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A b s t r a c t .  Strongly sequential constructor systems admit a very effi- 
cient algorithm to compute normal forms. The class of forward-branching 
systems contains the class of strongly sequential constructor systems, and 
admits a similar reduction algorithm, but less efficient on the entire class 
of forward-branching systems. In this article, we present a new transfor- 
mation which transforms any forward-branching system into a strongly 
sequential constructor one. We prove the correctness and completeness 
of the transformation algorithm, then that the new system is equivalent 
to the input system, with respect to the behavior and the semantics. As 
a programming language, it permits us to have a less restrictive syntax 
without compromise of semantics and efficiency. 

1 I n t r o d u c t i o n  

Term rewriting systems (TRS for short) are of a great interest for a number  of 
applications involving computing with equations. Orthogonal TRSs which ensure 
confluent reductions but not necessarily termination, form a good framework for 
p rogramming with equations. The evaluation of a term with a TRS consists of 
repeatedly replacing redexes (a redex is an instance of a left-hand side) of the 
input te rm by the corresponding right-hand sides. This process, called reduction, 
stops if a normal  form is reached. For a term having a normal  form there may  
be infinite sequences of reductions, thus not leading to the normal form. 

The  strongly sequential TRSs (SS) was defined by Huet and L4vy [4]. The 
class of forward-branching systems (FB) introduced by Strandh [7] is a subclass 
of SS. He proved that  in FB, outermost evaluation can be preserved while still 
doing innermost stabilization (computing strong head-normal forms), leading to 
an efficient s trategy for sequences of reductions. Furthermore, Durand [1] has 
proved that  the forward-branching property can be decided in quadratic time. 

Tha t t e  [8] demonstrated the possibility of simulating an orthogonal TRS 
with a left-linear constructor system obtained from the original system via a 
simple syntactic transformation.  Unfortunately, it does not preserve strong se- 
quentiality. The constructor equivalent systems, for which strong sequentiality 
is preserved by Tha t te ' s  transformation,  form a subclass of FB [2, 3, 6]. 

In this paper, we present a new transformation which allows us to simulate 
any FB system with a strongly sequential constructor system. This new construc- 
tor system is generated from the index tree (automaton driving the reduction) 
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of the original system. We prove that  this algori thm is complete and correct. 
Moreover, the equivalence between the final and original system is proved. 

2 Terminology and Notation 

We mainly  follow the terminology of [4] and [5]. Let :P~ be a set of function 
symbolsof arity n, 5 c = U{ipn I n > 0}, and 12 a denumerable set of variables. Our 
expression language is the set T(J:, ~) of first order terms formed from 9 c and 1J. 
When ~ and !2 are fixed, we denote T(J z, 1]) by T.  For any te rm M,  we define 
its set Of occurrences O(M) as a set of sequences of integers: A E O(M), and 
f E :f~ and u E O(Mi) =~ iu E O(F(M1, . . . ,  Mn)) for 1 < i < n. Intuitively, 
an occu'rrence of M names a subterm of M by its access path.  The  occurrences 
are partially ordered by the prefix ordering <: u < v iff Bw such tha t  uw = v. 
In this case, we define v/u as w. Finally, u < v iff u < v and u # v. 

I f u  E O(M) ,  we define the subterm of M at u as the te rm M/u  defined by 
M / A  = M, and F ( M I , . . . , M , ) / i u  = Mi /u  for 1 < i < n. We write root(M) 
to denote the root symbol of M.  We also use O ( M )  to denote the nonvariable 
occurrences in M: O ( M )  = {u E O(M) I M/u  ~ !2}. If  u q O(U) ,  we define for 
a te rm N the replacement in M at u by N as the t e rm M[u +-- N] defined by: 

MiA ~- N] = N, 
F(M1, . . . ,  M i , . . . ,  M~)[iu +-- N] = F ( M t , . . . ,  M~[u +-- N] , . . . ,  M~). 
A substitution c~ is a map  from T to T which satisfies c~(F(M1, . . . ,  M~)) = 

f ( c r ( M ~ ) , . . . ,  ~(Mn)).  So, z is determined by its restriction to V. We use term 
rewriting system for any set ~ of pairs of terms L ~ R such tha t  W(R) C V(L) 
where V(M) denotes the set of variables appearing in the t e rm M. We write Red~ 
to denote the set of left-hand sides (lhs for short) L of Z.  For any substi tution 
c~ and N E Red~, c~(N) is called a redex of L'. An occurrence u of a te rm M is 
called a redex occurrence if M/u  is a redex of ~ .  A te rm which does not contain 
any redex is in E.normal form. We will drop ~ if it is fixed. 

The  te rm M reduces to N, written M --+ N,  at occurrence u using rule L -+ R 
iff there exists a substitution cr such that  M/u  = cr(L) and N = M[u +-- (r(R)]. 
We use -~ to denote the reflexive and transitive closure of --~. 

A TRS Z is orthogonal iff it is left-linear (for every L in Red, every variable 
of L occurs only once), and non ambiguous (if Li, Lj E Red, for every u E O(L~) 
there are no substitutions c~, , ' ,  such tha t  c~(L~/u) = ~r'(Lj), except in the 
trivial case i = j and u = A). The second condition is also called non-overlapping 
condition. I t  is well known that  for orthogonal TRSs, the relation --+ is confluent. 
In this article, we restrict ourselves to the class of orthogonal TRSs.  

To represent a lack of knowledge in a term, we use Q-terms, i.e. terms where 
the new nullary function symbol t2 can occur. Let T9 be the set of these s 
terms. Let us consider the prefix ordering ~ on T~ defined by t9 ! M for all 
M e Ta ,  and F(M~, . . . ,  M,~) -4 F ( N t , . . . ,  N,~) iff Mi -< Ni for each i, 1 < i < n. 

All the previous operations are obviously extended to f2-terms. Furthermore,  
two D-terms M and N are compatible, written M ~" N iff M -z, p and N ~ P for 

some P.  If  F E U~, we write F ( ~ )  to denote F(Y2, . . . ,  ~2). If M E T~ then we 
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write On(M) for the D-occurrences of M: On(M) = {u C O(M) I M/u  = C2}. 
The set O(M) \ On (M) is denoted by On  (M). An S?-normal form is an D- te rm 
N without redex and containing at least one occurrence of D, 

We write Mn for M where all variables x of M are replaced by /2 .  I f  L is a 
lhs then L a  is a redex scheme. We denote the set of redex schemes by Reda. A 
preredex M is an ~2-term such that  M _ L where L E Reds?. I t  is proper if it is 
neither /2 nor a redex scheme. A partial redex is a proper preredex or ~2. 

A constructor symbol is a symbol of ,T that  does not appear  at the root of any 
redex scheme. We denote the subset of constructor symbols by C and the subset 
of nonconstructor (or defined) symbols by D. A TRS is a constructor system iff 
for every L in Reda, all u E On(L), u 7s A are such that  root(L/u) G C. 

The constructor class is denoted by C. We write Red~ to denote the set of 
all subterms of redex schemes having a nonconstructor symbol  at their root: 

Red'~ = {MISL E Red~, 9u E -On(L), L/u = M and root(M) E 7)}. 
It  is clear from the definition of Red'~ that  Redn C Red'~. An element of Red'~ 
is a subscheme. It  is strict if it is not a scheme. 

L e m m a  1. Let Z be an orthogonal system. E is constructor iff Redn = Red'~. 

3 F o r w a r d - B r a n c h i n g  S y s t e m s  

Before presenting the forward-branching class. We need first to recall the defini- 
tion of strongly sequential systems of Huet and L~vy [4]. A predicate P on 7-n 
is monotonic if P(M) implies P(M') whenever M -< M' .  

Let P be a monotonic predicate on T~- An g2-occurrence u of an s 
M is said to be an index of P in M iff VN s.t. M -< N, P(N) = true implies 
N/u 7s f2. Then P is sequential at M iff whenever P(M) = false, and 3N ~- M 
s.t. P(N) = true, it follows that  there exists an index of P in M. 

Let M and N be in Tn. We write M --+? N iff N = M[u +-- T] for some redex 
occurrence u and some t?-term T. It  corresponds to reduction with arbi trary 
right-hand sides and is called arbitrary reduction. The predicate n f? is defined 
as: nf?(M) = true iff 3N in normal form such that  M Z_~: N. 

D e f i n i t i o n 2 .  An orthogonal system ~ is strongly sequential iff the predicate 
n f? is sequential at any M in f2-normal form. 

The strongly sequential class is denoted by SS. Deciding that  an occurrence 
is an index (of nf?) is easy, but deciding whether a TRS is strongly sequential 
is not trivial [4] and is conjectured to be NP-complete  [5]. 

3.1 I n d e x  T r e e s  

Huet and L~vy also defined strongly sequential systems in terms of the existence 
of a matching DAG [4]. Durand [1] proved that  the index tree of Strandh [7] is 
equivalent to the matching DAG. We now recall the definition of an index tree. 

An ~2-term M is a potential redex iff 3N, T s.t. M -< N, N 2+7 T and T is 
a redex, u E O(M) is a potential redex occurrence iff M~u is a potential  redex. 
An /2-term is in strong head normal form iff it is not a potential  redex. 
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An g2-term is a potential  redex if there is a way to refine it, and then arbitrar-  
ily reduce it so it becomes a redex. The root symbol of an ~ - t e r m  M in strong 
head normal  form cannot change even if M is refined and arbitrari ly reduced. 

Let M be an D-term. An occurrence u of M is a strongly stable occurrence 
of M iff M / u  is in strong head normal form. Let M be an f2-term. M is a firm 
f2-term iff 3u E O n ( M )  such that  Vv E O n ( M ) ,  either v is strongly stable or 
v < u. We call such an occurrence u a firm extension occurrence of M.  

D e f i n i t i o n 3 .  An index point is a pair (M, u) where M is a firm ~2-term and a 
part ial  redex, u is a firm extension occurrence of M and u is an index in M.  

D e f i n i t i o n 4 .  Let s = (M, w) and t = (N, v) be two index points s.t. M r (2. t 
is a failure point of s iff 3u r A s.t. w = uv and N = M/u .  t is the immediate 
failure point of s iff every other failure point of s is a failure point of t. 

D e f i n i t i o n h .  An index tree Z for a set of lhs Red, is a finite state automa- 
ton which also has a failure function. The set of final states is Reda, nonfinal 
states are index points, the initial state is ($2, A). Given s = (M, u) and F,  the 
transfer function, written 5(s, F) ,  is constructed s.t. 5((M, u), F)  = (M' ,  u') (or 

5((M, u), F)  = M '  if M' e Reds~) if M '  = M[u +-- F(~ ) ] .  It is undefined for a 
final state. The failure function r is defined by r = t i f f  t is the immediate  
failure point of s. It  is undefined for both the initial and the final states. 

An index tree is shown in Fig. 1. Only failure transitions leading to a state 
different from the initial state are shown. The transfer function 5 is deterministic, 
thus not all index points are accessibles from the initial state so = (f2, A) via 

transfer transitions only. 

T h e o r e m  6. [1] Let ~ be an orthogonal system. Z is strongly sequential iff there 

exists an index tree for Red ~. 

L e m m a  7. Let S be a strongly sequential system, and let 77 be an index tree for 
Red. S C C if and only i fVs E 77 such that r is defined, we have r = (~2, A). 

Proof. (r Let s E 77 s.t. r is defined, and let t E 77 s.t. 3 F  E ~" s.t. 5(t, F) = s. 
As r = ($2, A), it follows from Def. 4 that  F e C. So, ~ E C. 

(:=~) Let s = (M,w)  e E and (N,v)  = r From Def. 4, 3u r A s.t. 
w = uv and N = M/u .  But M is a partial  redex and Z E C, then Vu / r A E 
O(M),  root(M/u') �9 C. So, u = w and M / u  = f2, then (N, v) = so. [] 

3.2 F o r w a r d - B r a n c h i n g  S y s t e m s  

In an index tree, some states may not be reachable from the initial state (C2, A) 
via transfer transitions only, because the index tree is deterministic. This led 
Strandh [7] to define the class of forward-branching systems. 

D e f i n i t i o n 8 .  An index tree is said to be forward-branching iff every s tate  of 
the index tree can be reached via transfer transitions only from the initial state. 

The index tree of Fig. 1 is forward-branching. We have the following property 

in a forward-branching index tree. 
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L e m m a  9. [7] In a forward-branching index tree, two index points (M, u) and 
(M, v) where u ~ v cannot exist. 

D e f i n l t i o n l 0 .  A system Z is forward-branching iff there exists a forward- 
branching index tree for Red2. 

The forward-branching class is denoted by FB. We deduce from the lemma 
9 that  the extension occurrence part of an index point is fully determined by its 
~2-term part. So, by abuse of notation, we will consider only the f2-term part of 
the index point. We can define an obvious partial order on index points. 

D e f i n i t i o n l l .  Let S and T be two index points. S r T if and only if there 
exists a non-empty sequence of index points (S = P1, . . . ,  P~ = T) such that  
Vi, 1 ~ i < n, 3F  E ~ such that  5(Pi, F) = Pi+l. 

L e m m a  12. Let S and T be two index points. If  S r T then S -~ T. 

L e m m a  13. Let (M, u) be an index point of a forward-branching index tree E. 
VN E Red~,  if M ~ N then M -~ N. 

Proof. Suppose not: 3N E Red~ such that M ~ N but M ;~ N. Obviously, 
N ~ M since otherwise the system would have an overlap. 

Let L E Redo and w E O~ (L) such that  L/w  = N (possibly w = A), and let 
(Q, w) be the index point corresponding to w. Let P be the largest f2-term such 
that  P E M (M belongs to Z by hypothesis), and let (P, v) be its corresponding 
index point. Finally, let R be the largest index point such that  R v- Q[w +-- N]. 

From lemma 12, it follows that  P -~ M and R / w  -~ N. But M t N, so 
either root(N/v) = root(M/v) = K, or N/v  = / 2  or M/v  = / 2 .  In the first case, 
M _ N which contradicts M ~ N and N 2~ M. In the second case, (R, wv) can 
not be an index point because wv is not an index of R. In the last case, (P, v) 
can not be an index point because v could not be the next element in E. [] 

Durand found an characterization of FB, which shows a close connection 
between redex schemes and subschemes. 

P r o p e r t y  l4 .  [1] VN E Redo, VM -~ N, 3u E On(M) ,  VN' E Red'~ with 
M -~ N', N ' / u  ~ ~2. 

P r o p o s i t i o n  l5 .  [1] An orthogonal system Z is forward-branching if and only 
if it verifies property 14. 

Lemma 16. [1] FB C SS. 

Lemma17 .  FB N C = SS N C.  

Proof. (SS n C C FB n C): Let ~ E SS n C, and let Z be an index tree for 
Red. From lemma 7, all the failure transitions are to so. It follows that  all index 
points are reachable from so via transfer transitions only. Then ~ E FB. 

(FB N C C SS N C): Trivial since FB C SS by lemma 16. [] 
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4 T r a n s f o r m i n g  F o r w a r d - B r a n c h i n g  S y s t e m s  

We now present an algorithm for transforming a FB system into a SS constructor 
system. We illustrate the algorithm with an example. We prove its correctness 
and completeness and the equivalence between the input and output  systems. 

The bulk of the transformation work is done by three procedures. Forward- 
Branching builds an index tree. FindDT uses it to find a differentiating ~-term 
T (see below). Transform replaces all the instances of T in Red, which suppresses 
some nonconstructor symbols within the lhs; finally, it adds a new rule to collapse 
the terms which were recognized in the original system but are not recognized 
anymore. This process is repeated until the system is constructor. 

4.1 An Example  

Let Z = {H(G(A, A, x), A) -4 A, H(G(A, x, A), B) --4 B, G(B, B, B) --+ C}. 
Given Z,  the Forward-Branching procedure builds an index tree (see Fig. 1). 

H ~ ~ , g ~ , ~ ) ,  1) 

A B ~  / "17 B 

(H(C,(n,a,n),A), 1.1 ) (H(G(a,n,a),B), 1.1) (G(B,B, a), 3) 

(H(G(A,a,•I,A), 1.2)(H(G(A,n,a),B), 1.3) ) 

transfer transition failure transition 

~ D  nonfinal state ( - ~  final state 

Fig. 1. A forward-branching index tree for _Red~ 

Analyzing this, FindDT finds that  T = G(A, [2, ~2) is a differentiating f2- 
term. Transform creates a symbol G1 of same arity as G, and R = GI(A, tg, [2). 
It finds instances of T in H(G(A, A, x), A) and H(G(A, x, A), B) of Red, and 
then replaces G by G1. We now need to rewrite all subterms containing T to a 
term that  the new system can match. So Transform adds a rule G(A, xl, x2) --4 
Gl(A, xl,x2). We finally obtain the FB system Z1 = {H(GI(A,A,x),A) -4 
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A , H ( G i ( A , z , A ) , B )  -+ B , G ( B , B , B )  -+ C,G(A, zi, x2) ~ Gi(A, zi ,z2)},  
which is "more constructor" because a defined symbol in some lhs is replaced by 
a constructor one. We then restart the process with Z i by computing the index 
tree of Fig. 2. All the failure transitions of this index tree lead to So, so Transform 
returns Z i, since it is a forward-branching constructor system (lemma 7). 

G B 

( H ( G I ( ~ ~ ~ ~ ) , B ) ,  I. I) (G(B,B,~),~ 

(H(GI(A,a,n),A), 1.2)(H(GI(A,a,n),B), 1.3) 

Fig. 2. An index tree after one step of transformation 

4.2 A l g o r i t h m  

We now provide the algorithmic description. We skip Forward-Branching which 
is described in [1]. We just point out that  this procedure fails if the input system 
is not FB. It runs in quadratic time w.r.t, the number of symbols of the lhs. 

F i n d i n g  a D i f f e r e n t i a t i n g  ~2-Term. In the following we search for a differ- 
entiating J~-term T. This F2-term will become a scheme in the new system. 
Therefore, it should not create an overlap: T must not be compatible with other 
redex schemes. Moreover, T must be sufficiently "small" to ensure that T collapse 
strict subschemes that otherwise would overlap with T. The FindDT algorithm 
shown in Fig. 3 returns such a differentiating F2-term T. It is clear that  the strict 
subscheme N chosen on line 1 of the FindDT algorithm always exists because 
the system is orthogonal. We now demonstrate that T has some nice properties. 
In the following lemmas, T is a differentiating ~- term.  

L e m m a  18. 3N E Red~ \ Red~ such that T -~ N. 

L e m m a  19. In T, all inner symbols are constructor. 

L e m m a 2 0 .  VL E Red~, T and L are not compatible. 
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funct ion FindDT(Z); /*/7 is a forward-branching index tree */ 
begin 
1 choose N E Red'a \ Red~ such that 

Vu E On(N) with u • A, root(N/u) E g; 
2 K 6-- root(N); 
3 t+ - so ;  
4 while 5(t,K) is defined do 

begin 
5 t e-  a(t, K); 
6 le t  t = (P, w); 
7 K 6-- root(N/w); 

end; 

8 T +-- P[w 6--/((/2)]; 
9 re tu rn  T; 
end; 

Fig. 3. The FiudDT algorithm 

Proof. Let T, t = (P, w) and K defined as in line 8 of FindDT. Suppose not, 
3L E Reda~ such that  T 1" L. Since P -< T, P j" L. But (P, w) is an index point, 
so by lemma 13, P -~ L. Then 5((P, w), root(L/w)) is defined. 

Since T I" L, either root(L/w) = K,  a contradiction with line 4 of FindDT, 
or root(L/w) = f2 which is impossible in a forward-branching index tree. [] 

L e m m a  21. VN E Red'ca \ Red~ such that T "[ N, T ~ N.  

Proof. Let T, t = (P, w) and K defined as in line 8 of FindDT. As T 1" N and 
P -~ T, we have P 1" N. By lemma 13, it follows P -~ N, and as the system is FB, 
by proposition 15, we obtain N/w  ~ f2. Moreover, from the construction of T,  
root(T/w) = K. Because T 1" N and N/w  ~k f2, it implies that  root(N/w) = K. 
As P ~ N, and from the construction of T, it tbllows that  P _ N. [] 

Intuitively, lemma 20 means that  we can put  T as a redex scheme without 
creating an overlap at the root (possibly T might overlap with some strict sub- 
schemes), whereas lemma 21 says that  T is a lower bound of all strict subschemes 
compatible with T. In other words, T only overlaps with strict snbschemes 
greater than T. This lemma ensures that  we collapse all strict subschemes which 
would create overlaps if we add T to the set of redex schemes. 

On calling FindDT on the index tree of Fig. 1, N can be chosen among the 
two f2-subterms of redex schemes G(A, A, f2) and G(A, f2, A). Whichever one 
is chosen, we get on line 8 the index point t = (P, w) ~- (G(f2, f2, f2), 1). So, 
K = root(N~1) = A. Then we return T = G(A, f-2, f2) as the differentiating 
fa-term. Observe that  both G(A, A, f2) and G(A, f2, A) are compatible with T. 

T r a n s f o r m i n g  F o r w a r d - B r a n c h i n g  S y s t e m s .  The Transform procedure of 
Fig. 4 builds a FB constructor system. If M ~ Ta then M A (read alpha) is a 
term obtained by replacing from left to right each fl  by a new variable xi. 
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p r o c e d u r e  Transform(Z); 
begin 
1 Z <-- Forward-Branching(Z); 
2 let �9 = {r is an index point of Z}; 
8 if~5 = {so} 

then  
4 r e tu rn  S; 

else 
begin 

5 T <--- FindDT(I); 
6 let  T = F ( T 1 , . . . ,  T,~); 
7 let Fk be a new symbol of arity n; 
8 for each L E fled do 
9 for each u E O(L) such that T ~_ L/u do 

begin 
10 let n/u = F ( n l , . . . , L n ) ;  
11 L <--- L[u <-- Fk(L1,.. . ,  nn)]; 

end; 
12 Ze-ZU{TA-+(F~(T1,...,Tn)).}; 
13 Transform (Z); 

end; 
end; 

Fig. 4. The Transform algorithm 

Consider the k th recursive invocation of Transform. It  first builds a forward- 
branching index tree Z by calling Forward-Branching. If the input system is 
not forward-branching, Forward-Branching fails and exits. Transform then con- 
struc~s the set q5 of all immediate  failure points ofZ.  If4~ contains only so then N' 
is constructor ( lemmaT),  and Transform returns Z.  I f ~  ~ {so}, Transform finds 
a differentiating D-term T -- F ( T i , . . . ,  T,~) by calling FindDT, and creates a new 
symbol irk of same arity as F.  It  then replaces the root symbol F by Fk in all in- 
stances of T of all lhs. Moreover, it adds a new rule {T A -+ (Fk(T1, . . . ,  T,~))A } 
to Z.  Finally, it proceeds recursively on the new system. 

We now prove the completeness and correctness of our algorithm. Consider 
an execution of Transform on a nonconstructor FB system Z. Let 7 -0 = 7-, 
K ~ = Z,  Red o = Rcdz and Red '~ = Red~, and let T k, Z k, Red ~ and Red 'k be 
T, Z,  Red and Red' after the line 12 of Transform while its k th invocation. 

Let M E Tn. We write IM] to denote the number  of inner defined symbols 
(i.e. without the root symbol) of M; IRedl stands for ~n ,eRed  ILil- I t  is easy to 
show tha t  IRed I > 0. We can now easily prove the completeness of our algorithm. 

P r o p o s i t l o n 2 2 .  The algorithm Transform is complete. 
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Proof. Consider the k th invocation of Transform on a system Z k-z. If Z k-1 is 
not forward-branching, Forward-Branching at line 1 fails and exits. Otherwise, 
if ~ k - t  is constructor (line 3), the algorithm ends, returning Z k-~ (line 4). 

Let T = F(T1, . . . ,T~) .  Let L C Red k-1 s.t. 3u E O(L) s.t. T ~ L /u  where 
L/u  = F(L1 , . . . ,  L,~) (n exists by lemma 18). Clearly, we have IT] = 0 (conse- 
quence of lemma 19), and IL[u +--Fk(L1,... ,  L,~)]I < ILl.  Finally, we have: 

IRedkt _< ITI + IL[~ +- Fk(L1,..., L,~)]I + E IN~I 
N~ERedk-I\{L} 

< o +  IL l+  IN I = IN I = IRed -ll. 
NiERedk-a\{L} NiERed k-a 

As IRedl is a positive integer, the algorithm Transform necessarily stops. [] 

Now, we prove that  our algorithm transforms any FB system into a forward- 
branching constructor system. The map hk : T k -+ T k-1 is defined as hk(N) = 
M where M is obtained by replacing every occurrence of Fk in N by F.  

L e m m a 2 3 .  Let M be an f2-term o f t  k. We have Oh(M) = Oa(hk(M)) and 
-Oh (M) = -0~ (hk (M)). 

L e m m a  24. hk is a strictly increasing map. 

Proof. Let M and M'  be two $2-terms of 7 -k such that  M .4 M' .  So, Vu E 
-Oh(M), root(M/u) = root(M'/u) = G. If G r Fk (line 7) then hk leaves G 
unchanged. Otherwise, hk replaces Fk by F. Finally, hk(M) '4 hk(M'). [] 

From now on, in all following statements and proofs, T, P and w will always 
refer to T, P and w as defined on line 8 of the (k - 1) TM invocation of FindDT. 

L e m m a 2 5 .  hk is a bijection from Red~ \ {T} to Red~ -1. 

Proof. Let Nk-1 E Red~ -1. We have two cases: 
(1) Nk-1 does not contain T. By construction of Zk, Nk-1 e Red~ \ {T}. It 
follows that  Ark = Nk-1 does not contain symbol Fk s.t. F = root(M). So, Nk is 
the only redex scheme or subscheme of Red~ \ {T} s.t. hk(Nk) = Nk-1. 
(2) Nk-1 contains T: 3u E O~(Nk-1) s.t. T -4 Nk-1/u.  Transform only replaces 
F = root(M) with Fk. But hk does the opposite operation. So, it exists a redex 

scheme or subscheme Nk e Red~ \ {T} s.t. hk(Nk) = N k - 1 .  [] 

L e m m a 2 6 .  hk is a bijection from Red~ \ {T} to Redka -1. 

Proof. Similar to the proof of lemma 25. [] 

The two following lemmas will be used to show that  Transform preserves the 

forward-branching property. 

L e m m a  27. If ~ k-1 is a nonconstructor FB system then VM-4 T, 3u E O~(M) 
such that VN' E Red~ with M -4 N', N ' / u  ~ ~2. 



163 

Proof. Let M -4 T, u E On(M) and Q such that  (Q, u) is the greatest index 
point such that  Q -~ M. We have hk(M) = M and hk(Q) = Q because hk(T) = 
T (by construction of T) and Q ~ M -4 T. As Z k-1 is forward-branching, 
property 14 holds for Z k-1. In particular, Q is a partial redex of ~k-1 .  So we 
have VN' e Red~ -1 with Q -~ N', N ' /u  7s 12. From the lemmas 23, 24 and 25, 
we obtain VN' e Red~ \ {T} with Q -< N', N ' /u  7s 12. 

Moreover, as Q -~ T, we have Q K P. So, it follows T/u 7s 12. We have then 
VN' E Red~ with Q -~ N', N ' /u  7 ! 12. As Q ~ M, conclusion follows. [] 

L e m m a 2 8 .  / f  Z k-1 is a nonconstructor FB system then VN G Red~ \ {T}, 
VM -4 N, 3u E On (M) such that VN' C Red~ with M ~ N', N ' /u  7s t2. 

Proof. As S k-1 is a forward-branching system, property 14 holds for Z k-1. 
From lemma 24, hk preserves the partial order on D-terms. From lemma 23, hk 
preserves the {2-occurrences. From lemmas 26 and 25, hk is a bijection between 

, ,  ,,k-1 Red~ \ {T}. So, we obtain Red~ -1 and Red~ \ {T}, and between nea n and 

VN E Red~ \ {T}, VM -4 N, 3u E On (M) such that  VN' E Red~ \ {T} with 
M -~ N', N ' /u  7s ~2. (1) 

-4- 

Suppose that  M -< T = P[w +-- K(12)] e Red 'k. Let (Q, u) be the greatest 
index point such that Q ~ M. Necessarily, Q _ P.  By construction of T, T/u  7s 
12. From (1), conclusion follows immediately. [] 

We now give the main result. Let n be k in the last invocation of Transform. 

T h e o r e m 2 9 .  If  Z is a FB system then Z ~ is a FB constructor system. 

Proof. By induction on ~. If ~ = 1, then Z is already a constructor system. If 
> 1, consider the first invocation of Transform. As Z ~ is a nonconstructor FB 

system, and from lemmas 27 and 28, it is clear that the FB property 14 holds for 
Z 1. By induction hypothesis, Z ~ is a forward-branching constructor system. [] 

4.3 B e h a v i o r  E q u i v a l e n c e  

In this section, we show that,  for every FB system Z,  the behavior of the FB (or 
SS by lemma 17) constructor system Z ~ parallels that  of Z within the domain 
7-. Z ~ is expected to deal with terms in T ~ which contains T as a subset. 

The map h : T ~ -+ 7- is defined as h = hi o h2 o . . . o  h~. If L is a lhs of ~ and 
L' is the corresponding lhs of Z ~, then clearly h(L') = L. We now demonstrate 
the equivalence of behavior between Z and ~ .  

L e m m a  30. Let M, N E 7 TM. If  M J+ N in ~ ,  then h(M) -~ h(N) in ~.  

Proof. By induction on the length of the reduction sequence M _2~ N in Z ~. For 
a zero length sequence, M = N and h(M) = h(N) and the lemma thus holds. 

Suppose M -~ M '  in i steps, and M ~ --~ N using a rule L --+ R. I f /~  = 
Fk(T1,.. . ,T,,) where Fk as been introduced in the ~th iteration of Transform, 
then h(M')  = h(N). Otherwise, h(M') --+ h(N) in Z by the rule h(L) --~ R. [] 

L e m m a 3 1 .  Let M and N be i n T .  I f  M J+ N in Z then M J+ N in Z ~. 
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Proof. By induction on the length of the reduction sequence M -~ N in ~ .  For 
a sequence of length zero, the l emma trivially holds. 

Now, suppose that  (in Z)  M 4 M ~ in i steps, and M ~ --+ N using a rule 
L -+ R. If  L only contains constructor symbol (except at the root) then L -+ R 
is also a rule of Z ~, so M ~ --+ N in Z ~. Otherwise, let v E O(M t) be a redex 
occurrence: there exists a substitution ~r such that  Mt/v  = c~(L). For each strict 
subscheme T = F(T1, . . .  ,Tn) of L, the corresponding subterm of M~/v can be 
reduced using the rule of Z ~ F(TI , . . . ,T~)  --+ Fk(T1,...  ,T,~). 

So, this subterm of M~/v is an instance of the lhs of the rule L ~ ~ R in Z ~ 
corresponding to L --+ R in ~ .  Finally, L ~ --+ R is used to obtain N.  [] 

T h e o r e m 3 2 .  Z ~ is equivalent to Z. 

5 Conc lus ion  

We have demonstrated the possibility of simulating any FB system with a SS 
constructor one. The construction is useful in many  practical situations where 
only a small number  of lhs sides contain a few nonconstructor symbols, and 
hence the size of the resulting system increases only modestly over that  of the 
original one. In the worst case, if all the original lhs are made up almost  entirely 
of defined symbols, the size of the new system could be quadratically larger than 
that  of input system, w.r.t, the number of symbols in the lhs. The equivalence 
between FB and strongly sequential constructor systems was suspected for a 
long t ime because the reduction algorithms were essentially identical. Hence, 
as a programming language, forward-branching systems admit  a less restrictive 
syntax as constructor systems, and enhance the interest of working with FB. 
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