under contexts and substi- 
tutions. [] 

The following well-known result provides a useful characterization of the 
rewrite relation -'+n of a natural  CTRS 7~ ~. A similar s ta tement  holds for join 
(oriented) CTRSs by replacing ---% by ---.j (---%) and ~--** by lj (---~*). 
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L e m m a  2. Let T~ n be a natural CTRS.  The relation --% is the smallest  relation 
that satisfies the following two properties: 

1 .  " - - ~ n  is closed under contexts, and 
2. let -*n rcr for  all I --+ r ~ c E T~ and cr with ccr C ~-~ * 

- -  n "  

[] 

Due to the above lemma we can avoid proofs by induction on the depth of 
conditional rewrite steps in the sequel. The following l emmata  are easy conse- 
quences of the previous lemma. 

L e m m a  3. For every C T R S  TZ we have - %  C --+j C_ -'+n. [] 

L e m m a 4 .  LetTr n be a natural C T R S  over a signature J: and ,,~ an equivalence 

relation on q'(gr, V) that is closed under contexts. I f  la ,~ rtr fo r  all I --* r ~ c E 
Tr and ~ with ctr C ~ then ~-** C 

_ n - " 

Proof. The relation ,,~ satisfies the two properties expressed in Lemma 2 because 
the equivalence closure of ,,~ (i.e., convertibility with respect to ~ )  is ,~ itself. 
Hence - -~ C --, and thus also ~-~* C again because the equivalence closure of 
,,~ is ~ .  [3 

The above lemma also holds for join and oriented CTRSs,  with a small change 

in the proof. 

3 Logicality 

D e f i n i t i o n  5. A CTRS 7~ is called logical if the relations = n  and ~--~ coincide. 
Here =7z denotes the relation defined via the inference sys tem of Table 1 for the 

underlying CES 7~. 

The terminology logicality stems from [3] although the s tudy of the concept 
dates back to Kaplan [8]. Logicality is an important  proper ty  because it en- 
tails tha t  (bidirectional) rewriting is sound and complete with respect to the 

underlying equational logic. 

T h e o r e m  6. Every natural C T R S  is logical. 

Proof. Let 7~ n be a natural  CTRS. We have to show that  ---~n and *-~* coincide. 
* is easily proved by induction on the s tructure of proofs of The  inclusion =n C_ ~-% 

equations in the inference system of Table 1, using closure under contexts of ~-~* 
if the last step of the proof is an application of the congruence rule. According 

* C =n it is sufficient to show tha t  to Lemma 4, for the reverse inclusion ~-~n - 

1. - n  is an equivalence relation, 
2. =n is closed under contexts, and 
3. ltr =~ r~  for all 1 -*  r ~ e E 7~ ~ and tr with ca C_ --~. 
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P r o p e r t y  1 is obvious due to the presence of the reflexivity, symmet ry ,  and 
t ransi t iv i ty  inference rules in the inference sys tem of Table 1. Closure under  
contexts  is easily proved by induct ion on the s t ructure  of  contexts,  using the 
congruence and reflexivity inference rules. Finally, p roper ty  3 is an immedia te  
consequence of  the application inference rule. [] 

An  immedia te  consequence of  Theorem 6 is tha t  a join (oriented) C T R S  7r 
(7r ~ is logical if and only if the relations ~ *  ( ~ )  and ~ *  coincide. j n 

Join  C T R S s  need not be logical, as shown in the following example.  

Example 1. Consider  the CTRS Tr = {a ---* b, a ---* c, d ---* e r b ~ c}. We have 
d --'~n e since b n*--- a ---+n C. However, d --+j e doesn ' t  hold because the condi t ion 
b ~j C is not  satisfied. Hence d *--~ e doesn ' t  hold either. 

Note tha t  the above 7~J lacks confluence. Kaplan [8] observed tha t  this is 
essential. 

T h e o r e m  7 (Kaplan [8]). Every confluent join CTRS  is logical. 

Proof. Let 7r be a confluent join CTRS.  We claim tha t  ---~j = ---~n, implying the 
desired ~-+* = ~ *  We already know tha t  ---*j C -+n. For the reverse inclusion J n "  

we use L e m m a  2. To this end we have to show tha t  

1. ----+j is closed under  contexts,  and 
2. l~ ---~j ra for all l ---+ r r c E TEJ and cr with ca  C_ ~j*. 

Closure under  contexts  is expressed in Lemma 1. For p roper ty  2 we note  tha t  
s--+* C ~j by confluence and thus l~ --+j to" follows f rom c~ C ~-~* j - _ j .  [ ]  

4 O r i e n t e d  C T R S s  

For oriented CTRSs  confluence is not  sufficient for ensuring logicality, as shown 
by the following example. 

Example 2. Consider  the CTRS ~ = {a --~ c, b ---* c r c ~ a}. We have b --+n c 
since c n ~--- a. However, b ---~* �9 o c doesn ' t  hold because the condit ion c --% a is no t  
satisfied. Hence b ~-~* o c doesn ' t  hold either. Note tha t  7~ ~ is confluent. 

The  C T R S  7r ~ in the above example is not  a so-called normal  CTRS.  

D e f i n i t i o n  8. Let  T~ be a CTRS.  A term t is called normal if it is g round  and 
doesn ' t  encompass  the left-hand side l of  a condit ional  rewrite rule l ---+ r r c 
in Tr The  lat ter  requirement  means tha t  t is irreducible with respect  to the 
uncondi t ional  TRS obtained from 7d by dropping all conditions. We say tha t  the  
oriented C T R S  7r ~ is normal if every r ight -hand side t of  an equat ion s ~ t in 
the condit ional  par t  c of  a conditional rewrite r u l e / ~  r r c in 7r ~ is normal .  

Note tha t  normal i ty  is a decidable proper ty  of  finite oriented CTRSs .  



146 

T h e o r e m  9. Every confluent normal CTt lS  is logical. 

Proof. Let 7~ ~ be a confluent normal  CTRS.  According to L e m m a  3 we have 
-+o __ --~j- The  reverse inclusion --~j C_ --~o is an easy consequence of  the jo in  
version of  L e m m a  2, of. the proof  of  Theorem 7, and the normal i ty  assumpt ion .  
Hence -+o = --+j and thus also ~-+* = ~-~-* According to T h e o r e m  7 ~-+.* = ~-+* o J '  j n"  
Therefore Tr ~ is logical. [] 

In the presence of  extra variables in the r igh t -hand  sides of  the condi t ional  
rewrite rules, normal i ty  is too s t rong a requirement .  Such ex t ra  variables appear  
na tura l ly  in applications of condit ional  rewriting (e.g. [2, 3, 7, 10]). Below we 
present  other,  more useful, sufficient conditions for the logicality of  or iented 
CTRSs .  These sufficient conditions are derived f rom the following key lemma.  

L e m m a  10. Let Tr ~ be a confluent oriented CTRS. I f  for every l ~ r ~ c E Tr ~ 
and every substitution cr with ca C_ 1o there exists a substitution r such that 

1. a(x)  --+o T(x) for all x E ]2, and 
2. c r  C_ ~ o  

then T~ ~ is logical. 

* C * follows f rom Lemma 3. For the reverse inclusion Proof. The  inclusion ~-*o ~+n 
* So suppose tha t  l --* r r c E Tr with ca  C ~-%. we use L e m m a  4 with N = ~ o .  

We have to show tha t  la  ~-~* ra .  Confluence of Tr ~ yields ca  C ~o. By assumpt ion  
* r (x )  for all x E V and c r  C --~o. there exists a subst i tu t ion r such tha t  a(x)  --+o 

The  la t ter  s ta tement  implies l r  -*o r r .  The  first s t a t ement  implies lcr --+* lv and 
* r ~ .  0 * rv. Therefore la ~-*o t o "  -'-~o 

D e f i n i t i o n  11.  Let 7~ be a CTRS.  A te rm t is called strongly irreducible if ta  
is irreducible for every irreducible subst i tut ion a. We say tha t  T~ is s t rongly  
irreducible if every r ight -hand side t of an equat ion s ~ t in the condit ional  pa r t  
c of  a condit ional  rewrite rule l --+ r r c in T~ is s t rongly irreducible. 

Note tha t  irreducibility depends on the rewrite relation associated with 7~, 
so it is possible tha t  an oriented C T R S  T~ ~ is s t rongly irreducible whereas the 
corresponding join C T R S  7~J is not.  Because it is undecidable whether  a t e rm is 
irreducible with respect to a C T R S  (Kaplan [8]), s t rong irreducibil i ty is unde-  
cidable in general. A sufficient condition is presented in Definition 13 below. 

T h e o r e m  12. Every strongly irreducible weakly normalizing confluent oriented 

C T R S  is logical. 2 

Proof. Let Tr ~ be a s trongly irreducible weakly normaliz ing confluent oriented 
CTRS.  We use L e m m a  10. So let l --* r r c be a condit ional  rewrite rule of  Tr ~ 
and ~r a subst i tu t ion with ca C 1o. We have to define a subs t i tu t ion  ~" such tha t  

2 This result originates from [1]. 
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1. ~(x) ~ ;  r (x )  for all x E V, and 
2. c r  _C --*;. 

Because T~ ~ is confluent and weakly normalizing, every te rm t has a unique 
normal  form t~o and hence we can define r as r ( z )  = cr(x)~o for all x e ]2. 
Proper ty  1 is clearly satisfied. Let s ~ t be an equation in c. We have s~ ~o 

* t r .  Since * * t r  and thus sv ~-'~o ta .  From 1 we infer that  scr ---~o sv and t a  --*o 
7- is irreducible by construction, t r  is irreducible by the strong irreducibility 
assumption.  Confluence of ~ o  yields s r  --~* t r .  We conclude that  p roper ty  2 
holds. [] 

Example  2 shows that  Theorem 12 cannot be strengthened by dropping the 
strong irreducibility requirement. The following example shows the necessity of 
weak normalization. 

Example  3. Consider the CTRS 

a ---+ a 

7"~ = f ( a )  ---+ a 
g(=) b a f(=) 

We have a n ~--- f ( a )  and thus g(a) "-'~n b. However, since there is no te rm t 
such tha t  a ---** f ( t ) ,  the relation - %  coincides with the rewrite relation induced 
by the unconditional TP~S S = {a --+ a, f ( a )  --* a}. Hence g(a) *-~* b doesn' t  
hold and hence T~ ~ is not logical. Clearly the TRS S and thus 7~ ~ is confluent. 
Furthermore,  7~ ~ is strongly irreducible because there is no irreducible t e rm t 
such tha t  f ( t )  is reducible. 

D e f i n i t i o n  13. Let 7~ be a CTRS. A term t is called absolutely irreducible if  
no non-variable subterm of t unifies (after variable renaming) with the left-hand 
side 1 of a conditional rewrite rule l --* r ~ c in 7~. We say that  7~ is absolutely 
irreducible if every right-hand side t of an equation s ~ t in the conditional par t  
c of a conditional rewrite rule l --* r ~ c in T / i s  absolutely irreducible. 

Unlike strong irreducibility, absolute irreducibility doesn' t  depend on the 
rewrite relation associated with T~. (That  is to say, absolute irreducibility is a 
proper ty  of CESs.) Note that  every normal CTl~S is absolutely irreducible but 
not vice-versa. 

Note that  the CTRS 7~ ~ of Example 3 is not absolutely irreducible since the 
right-hand side f ( z )  of the condition a ~ f ( z )  in the rule g(x)  --~ b ~ a ~ f ( x )  is 
unifiable with the left-hand side f ( a )  of the rule f ( a )  --~ a. Nevertheless, even if 
we strengthen strong irreducibility to absolute irreducibility, we cannot dispense 
with weak normalization in Theorem 12 as shown by the following example. 

Example4 .  Consider the CTRS 3 

a ---* b 
b---*a 

7~ = f ( a ,  b) ---, c 

d c f(=, =) 
3 This example refutes Theorem 5.2 in [1]. 
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We have c n~-- f (a ,  b) n ~ f (a ,  a) and thus g(a) --+n d. However, since there is no 
term t such that  c --+~ f ( t ,  t),  the relation --+o coincides with the rewrite relation 
induced by the unconditional TRS S = {a ~ b, b --* a, f (a ,  b) --+ c}. Clearly 
g(a) ~--~ d doesn't hold. Hence T~ ~ is not logical. Note that  S and thus R~ is 
confluent. Furthermore, T~ ~ is absolutely irreducible because the term f ( z ,  z)  
doesn't unify with f (a ,  b). 

The non-linearity of the term f (z ,  z) in the above example is essential, as we 
will see below. 

Since in applications of conditional rewriting weak normalization is often a 
severe restriction, e.g. CTRSs that  model (lazy) functional programs are not 
weakly normalizing in general, we are especially interested in a sufficient condi- 
tion for logicality of oriented CTRSs that  doesn't rely on weak normalization. 
The above examples show that  the problem with strong and absolute irreducibil- 
ity is that  the structure of the right-hand sides of equations in the conditional 
parts are not preserved under rewriting. For instance, in Example 3 we have 
f ( a )  "-->o a destroying the structure f(.) .  Absolute irreducibility guarantees that  
the structure of the right-hand sides of equations in the conditional parts is pre- 
served by one-step rewriting but not by many-step rewriting: in Example 4 we 
have f (a ,  a) --% f (a ,  b) --+o c destroying f(. ,  .). 

The condition defined below guarantees that  the structure of the right-hand 
sides of equations in the conditional parts is preserved by many-step rewriting. 

Def in i t i on  14. Let TZ be a CTRS. A term s is called stable if p ~t Pos~:(s) 
whenever s~ ~ z  t ~T~ u, for all substitutions c~, terms t and u, and positions 
p. We say that  R is stable if every right-hand side t of an equation s ~ t in the 
conditional part c of a conditional rewrite rule l ~ r r c in R is stable. 

The structure preservation of stable terms is formally expressed in the fol- 

lowing lemma. 

L e m m a l 5 .  Let T~ be a CTRS.  I f  s is a stable term and s a t - - ~  t then 

1. root(sr = root(tip) for all p e "PosT(s), and 
2. S~l. --+~ tip for all p E T'osv(s). 

Proof. Both properties are easily proved by induction on the length of the re- 

duction sa ---~ t. [] 

The next lemma expresses the fact:that for confluent CTRSs the substitution 
part of an instance of a stable term can be consistently reduced. This property 
plays a crucial role in the proof of our main result (Theorem 18 below). 

L e m m a  16. Let T~ be a confluent CTRS.  I f  s is a stable term and so" ---~ t then 
there exists a substitution r such that 

i.  a (x)  - - ~  r (x )  for all x e :V, and 
$ 2. t ---~n s t .  
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Proof. If  s is a ground te rm then it must  be irreducible and hence any substi tu- 
tion T satisfies both  requirements. Suppose s is not ground. Let x be an arbi t rary  
variable in s and define A= -- {tie I slp = x}. Since <r(x) --+~ u for every u 6 A:  
by par t  2 of Lemma 15, the set A= consists of pairwise convertible terms. Since 
it is finite and non-empty, confluence yields a term u~ such that  u --+~ u~: for 
all u 6 A=. Now define v as follows: r (x )  = u= if x 6 ]2ar(s) and v (x )  = a ( x )  
otherwise. It  is easy to see that  this r satisfies both  requirements. [] 

Stabili ty alone is not enough for ensuring the logicality of confluent, not nec- 
essarily weakly normalizing, oriented CTRSs. This is shown in the next example. 

Example  5. Consider the CTRS 

a ---+ f ( a )  
7~ = g(x)  ---* b ~ f ( x )  ~ x 

We have g(a) ""+n b since f ( a )  n ~ a. Since there is no term t such tha t  f ( t )  --~* t, 
the relation --~o coincides with the rewrite relation induced by the single rewrite 
rule a ---* f ( a ) .  Hence 7Z ~ is confluent and g(a) ~ *  b doesn't  hold. Note tha t  7~ ~ 
is stable since variables are trivially stable. 

D e f i n i t i o n  17. A CTRS 7~ is well-directed if every conditional rewrite rule l 
r r Sl ~ t l , . . .  ,s~ ,~ tn of T~ satisfies 13ar(sj)NVar(ti) = 0 for all 1 ~< j ~< i ~< n. 

All example CTRSs introduced above except the one of Example  5 are well- 
directed. Normal  CTRSs are trivially well-directed. We are now ready for the 
main theorem of the paper. 

T h e o r e m  18. Every stable well-directed confluent orienled C T R S  is logical. 

Proof. Let 7~ ~ be a stable well-directed confluent oriented CTRS. We use Lemma 10. 
So let l --~ r ~ c be a conditional rewrite rule of 7~ ~ and a a substi tut ion with 
c~r C ~o. Let c = sl ~ t l , . . . , s n  ~ t~. We have to define a substi tution r such 
tha t  

1. cr(x) ---~* r (x )  for all x e ]2, and 
2. cr  C_ ~ o .  

To this end we inductively define substitutions r0, . . . ,  rn such that  for all 0 ~< 
i<~ n 

3. for all x e v ,  and 
4. sj  ri ---~* tj  ri for all 1 ~< j ~< i. 

Lett ing 7-o = ~, properties 3 and 4 are trivially satisfied for i = 0. Let i ~> 1. From 
the induction hypothesis, confluence and stability of 7~ ~ and Lemma 16 we infer 
the existence of a substitution Oi such that  siri-1 --+* ti~?i and a(x)  ---~* ~i(x) for 
all x 6 ]2, see Fig. 1. From the induction hypothesis we obtain ~r(x) ---~* r~_l(x)  
for all x E ]2. Hence confluence yields terms u= for x 6 ]2 such that  v/_l(x ) -%* 
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| 
| 
| 

(~  s i cr t i cr 

/ \ /  
SiTi-1 @ 

@ tiO'i 

/ 
induction hypothesis (~) 

Lemma 16 ' k ' ~  ~tO i 

confluence ti Oi 

Fig. 1. 

u= o +-- Oi(x). Partit ion the set of variables 1/into V1 = Far( t / )  fl Ul~<j<i Yar(t j) ,  
V2 = llar(ti)  \ Ul.<,<i ]/ar(tj) ,  and V3 = 12 \ 1)ar(ti). Now define vi as follows: 
r i(x) = ux i f x  E ~ ,  r i (z)  = Oi(z) i f x  e V2, and ri(x) = r i_ l (x)  i f x  E V3. We 
claim that  ri has properties 3 and 4. For property 3 we distinguish three cases. 
If z E V1 then ~(z) ---~* r i_ l (z )  by the induction hypothesis, r i - l ( z )  ---** u~ by 
construction of u~, and u= = ri(x) by definition of vi. If x E V~ then a(x)  --~* 
Oi(x) by construction of 0i and Oi(z) = ri(x) by definition of ri. If x E V3 then 
a(x)  --~* v i - l (x)  by the induction hypothesis and r i_ l (x)  = vi(x) by definition 
of vi. Hence in all cases we obtain the desired a(x)  --~* ri(x).  For proper ty  4 
we reason as follows. Let 1 ~< j ~< i. By well-directedness Yar(sj)  s Var(/~) = 
and thus Yar(sj) C V3. Consequently sjvi = sjvi-1 by definition of vi. So it 
remains to show that s i r  i_1 ---** t j r i .  We distinguish two cases. If 1 ~< j < i 
then s j r i -x  --** t jv i -1  by the induction hypothesis and t jv i -1  -'+* t jvi  because 
Var(t j)  C Vt U V3 and r i - l ( z )  --** u= = ri(x) for x E V1 and Vi_l(Z) : Ti(X) 
for z E V3. If j = i then sj r i -  1 --*o tj Oi by construction of 0i and tj Oi --** tj vi 
because Yar( t j )  C_ V1 tO V2 and Oi(x) --** u~ = ri(x)  for x E V1 and Oi(x) = r i ( z )  
for z E V2. This concludes the induction step. 

Now we define r = rn. Since properties 3 and 4 for i = n are equivalent to 

properties 1 and 2, we are done. [] 

In the remainder of this section we present sufficient syntactic criteria for 

stability. 

D e f i n i t i o n  19.: Let Tr be a CTRS over a signature iT. A function symbol f E iF 
is called a cvnstructor if for every conditionM rewrite rule 1 ---* r r c E 7-r 
neither l E ]/,,nor root(l) = f .  A construclor term is built from constructors and 

variables. 

D e f i n i t i o n  20. A term s is cMled a linearization of t if s is linear and s~r = t 
for some variable substitution ~. (A substitution ~ is a variable substitution if 
~(x) E V for all x E V.) Let Tr be a CTRS. A term t is called strongly stable if 

every linearization of t is absolutely irreducible. 
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Note that  it is sufficient to test one (arbitrary) linearization for absolute 
irreducibility when checking strong stability. Note also that  every linear abso- 
lutely irreducible term is strongly stable, hence stable according to the following 
lemma. Since the CTRS 7~ in Example 4 is well-directed, this shows that  the 
non-linearity of f (x ,  x) is essential for the non-logicality of 7/. 

L e m m a 2 1 .  Let T~ be a CTRS .  

1. Every  strongly stable term is stable. 
2. Every  constructor term is stable. 
3. Every  normal  term is stable. 

Proof. The proof of statement 1 is routine. Statements 2 and 3 follows from 1 
because constructor and normal terms are always strongly stable, rl 

Since normal CTRSs are trivially well-directed Theorem 9 is a special case 
of Theorem 18. 

5 Concluding Remarks 

In this paper we studied logicality of CTRSs. The main results are summarized 
in Table 2. We illustrate the usefulness of the last result, Theorem 18, by showing 
that  the class of CTRSs proposed by Suzuki et al. [10] falls within its scope. This 
class can be viewed as a computational model for functional logic programming 
languages with local definitions such as let-expressions and where-constructs. 

type requirements 

natural 

join confluence 

oriented confluence + 

Table  2. 

Theorem 

' normality 
weak normalization + strong irreducibility 
stability + well-directedness 

7 
9 

12 
18 

Def in i t i on  22. An oriented CTRS is called properly oriented if every condi- 
tional rewrite rule 1 --* r ~ s~ ~ t l ,  . . . , s ,~ ~ t,~ with Var(r) ~ Var(/) satisfies 
Yar(si) C Yar(I) U Uj-11 p a r ( s / ~  t j )  for all 1 < i < n. An oriented CTRS is 
called right-stable if every conditional rewrite rule l --~ r ~ sl  ~ t l , .  ., Sn ~ tn 
satisfies (l:ar(l) i-1 

U Uj=I par(sj ~ t j )  u Yar(s~)) N Var(ti) = g and ti is either a 
linear constructor term or a normal term, for all 1 ~ i ~< n. 

In [10] it is shown that orthogonal properly oriented right-stable CTRSs are 
level-confluent. A CTRS T~ is called level-confluent if the relations ---+z~, for n ~> 0 
are confluent_ 

T h e o r e m  23. Every orthogonal properly oriented right-stable C T R S  is logical. 
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Proof. The first requirement of right-stability implies well-directedness, the sec- 
ond requirement implies stability due to Lemma 21. Since level-confluence im- 
plies confluence, logicality follows from Theorem 18. [] 

Theorem 12, the other new sufficient condition for the logicality of oriented 
TP~Ss, covers the class of quasi-reductive strongly deterministic confluent CTRSs 
studied by Avenhaus and Lorla-SAenz [2]. This class is useful for studying the 
(unique) termination behaviour of well-moded Horn clause programs. Quasi- 
reductivity is a criterion guaranteeing termination. Strong determinism is defined 
as follows. 

D e f i n i t i o n  24. An oriented CTRS is called strongly deterministic if every con- 
ditional rewrite rule l --* r r sl ~ t l , . . . ,  s~ ~ tn satisfies 1 ~ N and, for all 
1 < i • n, ])ar(si) C Yar(l) U u~=ll ~]ar(sj ~ tj) and ti is absolutely irreducible. 

In [2] a critical pair criterion is presented for proving confluence of quasi- 
reductive strongly deterministic CTRSs. 

T h e o r e m 2 5 .  Every quasi-reductive strongly deter~ninistic confluent CTRS is 
logical. 

Proof. Quasi-reductivity implies termination hence weak normalization and strong 
determinism implies absolute irreducibility hence strong irreducibility. Hence the 
conditions of Theorem 12 are fulfilled. [] 
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