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Abs t rac t .  Trace theory was introduced to capture the behavior of 1- 
safe Petri nets, it is based on partial commutation relations where two 
adjacent letters are allowed to permute. More general nets need more 
general commutation relations: we consider generalized and context de- 
pendent ones. We give necessary conditions and sufficient conditions for 
such relations to be reliable (preserve recognizability) and we provide a 
semi-algorithm to compute the closure of a language. 

1 I n t r o d u c t i o n  

The notion of trace was introduced by Mazurkiewicz [12] in order to model 
concurrent processes. Trace theory has now been systematically investigated and 
has a well developed mathematical theory [7]. A trace can be seen as the set of all 
possible sequential observations of a concurrent process. More formally, a trace is 
an equivalent class for a congruence generated by the set of pairs (ab, ba) where 
(a, b) is in the so called independence relation. If two sequential observations are 
equivalent (belong to the same trace), it is possible to go from the first to the 
second one by basic steps, each step corresponding to the commutation of two 
consecutive actions. These commutation are called partial commutations. 

But partial commutations were introduced to capture the behavior of 1-safe 
Petri nets, therefore they fail to model more general concurrent processes: they 
cannot represent the well known Producer-Consumer paradigm. The need for 
more general models linked with general Petri nets (Place-Transitions nets) led 
several authors to introduce more general commutation relations [4, 9]. 

Here we will consider two kinds of commutation relations: generalized rela- 
tions and context dependent relations. In Mazurkiewicz traces, the elements of 
a commutat ion relation are of the form (ab, ha) where a and b are letters. La- 
caze in [10] presented the notion of generalized commutation relation where the 
elements of the relation are of the form (u, v), u and v being two commutatively 
equivalent words. These relations extend the commutation from permuting two 
adjacent letters to a permutation of the letters of a word. In [3], the authors 
introduced the notion of context traces, these traces are build from a context 

* This work was achieved while the first author was at L.R.I., Universit~ de Paris-Sud. 
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dependent commuta t ion  relation. In such relations, the elements are of the from 
(abe, acb) with a, b and c being letters, it represents the fact that  two letters b 
and c are only allowed to commute  when preceded by a (left) context a. Context  
traces have proved to be suitable to model the Producer-Consumer paradigm. 
Moreover, Bauget and Gastin [1] have shown that  any partial  order representable 
and right-cancellative congruence can be generated by a w-context dependent 
commuta t ion  relation (by w-context dependent, we mean that  the context may  
be more than a letter, for example a word w). 

The notion of recognizable language has proved to be an accurate one when 
confronted with real (bounded memory)  machines. In trace theory, the recog- 
nizability of a set of traces is equivalent to the recognizability of the underlying 
set of words. This leads to the question: given a recognizable language of words 
and a commuta t ion  relation, is the closure of the language by the commuta t ion  
relation still recognizable ? For the partial commutat ion  case, the problem (in 
relation with the star problem) has been intensively studied [6, 15, 13, 8]. 

Here we ask a slightly different question: given a commutat ion  relation, is it 
reliable ? Tha t  is: can we be sure that,  for any recognizable language, the closure 
by the relation will still be recognizable ? 

In [10], Lacaze gives a sufficient condition on generalized commuta t ion  rela- 
tions to be reliable, in section 3 we give a necessary one. But this kind of relations 
very quickly appear  to be too "general" for more advanced work. Therefore the 
remaining of the paper is dedicated to the study of context dependent commu-  
tation relations. In section 4, we prove a necessary condition for these relations 
to be reliable, it is based on the banning of "carrying circuit". Intuitively a car- 
rying circuit will allow a "crossing" letter to commute  repetitively with a word, 
thus generating a classical problem of "counting" letters which is not compati-  
ble with recognizability. Section 5 gives a semi-algorithm to compute the closure 
of a recognizable language by a context dependent commuta t ion  relation. This 
procedure takes as input the relation and an au tomaton  recognizing the lan- 
guage and, at each step, adds paths to the automaton.  If the procedure stops, 
the language of the resulting au tomaton  is the closure of the original language. 
Related work can be found in [14], where M4tivier, Richome and Wacrenier use 
a procedure S tha t  computes the closure of a recognizable language by a partial  
commuta t ion  relation. Section 6 uses the semi-algorithm introduced in section 5 

to prove a sufficient condition. 
In a more general framework, this work can be related to [5] where Clerbout  

and Roos give a characterization of the semi-commutat ion relations such that ,  
for any recognizable language L, the set of words that  can be derived from words 

of L is algebraic. 

2 Definitions and Preliminaries 

Let A be a finite alphabet,  then A* = U~= 0 A i is the classical fl'ee monoid on A. 
If w is a word in A* and a is a letter in A, then Iwla stands for the number  of 
occurrences of the letter a in the word w. The empty word is denoted by e. 
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D e f i n i t i o n  1. A commutation relation over A is a finite set of pairs (u, v) with 
u and v i a  A* and such that,  for any a in A, lula = tvt~. Part icular  eases of  
commuta t ion  relations are: 
- generalized commutations where R is symmetric,  
- context dependent commutations where R is a. generalized commuta t ion  rela- 

tion and elements of R are of the form (abe, aeb) with a, b and e in A. 
- semi-commutations where elements of R are of the form (ab, ha) with a and b 

in A. 

- partial commutations where R is a semi-commutat ion relation and R is a gen- 
eralized commuta t ion  relation. 

A equivalence relation ,~ on A* is a congruence if it satisfies Vu, v, w, w' r A*, 
u ,.~ v ~ wuw' ~ wvw'. If g is a generalized commutat ion relation on A*, the 
congrue~ce generated by R is the symmetric,  reflexive and ~;ransitive closure of 
{(wuw',  wvw'[(u, v) E R}. It is the smallest congruence containing R. 

Let L be a language of A*, the closure of L by a generalized commuta t ion  
relation R, denoted [L]R, is the set {w E A* 13w' E L, w ~ a  w'}. 

A finite automaton is a 5-tuple (A, Q, ql, QF, ~) where A is an alphabet,  Q is 
a finite set of sates, q1 E Q is the initial state, QF c_ Q is the set of final states, 
(~ _. Q x A • Q is the set of transitions transitions. 

A path of an au tomaton  ,4 = (A, Q, ql, QF, ~) is a finite sequence of transi- 
tions (q0, al ,  ql), (ql, al ,  q2) . . . .  , (qi-1, ai, q i ) , . . . ,  (q,~-l, a~, q,~), n is the length 
of the path, a l . . . a ~  is the label of the path. The notation p - ~  q means that  
there is a path from p to q with label u. 

A word u is accepted by an automaton A if there is a path from q1 to a s ta te  
of QF labelled by u. The language accepted by the autornaton~ denoted L(A)~ is 
the set of all the words accepted by ,4. We also say that  A recognizes L(A) .  A 
language L is recognizable if there exists a finite au tomaton  which recognizes L. 
We denote by Rec(A*) the set of all recognizable languages of A*. Rec(A*) is 
closed by intersection. 

D e f i n i t i o n 2 .  Let R be a generalized commutat ion relation over the alphabet  
A, R is reliable i fVL E A*, L E Rec(A*) ~ [L]R E Ree(A*). 

Let us immediately point out that  there are no (non trivial) reliable partial  
or semi commuta t ion  relations. Indeed, as soon as (ab, ba), a 7~ b, belongs to 
the relation, the closure of the recognizable language (ab)* is not recognizable. 
Indeed, for partial commutat ions  [(ab)*] = {w E {a,b}* ]lwl~ = IWlb} and for 
semi-commutat ions  [(ab)*] -~ {w E {a, b}* [ Vu, 3v, uv = w, ]u]b > ]u[a). 

3 G e n e r a l i z e d  C o m m u t a t i o n s  

In 1992, Lacaze [10] proved a sufficient condition for a generalized commuta t ion  
relation to be reliable. The condition forces any two elements of the relation to 
have disjoint alphabets and the two words of any element not to have a total 
overlapping. This sufficient condition allows, thanks to a close watch over of the 
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overlappings, to guaranty recognizability. We will see at the end of section 6 that  
some commuta t ion  relations may be reliable without satisfying to this condition. 

In order to give a necessary condition for a commutat ion  relation to be reli- 
able, we first need two iemmas. 

L e m m a  3 ( s  [11]) .  For any non empty  words u and v m A* the fol- 
lowing conditions are equivalent: 

i) u v  = v u  

ii) 3o~ E A +, 3i, j E IN +, u = a i and v = off 

iii) 31, m E IN+, u ~ = v ~" 

L e m m a 4 .  For a n y u  a n d v  of  A*: u v = v u  r {ukv  k, k E l N } e  Rec(A*) .  

Proof. If  uv = vu, by lemma 3, 3a  E A + and 3i, j E 1N + such that  u = oJ and 
v = (~.i Thus {ukv  k, k E IN} = (~i+J)* is recognizable. 

Now let N be the number of so.tes of an au tomaton  recognizing {ukv k, le E 
IN}, let qp be the state after reading up. After reading 'a iv, there exist l and m 
(l 5 m) such that  ql = qm- I f j  = m - l, we get: ul (uJ)*uN-"~v  N ~ {u ava, k E 
IN} and in particular: u N - J v  N E {ukv  k, k E IN}. This implies Sr E [ N -  
j , N ]  : n N - J v  N = urvr and v N - "  ~- u ~-N+j ,  thus by l emma3 ,  uv = vu. [] 

P r o p o s i t i o n S .  I f  R is a generahzed commutat ion  relation over A, then: 

R r e l i a b l e  ~ g(uv,  vu) e R,  3p, q C I N + ,  V a C  A, p lu]a-~q lV ia .  

Proof. Let u and v be in A* if uv ~ vu, by lemma 3, it is true. Otherwise u and 
v are nonempty. Let (uv, vu) be in R and consider Z = [(uv)*],  M u 'v* .  If R 
is reliable then Z is recognizable. We show that  Z recognizable implies 3p, q E 
IN + , Va ~ A,  pfuta = qtvlo,. We have {ukv k, k E IN} C Z C {uiv j ,  i , j  E ]N}. 
If {u~:v k, k E IN} = Z,  by l em m as 4  and 3, it is true. Otherwise, S i r  0 , j  
such that  ui+Jv j E Z (the case uJv i+j E Z is symmetrical) .  Thus 3k such that  
ui+Jv j "~n (uv) k. Let p = l i + j - k l  and q = I k - j l ,  we have, ga E A,  plul~ = qlvl~. 
Because u and v are non empty and i r 0, p and q are non zero. [] 

This  condition applies to cases that are too restricted, moreover finding more 
general conditions proves to be ~ery tricky. Tha t  is why we turn now to more 
structured commuta t ion  relations: the context dependent commutat ions.  

4 C o n t e x t  D e p e n d e n t  C o m m u t a t i o n s  

We first define the notion of carrying circuit,: intuitiveiy~ a carrying circuit wii[ 

allow a letter to commute  repetitively with a word. 

D e f i n i t i o n 6 .  Let R C  be a context dependent commutat ion  relation over the 
letters of an alphabet  A. A subset C C  of R C  is a carrying circuit  of R C  if 

~n > 1, B a l , a 2 , - . . , a n  E A, ~x E A ,  

C C  = { (al a2x, al xau), . . . , (aiai+, x, a/T,[/,i+l),--., ((t~n a] 'g '  ffana2al ) }" 

The letter x is named the crossing letter of C C .  
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T h e o r e m  7. Let RC be a context dependent commutation relation over the let- 
ters of an alphabet A*. 

RC  is reliable ~ RC does not have any carrying circuit. 

Proof. Suppose CC = {(ala2x, alxa2), . . . ,  (anatx, a,~xal)} is a minimal (with 
respect to set inclusion) carrying circuit of RC. Consider L = (a l . . .a~x)*  E 
Ree(A*) and Z = {(al-"  "a,~)PxP,p E iV}. Because CC is minimal, we have 
Vi, j ( i T ~ j ) :  a i # x a n d  a i # a j ,  t h u s a l . . . a ~ x C x a l . . . a ~ , a n d b y l e m m a 4 ,  
Z ~ Rec(A*). We show that  Z = [L]Rc N (al . . .a~)*x*,  thus implying [L]nc 
Rec(A*). Z is trivially included in (al - " an )*  x* and, as CC is a carrying circuit, 
we have (a i . . .  an)Px p ~ (a l . . .  aN x) p, thus Z C [L]nc. For the other direction, 
let u be in [L ]RcN(a l . . .  a~)*~*, then there exist k, l, m such that  ( a l . . -  anx) k ,,~ 
u = (az- - -an) lx  m. By hypothesis, for any i ~ j ,  we have ai ~ aj and ai ~ x, 
thus ] ( a l "  "anx) k [a~= k, ] ( a t ' - ' a n ) I x  rn [a,= l, ] (a l ' - ' anx )  k ]~= k and 
[(al...an)lX rn [~=m. Whus l_=k=mandZ=[L]Rcn(a l . . .an)*X*.  [] 

There exist some reliable context dependent commutation relations. For ex- 
ample consider a relation { (abe, acb), (acb, abe)} with a, b, e different, this relation 
is reliable. In order to prove it, next section gives a procedure to compute the 
closure of a recognizable language by a commutation relation. 

5 S e m i - A l g o r i t h m  C o m p u t i n g  t h e  C l o s u r e  o f  a L a n g u a g e  

The aim of this section is, given a context dependent commutation relation RC 
and a finite automaton ,4, to build an automaton recognizing the closure of L(A) 
by the congruence generated by RC. We will apply three transformations on the 
considered automaton, the two first are meant to prepare the automaton in such 
a way that,  when applying the third one, we are sure that we are adding the 
right kind of words to the language. 

In the following, we consider only clean context dependent commutat ion re- 
lations, by clean we mean irreflexive ((u, u) never belongs to the relation) and 
without any element of the form (aba, aab) or (aab, aba). This restriction is not 
a. real one because reflexivity adds nothing to the generated congruence and, in- 
sofar as we are interested in reliable relations and that (aba, aab) and (aab, aba) 
are carrying circuits. 

5.1 G e t t i n g  R e a d y  

The method used to add words to the language recognized by the automaton is 
the following: we look for a path labelled by abe with (abe, aeb) in the relation and 
we add a path labelled by acb. The main problem is to remain "inside" the closure 
of the set. For example, suppose (abc, acb) is in the relation and consider the case 
depicted in figure 1. We want to add the dashed arcs to the automaton in order 

c t b to compute the closure, but then we will also add the path ~2_~ q2--+ q3 ~ q4 
to the automaton and this is not correct. In order to deal with these situations 
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we will prepare the automaton such that any two arrows arriving on a state are 
labelled with the same letter, we will say that this automaton satisfies to the 
ACD property (acronym of Anti-Co-Determinism). 

q l  S q 3  

f 
/ 

__ / / / ~  q2 b q3 C 

ql 

Fig.  1. Conflicting situation. 

q4 

But first, we change the initial and the final states of the automaton, by 
adding two new states and linking the automaton to these two states by a new 
letter that  will not be concerned by the commutations. This is the purpose of 

the t2 transformation. 

D e f i n i t i o n 8 .  Let A = (A,Q, qx, QF,5) be a finite automaton,  ~2(.A) = 
(A~, Q~, qIo, {qFo}, ~ )  is defined by 

A~ = A U { o ]  and A N { o } = ( ~ ,  

O~ = Q u {qlo, qFo}, 
5~ = 5  U {(qIo, o, qI)} U {(q, o, qFo) ] q e QF}. 

It is easy to check that L(~(A)) = o.L(A).o. Next transformation, O, turns 
the uutem~ton in an automaton theft satisfies to the ACD property (see figure 2). 

q l  - ~ q t  q ~  - q F  

c 

(ql,  d) 

d ~ (q3, c) 

Fig.  2. Forcing the Anti-Co-Determinism: the O transformation. 
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D e f i n i t i o n  9. Let A = ( A, Q, ql , Q F , 5) be a finite automaton such that qi ~ Q F 
a,nd no transition arrives onto 7t, O(.A) = (A, Qe,  qz, QF~, ~f~) is given by: 

e o  = {qI} U ( e -  {q~}) x A, 
QF~ = QF x A, 

5o is defined by: J" 5o (qx, a) = (~(qI, a) • {a}, 
[ ~ o ( ( q , a ) , b )  = 5(q,b) • {b}, i f  q # ql, 

We can easily r that L(O(M)) = L(A)  and L(O(.A)) has the A C D  prop- 
erty. In fact, after applying f2 then O to an automaton the resulting automaton 
satisfies some specific properties that will allow us to add states and arrows to 
it while being sure that we stay "inside" the closure. We call such an automaton 
a 7)-automaton. 

D e f l n i t i o n t ( L  /~ is a P-automaton if 
- it satisfies A C D  property, 
- has a unique initial state qx such that no transition arrives on it, 
- has a unique final state qp such that no transition comes out of it, 
- there exists a letter o such that any transition going out of qI and any transition 

arriving on qF is labelled by o and no other transition is labelled by o. 

By definition, for any finite automaton A, O(Y2(.A))~ noted Oof2(.A)~ is a 
P-au tomaton  and L(Oo~?(A)) = ~.L(A).*.  

5 . 2  A d d i n g  P a t h s  

Now we are ready to add paths to the automaton. In order to have a decision 
criterion where to add the paths we define two notions: a bridge and a potential 
bridge of an automaton. 

D e f i n i t i o n l l .  Let .A be an automaton, RC a clean context dependent com- 
mutation relation on the alphabet of.A, P2,p3,p3,' P4,P~ be states of.A and b,c 
belong to the alphabet of .4. 

(P2, b, P3: P'3, c, P4, P'4) is a bridge of ,4 if 

�9 p2 p3 4 p4 and 4 4 
�9 there exist states Pa and P5 and letters a and x such that: 

a 3~ I x 

Pl --+ Pz, P4-+ Ph, P4 -4 Ph, and (abe, acb) E RC,  
�9 for any state p and for any letter y: P4 2+ p r p~ 2~ p. 

-- (P2, b, P3, c, P4) is a potential bridge of A if 
b 

�9 p2-+p3-2~p4 , 
�9 there exist states p~ and P5 and letters a and z such that: 

Pi  - ~  P2 ~ P4 --~x P5 a n d  (abe, acb) E RC, 
b 

�9 for any state p~ and p~: p2 p~ or p~ 76 p~ or there exist a state p and 

~ 2+ a letter y such that P4 2+ p r t'4 p. 
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P l  . . . . .  > p 2 ~  a 

/ 

b P 3 - -  

b 

I 

. - y ,  

7 .-" - 

:',," X'. x 
P4 ........ x >  P5 

( i)  

Fig. 3. A bridge. 

P l  h . . . . . . .  p 2 ~  P 3 ~  P 4  M ~  P5  

(2) 

b 
.. p; ............. K 

c .. 

P l -  h . . . . . . .  P 2  b " P a ~  P 4  . . . . .  x ~ P 5  

(a) 

b j y 
4 P3  . . . . . . . . . . . . .  P 4  . . . . . . . . . . . .  P 

C . "  

P l  h . . . . . .  P 2  b " P 3  c " P 4  . . . . . . . .  ~ ~  P 5  

Fig.  4. Potential bridges. 

Next transformation, Br, by turning a potential bridge into a bridge, adds 
some words equivalent to words of the original language. In order to choose the 
potential bridge on which Br is applied, we suppose the set of states and the 
alphabet are completely ordered inducing a total order on the potential bridges. 

D e f i n i t i o n  12. Let RC be a clean context dependent commutat ion relation over 
A, ,4 = <  A, Q, qI, QF, ~ > be a finite automaton with a minimal potential bridge 
(P2, b, pa, c, P4). Br(.A) = <  A, QB,-(A), qI, QF, 6Br(A) > is defined by: 

Qsr(.a)=QU{p~a,p~},  Qfq{p~a,p~4}:f~ and V q 6 Q ,  q<p~a<p~4 
5Br(A) = ~ U {(p2, c,p~)} U {(p~3, b,p~4)} U {(p~4, x,p) l (p4,x,p) E (~} 

b ~ y 
C / r  P3  . . . . . . . .  J ~  p 

,A : - -  / / "  

B r ( A )  : - - a n d - - -  P I ~ - ~  P2" b -~ P3 c -' p 4 ~  P5 

Fig.  5. The Br transformation. 

The following lemma states that the resulting automaton still satisfies the 

wanted properties. 

L e m m a  13. Let 13 be a P-automaton, then Br(B) is also a P-automaton. 

Proof. It is technical but not difficult to check that it follows from the hypothesis 
and the definition of Br (see [2] for details). [] 
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5.3 Computing the Closure 

We have now a way to add paths to the automaton, we still must check that  this 
will add the right kind of words to the language. 

P r o p o s i t i o n l 4 .  Let B be a P-automaton and R C  a clean context dependent 
commutation relation on the alphabet of B. Then: L(Br(B))  C_ [L(B)]Rc. 

- -  / b - -  / c / q i  --P3 >qi~ 1 - - P 4 ~  

Y 
ql--2 ~qi--I = P2 .......... ~ P3 ........... ~ P4 ........... ~ qi+2 �9 qi-~3 

ai--1 b c ai"t'2 ai'~3 

Fig. 6. Illustration of the proof of proposition 14. 

Proof. Let (p2, b, pa, c, p4) be the minimal potential bridge of B and 

q1--~ qo-~ ql ~ . . .  ~ qn-2+ qF be a path in Br(B).  Let i be the smallest in- 
dex such that qi does not belong to B, then, with the notation used in the 
definition of Br, qi is p~, qi+l is p~, ai is c, ai+l is b and qi-1 is P2 (see fig- 

oal...a~-i b c ai+~ 
ure 6). The path ql ) qi-1 -= P2 ---~ P3 ) P4 qi+2 belongs to B and 
oal . . .ai- lbcai+2 ~ oal . . .ai-lcbai+2. Let now j > i + 2 be the next index 
such that qj does not belong to B. In the same way then for index i, we 
show that o a l . . ,  ai-1 cba~+2.., aj_lcb ~ o a l . . ,  a~_lbcai+~.., aj_lbc. By iter- 
ating this process, looking always for the next "new state" of Br(B),  we show 
the existence of w the label of a path of B such that w ,.~ oa la2 . . ,  ano. [] 

The next corollary generalizes this proposition to any finite automaton pre- 
pared by the transformations (9 and $2 and to successive applications of the 
transformation Br. 

Corol lary  15. Let .4 be a finite automaton and R C  a clean context dependent 
commutation relation, then: Vn E IN, L(Brno OoY2(A)) C_ o.[L(A)]RC.o 

Proof. For any P-au tomaton  B, L(Br~(B))  C_ [L(Br~-I(B))] C [L(Br~-2(B))] 
C . . .  C_ [L(Br(B))] C_ [L(B)]. As Oo$2(A) is a P-au tomaton  and L(OoI2(A)) = 
o.L(.A).o, we have, for any n, L(Bg~o OoE2(A)) C_ v.[L(A)]RC.O. [] 

We show now that when the automaton has no more potential bridge, the 
language it recognizes is exactly the closure of the original language. 

T h e o r e m  16. Let r be an finite automaton and R C  a clean context dependent 
commutation relation, then: 

3n E IN, Brno Oof2(A) has no potential bridge 

L(Br~o Oog(.A)) = [L(OoO(.A))]Rc. 
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Proof. We show tha t  [L(Oo12(-4))]p~ c C L(Br'~o Oo12(.4)) .  Let  v be a word 
of [L(Oo12(.4))] ,  there exist u in L(0o12(.4))  C n ( B r n o  Oo12(.4))  such t ha t  
u,~v. Thus  there exist ut = u, u2 , . . . ,  up = v such tha t ,  for any i < p, there 
exists words 7, 7 ' ,  let ters a, b and c such t ha t  ui = 7abeT' ,  Ui+l = 3'acbT' 
and (abc, acb) E RC.  Suppose tha t  7 abc"/ E L(Br'~o 0o12(.4)) and (abe, acb) E 

b RC, then there exists in Brn o O012(.4) a pa th  q1 2). ql 2> q2 -+ q3 Z.~ q4 -f+ q5 --~ qF 

where x is a let ter  and ~, a word such tha t  xu = ",/. x exists because any pa th  of  
L(Br'~o Oo12(.4)) ends by label (> which is not concerned by the commuta t i ons .  

c b x  
Because L(Brno  Oo~2(.4)) has no potent ia l  bridge, there exists a p a t h  q2 --+ q5 
and ",/acb"/ E L (Br  no Oo12(.4)).  By i tera t ing this a rgumen t  f rom u = ui  to 
Up = v, we conclude tha t ,  if v belongs to [L(Oo12(.4))],  then there exists u in 
n(Oo12(A)) C L(Br'~o 0o12(.4)) such tha t  u,.~v, thus v E n ( B r  '~o 0o/2( -4 ) ) .  [] 

6 Application to Reliability 

We have proved in section 4 tha t  any reliable context  dependent  c o m m u t a t i o n  
re la t ion does not  have a carry ing circuit. Examp le  1 shows wha t  happens  when 
a car ry ing  circuit exists. 

q~H b 

ii 
^ qi . . . . . .  ... 

I ql 

a l b  /I 

: l q 4  . 

I d 
q4 

..... . a 

.... -~ q2 

/ 

/ 

. . . . .  q~ 

F i g .  7. When  the process never ends (Example 1). 

Example 1. Let {(abc, acb), (cbd, cdb), (dba, dab)} be a carrying circuit of a re- 
la t ion RC, the crossing let ter  is b, consider an a u t o m a t o n  with a loop 

b c d (see figure 7). ql --~ q2 --+ q3--+ q4-+ ql 
Suppose  we s ta r t  with the potent ia l  bridge (q2, b, q3, c, q4), we then  add to 

' --~ eL d el. This  creates the a u t o m a t o n  s ta tes  q.~ and q~ and t ransi t ions  q2 --+ qa 
i b po ten t ia l  bridge (qa, , q~, d, ql) and we then  add s ta tes  q~ and at' and transi-  

d II b q~t t ions q~--+ q4 -+ -~ q2- By repea t ing  this process one more  t ime  on the newly 
appea red  potent ia l  bridge (q~, b, q[', a, q2), we can see t ha t  the external  loop of 
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the automaton (path q~ -~ q~"--~ q~"-~ q~ -~ q~) has exactly the same label then 
the starting loop, thus the process wilt be iterated infinitely many times. 

Example 1 shows which kind of problems may arise when Br adds transitions 
that  create new potential bridges in the automaton. In order to guarantee the end 
of the process, it is possible to forbid the creation of "new" potential bridges. The 
sufficient condition we present is based on this idea. Intuitively, if the letters that  
are contexts are different then the letters which commute, adding transition will 
never make appear a new potential bridge. Thus the number of applications of 
Br will be bounded by the number of potential bridges in the original automaton.  

Proposi t ion 17. Let RC be a context dependent commutation relation, then: 

P l -  a ,P2  c , p ~  b p~ x �9 p 

1 .  g , q 4  ~"  . q 

2.  b . q3  g . q4  

. . . . . . . . . . . . . . . . . . . . . . . . . .  L . . . . . . . . . . . . . . . . . . . . . . .  

3 .  a -  , q 2  b . q3  - . K  . q4  

4. q] K , q 2 b q 3  

5. q z ~ q 2  b . qa 

Fig.  8. Different possible cases for using the newly appeared transitions. 

Proof. We first show that for any "P-automaton B with minimal potential bridge 
(P2, b,p3, c, P4), if (q2, b, q3, ~, q4) is a potential bridge of Br(B), then it was al- 
ready a potential bridge of B. 

If (q2, b, qa, e, q4) was not a potential bridge of B, then it uses one of the tran- 
sitions added by Br, figure 8 smnmarizes the different possible cases (notations 
are the ones used in the definition of Br).  

Because Br(B) satisfies property ACD, case 1 implies that a = ~, case 2 
that  a = b, case 4, e = g, case 5, b = g, which are impossible by hypothesis. 
Case 3 implies a = g, e = b, b = ~, p2 = qa, p~ = q3 and p~ = q4, this means 
that  (q2,- ' - ' b, q3, P3, e, q4, P4) is a bridge of Br(B). Thus (q2, b, qz,-d, q4) cannot  be a 
potential bridge of Br(B). 

The number of potential bridges of any finite automaton is bounded by ]Q[ x 
d 2 where IQI is the number of states and d is the output degree of the automaton.  

Thus for any recognizable language L, if A is an automaton recognizing L, 
if N is the number of potential bridges of 0 o [2(A), BrNo 0 o s has no 
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potential bridges. And, by theorem 16, L(BrNo 0o12(.4)) = o.[L].o and [L] is 
recognizable. [] 

If  we compare  the  above  ob t a ined  sufficient condi t ion  for a contex t  dependen t  
c o m m u t a t i o n  re la t ion  to be re l iable  to the  one proposed  by Lacaze  [10], we first 
r e m a r k  t ha t  it  seems less general  because  it appl ies  only  to context  dependen t  
c o m m u t a t i o n .  But  th is  is not  the  case, as in [10] any two e lements  of the  re la t ion  
have a different a lphabe t .  Here we al low le t te rs  to a p p e a r  in more  t han  one 

c o m m u t a t i o n  rule. 

A e k n o w l e d g e m e n t s  The  au thors  are indeb ted  to A. Pe t i t  for f ru i t fu l  discus-  

sions. 
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