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Abstract. This paper proposes an expressive extension to Propositional 
Linear Temporal Logic dealing with real time correctness properties and 
gives an automata-theoretic model checking algorithm for the extension. 
The algorithm has been implemented and applied to examples. 

1 I n t r o d u c t i o n  

In a landmark paper, [Pn77], Pnueli identified a very general and important  class 
of computing systems now called 'reactive systems' (cf. [HP85] [Pn86]). Char- 
acterized by  their ongoing behavior, reactive systems and their sub-components 
interact with an environment over which they have little control. Such systems, 
e.g. operating systems, tend to be quite complex and they have necessitated the 
development of powerful tools for their verification. In [Pn77] it was argued that  
temporal  logic is a highly appropriate formalism for specifying and verifying the 
ongoing operation of reactive systems. 

Propositional Linear Time Logic (PLTL) [Pn77] allows the simple expression 
of many important  system properties at a quMitative level. Using operators such 
as 'G' and 'F' meaning, respectively, 'always' and 'sometime' PLTL can express 
the requirement that 'every request from a client should be eventually met with 
a response from the server' as G(request =r [:response). 

Recently, however, it has been recognized that  in many applications the 
specification of correct operation requires quantitative as well as qualitative 
properties. Real time systems, those systems whose correct operation includes 
time-critical specifications, require such quantitative analysis. One can introduce 
quantitat ive operators such as 'F ~-~' which, informally, means 'sometime before 
more than five time units have elapsed'. With the resulting formalism we can 
express properties such as 'every request from a client should be met with a 
response from the server within five time units' as G(request ~ F~-Sresponse). 

In this paper we present a simple but general framework for handling an 
enriched class of quantitative problems. Our formalism, R T P L T L +  (Real Time 
PLTL+) ,  is an extension of PLTL that employs natural notations from formal 
language and automata  theory. In particular we have identified an expressive 

* This work was supported in part by NSF grant CCR9415496 and SRC contract 
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yet tractable fragment of regular expressions enhanced with 'and',  'negation', 
and 'exponentiation'  operators. Testing emptiness of arbi trary extended regular 
expressions is non-elementary, however, the fragment used here in conjunction 
with PLTL can be tested for emptiness in t ime exponential in the size of the 
regular expression. An example of the types of specifications we are interested 
in, a constraint on the set of computations of a system, is exhibited below. 

The term (request 4- response* request) is a requirement on strings of sys- 
tem actions specifying strings which contain request as the last element of the 
string and no occurrences of either request or response anywhere else in the 
string. (request 4- response*request) 3 specifies three consecutive occurrences of 
strings satisfying (request 4- response* request), i.e. request occurs three times 
and response has not occurred, true specifies any computation; therefore the sub- 
formula (request 4- response * request) 3 true is satisfied by any computat ion with a 
prefix satisfying (request + response *request) 3. Similarly, (response * response) 0 
( ~ *  request) 33 specifies that  exactly one response has occurred while fewer 
than four requests have occurred. These fragments are used to express the fol- 
lowing specification. If the server ever receives three successive requests from a 
client, and the server has issued no response since receiving the first request, 
then the server will issue a response before receiving a fourth request. This 
is expressed as G ( ( request 4- response * request)a true ~ ((response *response) 71 
( ~ *  request) ~3) true ) . 

Verifying that  a reactive system obeys a specification, written as a formula 
in one of the formalisms mentioned above, can be accomplished with a technique 
known as model checking [CE81] (cf. [QS82]). Model checkers answer the ques- 
tion 'given a specific reactive system M and a formula r do all computations 
of M satisfy the formula r We present an automata-theoret ic  model checking 
algorithm that  allows us to model check formulae of R T P L T L +  over general rep- 
resentations of reactive systems. The algorithm has been implemented on top of 

the SMV [Mc92] model checking system. 
Section 2, below, discusses syntax and semantics. Model checking is described 

and analyzed in Section 3. Section 4 contains some examples and discusses the 
implementation of the model checking algorithm. Finally, section 5 contains a 

summary. 

2 Preliminaries 

2.1 Syntax 

The full paper [ET96] presents a unified syntax for CTL, PLTL, CTL* and cer- 
tain quantitat ive extensions, viz., RTCTL,  RTPLTL,  RTCTL-F, R T P L T L +  and 
RTCTL*+.  Here, however, we will focus on PLTL and its extension I~TPLTL+. 

We use the symbol AP to denote the finite set of underlying atomic propo- 
sition symbols. ACT denotes the finite set of atomic action symbols. Elements 
of AP will be represented by P,Q,  etc., elements of ACT by B , C , D ,  etc., 
and )~f will represent the set of non-negative integers. 
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The set of regular expressions over ACT are constructed by the following 
rules. 

E1 For each B E A C T ,  B is a regular expression. 
E2 A is a regular expression. 
E3 For r, r '  regular expressions, (rr'), (r A r'); and (F) are regular expressions. 
E4 For r a regular expression, i E H ,  (r*), (ri), (r<-i), and (r >i) are regular 

expressions. 

Path formulae are formed according to the rules: 

P1.  Each atomic proposition P is a formula. 
P2.  If r and r are path formulae then so are -1r and r A r 
P3a .  If r and r are path formulae then so are Xr and (r162 
P3b .  If r and r are path formulae and r is a regular expression then (r162 is 

a path formula. 

In the sequel we will sometimes drop parentheses from formulae and expressions 
when the parsing seems clear. 

PLTL is the set of formulas formed by rules P1, P2, and P3a while Regular 
PLTL (RPLTL) extends PLTL with rule P3b. 

RTPLTL+ is a subset of RPLTL that  restricts the type of regular expressions 
allowed in rule P3b. Supposing ACT -- {B1, . . . ,  B,~} then we will sometimes use 
ACT to denote the regular expression (B-~I A . . .  A B-~-~). 

Let n E Af and B E ACT a term is one o f ' =  nB' ,  '-< nB' ,  or '~- nB '  which are 
shorthands for ((B-)* B)~, ((B)* B)<n (~-)., and ((B)* B) '~ (ACT)*respectively. A 
ce expression is any boolean combination of terms. 

Le tm,  n, bEAf,  i E [ 1  : n ] , B I , C E  ACT a n d T i C  ACT such thatB~ ETi. 
IfT~ = {B~, D1, �9 . . ,  Drn} then ~-is a shorthand for (B~ + D1 + . . .  + Dry), which, 
to avoid the proliferation of parentheses, may be written as Bi + D1 + �9 + Drn 

Regular formulae are formed by the four rules below. 

R l a .  (~-*B1 ...%-~*Bn) is a regular formula. 
R l b .  (~l-*Bt ...%-n *Bn)--- b, a shorthand for (~-*B1 . . .~-j*Bn)b(ACT) *, is a 

regular formula. 
R l c .  (~-*B1 ...%-~ *B~)- ~b, a shorthand for (~-*B1 - - * B  . . .7~ ~)b+I(ACT)*, is a 

regular formula and is . 

R2.  If pt and P2 are regular formulae then so are (plp2) and (pt ;3 p2) which 
are shorthands for (p~ A pACT*)p2 and (Pl A P2) respectively. 

RTPLTL+ is the subset of RPLTL such that for any sub-formula CUre either 
r is a c e  expression or r = -~(P A -~P) and r = p A (pACT*) for some regular 
formula p. When dealing with regular expressions which contain a p formula we 
typically write (-~(p A-~P))UP^(pACT')r as (p)r 

Derived operators, similar to PLTL, F, G ~ and (\(p))r ___ -~(p(-,r are also 
allowed. 

We also use the following shorthand notation. Given formulae of the form 
( (p~p2) . . .p , ) ,  if the pl are all identical then we will write (pl)~ as a shorthand 
for ((plp~). . .Pn) .  
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2.2 S e m a n t i c s  

Before defining the semantics of the formulae, some intuition regarding regu- 
lar 'formulae may  be in order. Formulae of the type (~-*B1 . . .~-~ *B~) have a 
straightforward meaning. These formulae express restrictions on the order of the 
atomic actions of  computat ions  (paths through a structure); furthermore,  the 
meaning of the formulae is equivalent to the meaning of their identical regular 
expressions. (~-T* B ~ . . .  ~-n * B,~)b is a shorthand for b copies of (~-* B 1 . . .  ~-~ * B~) 
and formulae of this type are also equivalent to their identical regular expres- 
sions. However, formulae of the form (~-*B1 ...~-~ *B~) ~b do not have a mean- 
ing .equal to their identical regular expressions. (~-* B1 . . .  ~-~ * B~)-b  expresses 
the requirement that  there are no more than b occurrences of the sequence 
(~-*B1 . . .~-~*B~), , i t  does not require that  there exists a b' E [0 : b] such tha t  
(~-*B1 ~-j~*B,~) b be satisfied. In particular (~-*B~. . .~ -~*B~)  ---~ is true of a 
sequence so long as the sequence does not satisfy (~-*B1...~-~-~ *B~). While the 
empty  string satisfies these requirements it is not the only string tha t  does so. 

Temporal  logics, such as PLTL, are usually interpreted over the computa t ions  
or paths in (Kripke) structures, cf.[Ar94]. A Kripke structure is a triple which 
consists of a set of states S, a transition relation on the state set R, and a labeling 
function L. L labels the states and/or  transit ion relation arcs with, respectively, 
the atomic propositions true at a state and the a tomic actions associated with 

transitions. 
Unlike RTCTL,  defined in [EMSS90], R T P L T L +  does not implicit ly asso- 

ciate a 'clock event '  with each transition. Here we can denote clock events by a 
distinguished action C and stipulate that  the clock ticks infinitely often. In fact 
R T P L T L +  allows the use of multiple independent clocks. 

Let M = (S, R, L) be a structure such that  S is a finite set of states. R C_ 

S • ( A C T  • S) is a total  transition relation and L : S U R - - ~  2 A P  U A C T  

such that  for a l l s  E S ,  L(s) E 2 A P  and for a l l s ,  s I E S, ando" ~ ACT such 

that  (s, o-, s') E R ,  L(s, o', s') = o'. 
Let x be a 'full pa th '  in M, then x is of the form x0o-0xlo-1 �9 �9 �9 where for i > 0, 

x~ E S, o-i E ACT and (xi,o'i,x~+l) E R. xi,o-~ denote, respectively, the i th 

state and the ith action of a pa th  while x i denotes the full pa th  xio-ixi+lo-i+l..., 
and x]ACT denotes the projection of x onto ACT. 

Given a full pa th  x in M we denote tha t  x satisfies or models pa th  formula  
r by M, x ~ r Similarly x does not satisfy r is denoted by M, x ~ r When M 
is understood we will sometimes drop it f rom the ~ notation. 

is defined for RPLTL formulae by the following rules. 
Let o- E ACT* then the meaning of regular expression r is defined as follows. 

E S l  O-EB,  f o r B E A C T i f f o - = B "  
ES2  o- E )~ iff o- is the empty  string. 
ES3  If  r ---- (rlr2) then cr C r iff o- = o'lo'2 such that  o'1 E r l  and o'2 E r2 .  If  

r =  ( r lAr2 )  t h e n o ' E r i f f o - E r ~  a n d o - E r 2 .  I f r = r - T t h e n o - E r i f f o ' ~ r l "  
E S 4  If  r -- (rl)  ~ then o- e r iff o- e A. r = (rl) ~, for 0 < i, then o" e r iff 

o- = o-lo-2 and o-1 E r and o-2 E (rl)  ~-1. If  r = (rl)  -<i then o- e r i f f  there 
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exists j < i such that a E (rl) j.  I f r  = (rl) ->i then cr C r i f f  there exists j _> i 
such that ~ E (r~) j .  If r = (r~)* then r E r i f f  there exists a j E A; such 
that ~r E (rl) j. 

Let x = x0c~0., be a full path in M, r 1 6 2 1 6 2  are path formulae and r i s  a 
regular expression then 

P S l .  r  : M , x ~ r  
PS2 .  r 1 6 2  M , x  ~ r  x ~ = r 1 6 2 1 6 2 1 6 2  M , x  ~ r  x ~ r  and 

M , x ~ r  
PS3a .  r 1 6 2  M , x  ~ r  x 1 ~ r  r 1 6 2 1 6 2  t : M , x  ~ r  exists 

i E A/" such that M, x ~ ~ r  and for all j E [0 : i - 1], M, x j b r 
P S 3 b .  r = CUre ~ : M , x  ~ r iff there exist i E A f  such that cr0...~i_l E r, 

M , x  i ~ r  and for all j E [0: i -  1 ] ,M,x  j ~ r 

We denote the length of an RTPLTL+ formula r by ]r and the magni- 
tude of the formula by I]r Ir corresponds to the number propositions and 
operators. When r is an atomic proposition it has magnitude 0. HTr = Nr 
and when r is a positive boolean combination of r and r then and IIr = 
llr + IIr Formulae of the form Xr have magnitude IIr formulae of the 
form r162 have magnitude Hr + IIr ce terms kB ,  -~ k B  and ~- k B  all 
have magnitude k. II-~ceiI _= 1 + Hcell and Hce A ce'II = ticeH . Iice'II . Then 
IIr162 = I]r + ]lr + ]lce]] �9 Regular formulae of type R l a  have (respectively 
Rib, a l c )  have magnitude n(max(ITi])), where I7~] is equal to the number of el- 
ements in the set 7~, (bn(max(171I)), bn(max(171 I)))-Formulae of the type (#1#2) 
and (Pl N P2) have magnitude liP1 ]] + I]p2H and IlPl I]  Hp211, respectively. Finally, 
IIpr = Ilpll + 11r 

A formula is in positive normal form, PNF, when only propositional constants 
are negated. Using the appropriate short forms, given above, and DeMorgan 
rules any RTPLTL+  formula r can be transformed into an equivalent formula 
r which is in PNF, in time linear in the length of of r 

3 M o d e l  C h e c k i n g  R T P L T L +  

Given structure M = (S, R, L), as defined above, and a formula r of R T P L T L +  
we define a mode] checking procedure which determines whether there is a path 
x in M such that M , x  ~ r This is the dual of the question posed in the 
introduction but can be shown to be equivalent via the following observation. 
The computations of M satisfy specification r iff there is no computat ion x of 
M such that M, x ~ 7 r  

We extend a standard automata  theoretic technique to decide this prob- 
lem [VW86]. The technique consists of creating an automaton, .A-~r on infinite 
strings, cf.[Bu62] and [NP85], which accepts only those strings which satisfy the 
formula --r Combine the structure M with .A~r to form the product automaton 
M •162 M •162 is an automaton, on infinite strings, whose language is empty 
if and only if M is a model of r 
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Before considering the automaton for arbitrary R T P L T L +  formula r we 
first define automata  which recognize infinite strings that  satisfy formulae of the 
form ptrue and automata  which recognize finite strings that  satisfy counting 
expressions. 

Suppose r = ptrue such that  p = ( ( ~ * B 1 . . . ~ - n  *Bn) CI (-C*C)~-b), and for 
all i E [1 : n], Be r C. ,zip = (ACT, Q, 8, q(0,0), F)  is a Biichi au tomaton  where 
Q = {q(0,0),- . . ,q(0,b+l), . . . ,q(m0),. . . ,q(mb)}, F = {q(m0), ' ' ' ,q(mb)}, and 8 : 
Q • ACT --+ Q is a deterministic transition relation defined by the transition 
diagram in figure 1 .  Note that  in the figure Z stands for ACT, Z1 = (Z  \ 3'1) \ 
{C}, $ 2  = ( S  \ 72) \ {C}, etc, and 7~ = 7r \ {BI,C}. In the sequel we shall 
sometimes refer to states qf and qf,  the states so marked in the diagram. 

B2 B2 

B(n-l) 

�9 n '  ]~ 

Bn Bn 

Fig. 1. automaton for ((~i-*B1...~-~ *B~) n (-C*C) ~-b)true 

As constructed .4p accepts w-strings over the alphabet ACT that  conform to 
p, Le. the strings contain B1, B~ to B~ in order before the appearance of more 
more than b C's and no action in */1 occurs before B1, no action in 72 occurs 
between the first occurrence of B1 and the next occurrence of B2, etc. 

We can in an algorithmic manner construct au tomata  like the above for all 
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the p expressions in the language; the details are straightforward and have been 
left out due to space restrictions. 

We will sometimes refer to formulae such as r (respectively r formulae with 
unnegated (negated) regular components as their primary connective, as positive 
(negative) formulae. By extension we refer to .4p (.4F) as positive (negative) 
automata.  

C l a i m  1 Let x be a full path in arbitrary M and r and r formulas as above 
then x ~ r iff ( x ] A C ~  E s and x ~ r iff (xlACT) E/:(.4~). 

Let ce be a counting expression, then there exists a deterministic finite au- 
tomaton `4c, = (ACT, Q, 5, q0, F)  such that for a l l ,  C ACT*, c~ e s iff 
~r ~ ee. Constructed recursively from the structure of ce according to the rules 
for creating product and complementary finite automata,  the basic idea is to 
keep track of the number of occurrences of the actions specified in the counting 
expressions. 

Claim 2 Given a counting expression ce, deterministic automaton .Ace can be 
constructed in time linear in [Ice[[ such that s  = {~ E ACT*] ~ ~ ce} and 
l`4c~l is linear in IlceH. 

Let r be a formula of RTPLTL+ in PNF. For each regular sub-formula p (~) 
and counting expression ee there is a corresponding automaton .4p (.4F) or .4ce. 
Number these automata 1...a. Then for j E [1 : a], .4j = (ACT, Qj, ~j, qJo, Fj) 
and we refer to the i-th state of the j-th automata by qJ. 

T h e o r e m 3 .  Given a formula r of RTPLTL+ there is a Biichi automaton .4r 
such that for any structure M = (S, R, L) and full path x of M,  M, x ~ r iff 
x ~ L( .4~) .  

Proof." We proceed as follows. Using a modified version of the tableaux con- 
struction for PLTL, a tableaux T is constructed from the formula r T encodes 
models of r and we can use the structure of T to form the automaton .4r 

Before describing the tableaux construction we give a categorization of RT- 
PLTL+ formulae as elementary or non-elementary formulae. Non-elementary 
formulae are then separated into Alpha-formulae and Beta-formulae. Intuitively, 
an Alpha-formulae r with constituents r r is true iff r and r are true while 
a Beta-formula r with constituents r and r is true iff one or both of the con- 
stituents is true. Note that  in the following we will abuse notation and consider 
individual states of the automata .4j as formulae. 

Propositions and formulae of the form Xr are elementary. The following 
lists characterize Alpha- and Beta-formulae and give their constituent formu- 
lae. Alpha-formulae : r A r with constituents r and r q~, where .4y is the 
automaton associated with pr or ~r with constituent r PC, where .4j is the 
automaton associated with pr with constituent q~; ~r where Aj is the automa- 
ton associated with Fr with constituent qJ; r162 ~, where Aj is the automaton 
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for ce with constituent cuq~r ' ; CUq~r ', where qJ ~ Fj with constituents r 

and •162162 ') V .. V •162162 ') where q~0," J �9 ., qhn are the successor states 
of qJ; CVCer where A j  is the automaton for ce : with constituent CVq~or 
Beta-formulae : r V r with constituents r and r r162 ~ with constituents r 
and r A X(r162 r162 with constituents r A r and r A X(r162 cuq~r 

where qJ E Fj with constituents r and r A (•162162 ') V . . .  V X(r162 
where  J J q h o , ' ' ' , q h n  are the successor states of q~; cvq~r where qJ ~ Fj with 

constituents r and X(r162 V X(r162 where j J qho, " �9 ", qhn are the 
Vq~ ' J successor states of qJ; r r , where qi E F j  with constituents r A r and 

r A (X(r162 V . . .  V X(r162 where qho, j �9 �9 �9 qh,J are the successor states 
of q~; qJ, where qJ is not labeled with f with constituents X(q{0 ), . . . ,  X(qh, ) j  

where  j J q h o ,  " �9 � 9  q h n  are  the  successor  s t a tes  of  qJ. 

The tableaux for a formula r is created by 'growing' a finite graph whose 
nodes represent sets of sub-formulae of r which are satisfied along computations 
satisfying r Nodes are labeled by 'downwardly' consistent sets of sub-formulae, 
i.e. if a node is labeled by an Alpha formula r then it is also labeled by both 
of r constituents. If r is a Beta formula then the node must be labeled with 
at least one of r constituents. Nodes with no next-time formulae have a single 
successor which is labeled by the empty set. Otherwise, node V's  successors 
consist of the entire set of nodes which are first labeled with r iff Xr is in the 
label of V, and then are made downwardly consistent. Arcs from a node, V to 
its successor(s)~ U are labeled by actions B E ACT according to the following 
rules:  for all q~ E V,  q~ fL Fj there is a q~, E U such that  5j (q~, B) = j" qi', for all 

qJ, E U either i' = 0 and .Aj is the automaton for p (~) and PC E U (~r E U), 

or there is an q~ E V and 5 j (q{ ,B )  J" = qi,, for all cuq{r E V either qJ E Fj and 
J 

r E V, or there is an CUq,'r E U and 5j(q~,B)  = qi,J', for all cuq~'r E U either 

i ~ = 0 and r162 E U and Aj is the automaton for ee, or there is a CUq~r E V 

and J' = qr for allCV ~r E V then r E V and r E V, or r E V and 
qi,, or r E V qJ f[ Fj, or q~ f~ Fj and there is a cvq~ ' r E U such that  5j (q~, B) = j 

and there is a CVq~'r E U such that  5j(q~, B) = q~,; for all CVq~'r E U either 

i ~ = 0 and r 1 6 2  E U and Aj is the automaton for ce, or there is a cvq~r E V 
and 5j (q~, B) = qi"J When no such B exists we label the arc with the empty set. 
When V contains no automata related formula then the arc is left unlabeled, 
meaning that  any B E ACT can cause that  transition. 

We identify similarly labeled nodes by one representative with multiple in- 
coming and outgoing arcs. By requiring the uniqueness of node labels, it is 
guaranteed that  the graph is finite, and of size no more than double exponential 

in the length of formula r 
Once the graph has been completed it is pruned by removing any inconsistent 

nodes. Any remaining eventualities are then numbered and a Biichi acceptance 
condition is then used to ensure that  no eventuality is pending forever. 

Given a non-empty tableaux T for formula r we construct a Biichi automaton 
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Ar whose language contains all stings in (2 AP • ACT) ~ satisfying r and does 
not contain any string that  does not satisfy r 

Ar = (Z, T,  5, To, F)  where Z = 2 AP • ACT, T = (AND • {0 , . . . ,  l}) U sink, 
where AND is the set of nodes ofT,  and To = {(t, 0)]r E t}. 5 : Z • T ~ 27- such 
that (t', k') E 5((t, k), (s, c,}) iff for all P E t, P �9 L(s), for all - ,P �9 t, P ~ L(s), 
t ~ is a child of t in T, a is an element of the subset of ACT which labels the 
arc from t to t ~, and if eventuality k is pending in t then k = k ~ otherwise 
k' = (k-t-l) mod ( l+l) .  s ink  �9 5((t, k), (s, c,)) ifft contains no next time formulae 
and for all P �9 t, P �9 L(s) and for all -,P �9 t, P r L(s). s ink  �9 r (s, or)) 
for all (s, o) �9 Z.  Finally, F = {sink} U {(t, k)lk = 0}. 

The theorem follows from the construction of the automaton and the defini- 
tion of the satisfaction relation for RTPLTL+ formulae. [] 

T h e o r e m 4 .  /2(M xAr  r 0 iffthere is a fullpath x in M such that M , x  ~ r 

Proof :  The proof is immediate from the previous theorem. [] 
Theorem 3 gives a model checking procedure that  runs in time linear in the 

size of the structure M and polynomial in the size of the tableaux for formula r 
T, the tableaux for r is at most of size exponential in the ]r + I1r since each 
node has a unique label. 

T h e o r e m 5 .  Given a formula r of RTPLTL+ and structure M = (S, R, L), let 
size = Ir + I1r then the model checking problem 'do the computations of M 
satisfy r  is decidable in time O(IM I • EXP(s ize) ) .  

Proof :  Theorem 3 gives a method for creating the Biichi automaton `4 for 
the RTPLTL+ formula --(~ ~ r which accepts only those computations that  
satisfy ~/i and do not satisfy r From the construction in the theorem .4 is of size 
exponential in the length and magnitude of the formula -,(~ ~ r 

Form the product automaton M x .4, and test this automaton for emptiness. 
Testing Bfichi automaton .4' for emptiness is in 0(].4'1) . Hence we can t e s t  
whether s  • .4) = ~ in time linear in the size of M x .4. s • .4) = r iff 
for all computations x of M, M, x ~: -,(~ ~ r iff for all computations x of M, 
M, x ~ (~ ~ r iff M is a fair model of r [] 

The structure M is typically of immense size while the specification formula 
is nsualIy small. Since the model checking algorithm is of linear complexity in 
the structure size, the potentially exponential blowup in the formula size should 
be tolerable, cf. [LP85]. The complexity is further ameliorated by the use of 
symbolic model checking techniques in the implementation of the algorithm. 

4 E x a m p l e s  

We list a few example specifications which exhibit a pattern typical of real time 
systems requirements. The requirements are of the general form 'G (antecedent :=~ 
consequent)' where the antecedent specifies the occurrence of some time bounded 
condition and the consequent specifies a time bounded extension to the an- 
tecedent. In the sequel C represents one time unit. 
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E x a m p l e  1. K B occurs exactly two times within five t ime units, then imme- 
diately following the second occurrence of B, D occurs within three t ime 
units. G(F2B^ Z5C true ==~ F2B^ ~-SCFDA ~3C true). 

E x a m p l e  2. If B occurs, then immediately following B, D should occur at 
least five times within eighteen time units and there should be at least 
three time units between any two of the five consecutive occurrences of D. 
G( (-B * B)true ~ ( ( (-B * B)( (--D * D)(D + C * C ) 3 ) 4 ( D * D ) )  N (-C* C)'<-lS)true). 

E x a m p l e  3. If the actions B, D, E, F occur, exactly once each and in order, 
within ten time units, i.e. F occurs before eleven time units have elapsed 
since the o c c u r r e n c e ; f F B  ,, then G occurs within nine t ime units of F.  
Let A = B + D + E . G(((A B A D A E A F) N (-C*C)<-l~ ==~ 
((A B A D A E A F) N (-C* C)~l~ 

We have implemented an R T P L T L +  model checking algorithm on top of 
SMV model checking environment. Model checking R T P L T L +  is accomplished 
by converting formulae of the logic into their au tomata  and then translating the 
au tomata  into SMV modules. 

We have employed our model checker in solving the Generalized Railroad 
Crossing problem [HJ93]. The problem is to build a controller which will sense 
the approach of a train to the railroad crossing and lower a gate across the road 

preventing road traffic from crossing the tracks. 
Correct behavior of the controller can be expressed by two specifications: first, 

a safety property which guarantees that  the gate is down whenever a train is 
crossing the road ; and second, a liveness property which ensures tha t  if no train 
is in or approaching the crossing then the gate will be in the upright position. The 
safety property can be expressed as G(incrossing ~ safe). G(G<-5d~ 
F ZsCl~ ( ( upU train ) V G ( up A -,train))) expresses the liveness property. 

Using our R T P L T L +  model checking system we were able to verify or find 
errors in various implementations of the railroad crossing system. For example, 
if not enough lead time is given to the gate it may not be able to close before 
a train enters the crossing. The tests conducted were done on an IBM RS6000. 
Translating the specifications into SMV modules took under a minute. Testing 
the combined specification and railroad system modules for emptiness also took 

less than a minute. 

5 S u m m a r y  

We have presented and implemented a general and natural framework for reason- 
ing about quantitative temporal  properties. Our models of systems can encode 
the computations of asynchronous systems using the abstraction of an inter- 
leaving syntax. Our logics allow one to reason about properties expressible in 
PLTL and we have added the ability to discuss regular sequences over paths 
at a very reasonable cost. Combining the logics with the models allows for the 
consideration of quantitative properties of independent events. In particular, the 
R T P L T L +  formula GF blcl^<-b2c~ true expresses a restriction on the divergence 
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of independent clocks C1 and C2. While the syntax for regular formulas is dif- 
ferent from, and does not encompass all regular expressions, our techniques are 
general enough to handle any deterministic finite state machine in place of reg- 
ular formulae. Model checking R T P L T L +  preserves the utility of PLTL model 
checking procedures in that  the algorithm is linear in the size of the structure. 

There has been a great deal of related work in the field and we only men- 
tion the work that  most closely bears on our own. Alur and Henzinger have 
written an excellent survey [AH92] which covers many theoretical and practical 
considerations involved in designing a real t ime logic. 

[AHS9][AH94] defines the logic T P T L  (Timed Propositional Temporal  Logic), 
which is a real t ime extension to PLTL. However, unlike T P T L ,  R T P L T L +  is 
not restricted to models involving a single time sequence. 

Presburger arithmetic is an expressive language for writing quanti tat ive spec- 
ifications in but has a costly decision procedure. Combining CTL or PLTL with 
Presburger arithmetic allows the specification of non-regular properties [BE95a] 
[BE95b], i.e. properties which are not definable as w-regular sets. 

Extended Temporal  Logic (ETL) [Wo83] is an extension of PLTL that  allows 
each right linear grammar to define a temporal  operator. 
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