
Optimal Implementation of Wait-Free Binary Relations

Eric Goubaul t

CNRS & LIENS, F_,cole Normale Sup~rieure, 45 rue d'Ulm, 75230 Paris Cedex 05, FRANCE,
email:goubautt @dmi.ens .fr

A b s t r a c t . In this article we derive an algorithm for computing the "optimal" wait-free
program on two processors that implements a given relation from the semantics of a small
atomic read/write shared-memory parallel language. This algorithm is compared with the
more general algorithm given in [9, 13] based on the participated set algorithm of [1]. An
extension to this is given, where we add a test&set primitive to the previous language. This
work is a natural follow up of [8].

1 I n t r o d u c t i o n a n d R e l a t e d W o r k

The work reported here is concerned with the robust or fault-tolerant implementa t ion of distr ibuted
programs. More precisely, we are interested in wait-free implementa t ions on a dis t r ibuted machine
composed of two uni ts communica t ing through a shared memory via a tomic read /wr i te registers
(described in Section 2). This means tha t the processes executed on the two processors (say P and
P ') m u s t be as loosely coupled as possible so tha t even if one fails to terminate , the other will carry
oil compu ta t i on and find a correct partial result. This excludes all mu tua l exclusion constructs such
as semaphores , moni to rs etc. Wait-freeness is also intended to help solve an efficiency problem: if
one of the processors is much slower than the other, can we still implement a given funct ion in such
a way tha t the fas t process will not have to wait too much for the slow one?

This field of d is t r ibuted comput ing has received up to now considerable at tent ion. Typically, one
is interested in implement ing a distributed database in which remote t ransact ions do not have
to wait for each others. The kind of functions we have to consider then is more like coherence
relations between the possible local inputs on each processor and the final global ou tpu t of the
machine. For instance, when two transact ions wish to change the same shared i tem in the da tabase
in an asynchronous manner , one has to choose which transact ion will get the leading r61e, to keep
the da tabase coherent . This is the well known consensus problem. Formally, if we represent the
values of the shared i tems by integers then the consensus problem is the i n p u t / o u t p u t relation
A C (77 x 77) x (27 x 77) defined as follows, given tha t a pair of integers represents a pair of local
values on P , P'.

(a) For all integers i, (i, i)A(i , i). This means tha t if P and P ' s ta r t with the same local input value
i, then they m u s t end with the same ou tpu t value i as well. This corresponds to the fact tha t they
can only agree on the value i in tha t case.

(b) For all i, j , (i , j)Zl (i , i) : if P and P ' s tar t with different local input values, say i, j , then P and
p i can agree on value i.

(c) For all i, j , (i , j) A (j , j) : p and p / c a n also agree on value j .

W h a t if now one of the two processors fails to terminate? If we represent failure by the symbol _1.,
then the coherence relation A has to be extended so tha t it expresses the behaviour of the sys tem
in nas ty cases.

(d) For all i, (i, _l_)A(i,.l.) : if P ' fails then P mus t te rminate and stick to its local value i.

We should also a s sume (e) for all j , (-l-,j)z2(_L,j) : if P fails then P~ m u s t t e rmina te and stick to
its local value j .

226

In fact, i t is well known tha t this relation cannot be implemented in a wait-free manner on a shared
memory machine with atomic read/wri te registers [4], whereas the following approximate consensus,
called pseudo-consensus in [9], has a solution:

(a') For all i, j booleans, (i,j) A(i, i), (i , j)A(j, j) . This is the same as (a), (b) and (c) (for boolean
values 0 and 1).

(b ') (0, 1)A(1,0).
(c') Same as (d) and (e).

We have just slightly relaxed the agreement problem by adding rule (b') specifying tha t we could
agree except for input (0~ 1) where a minor error is tolerated. We can implement this one in a
wait-free manner , as will be shown in Section 6.5.

We follow here the geometric view on distr ibuted computa t ion used in recent l i t terature in dis-
t r ibuted protocols [2, 3, 9, 10, 11, t2, 13, 15] and in some ways in recent t i t terature in semantics
of concurrency [6, 8, 5, 14, 17]. The idea is tha t wait-free relations exhibit some geometr ical prop-
erties (Section 5). We give another way of proving this (with respect to the way of M. Herlihy, N.
Shavit and S. Rajsbaum), s tar t ing with a semantics of a shared memory language, br inging these
considerations close to the semantics and language people.

Not only do these relations exhibit certain properties, but conversely any relation which exhibits
these properties can be constructed algorithmically at least in the case of two processors. We derive
a different algori thm than the one of [9, 13] based on the part icipating set a lgor i thm of [1] directly
from the semantics of our language (Section 6). I ts short proof stems directly from its construction.
Then, after giving a few examples, we compare bo th algori thms (Section 7) and show tha t ours gives
the programs with the min imum number of comparisons and accesses to the shared memory for all
possible executions, hence produces the most efficient code for comput ing any wait-free relation.

This in turn is generalized to deal with a new computabi l i ty result concerning a tomic read/wri te
shared memory plus a test~zset primitive. It can be shown now tha t any "finite" binary relation
can be computed, and a general algori thm for doing so is sketched in Section 8.

2 T h e m a c h i n e a n d l a n g u a g e

We consider a shared memory machine with two processors such as the one pictured in Figure 1.
The shared memory is formalized by a collection of registers V = {x, x~}. Processor P (rasp. P') has

I,, I . ' [. ITI P u ~ r] u" v' r" P'

READ /

Processes

Shared Memory

Fig. 1. Sketch of a shared memory machine with atomic read/write registers.

a local memory composed of locations Vp = {u, v, r - . - } (resp. Vp, - {u', v', r }). All reads and
writes are done in an asynchronous manner on the shared memory. There is no conflict in reads,
nor in writes since we ensure tha t the writes of dist inct processors are made on dist inct par t s of the
shared memory (P is only allowed to write on x, P~ is only allowed to write on x~: SWAS or Single

Write Atomic Snapshot model).

227

We use the following syntax for the shared memory language handling this machine. We first have
a g rammar for instructions I, and then another one for processes P,

I := update] scan [r = f (ra , . . - , r,~)

where r, r l , - - . , rn are local registers and f is any partial recursive function.

P : = I

[case (Ul, 42 Uk) of
"1 1 (a l , a 2 a l) : P

n n (al,a2 a~) : P

d e f a u l t : P

] P;P

where (ui) i are any local registers. We suppose tha t all tuples (a~)i are different. Programs are
P r o g := (P I P) (we are considering programs on two processors only), update is the instruct ion
tha t writes the local value u (resp, v') of processor P (resp. P~) in the shared variable x (resp. x~).
scan reads the shared array in one round and stores it into a local register of the process in which
it is executed, scan executed in P (resp. P ') stores ~' (resp. x) in v (resp. u'). r = f (r l , - - - , r n)
computes the part ial recursive function f with arguments r l , - . . , rn and stores the result in r. case
is the ordinary case s ta tement on any tuple of local registers, with any finite number of branches
allowed. ; is the sequential composit ion of processes. [is the parallel composit ion of processes.

3 C o n c r e t e S e m a n t i c s

We denote bo th the shared and local stores by p which is a function from V U (UiVi) to 77, the
domain of values. The semantics is given in terms of a t ransi t ion system generated by the rules
below. The states of the transit ion system are pairs ({p, p '} , p) where P (respectively p ') is the
text of the program yet to be executed on the first processor (respectively second processor) and p
is the value of the global and local memories at this point of the computat ion.

(update) :({update; n, P'}, p) =vd~t------2r ({n, . ' } ,p[. ~- ul)

(scan) :({scan; R, P ' } , p) sca__~n ({n , P '} , ply t-- z'])

(vale) :({(r = f (r l - - , rn)); R, pt}, p) cal~c ({.R, pt}, p[r ~ f (r l . . , rn)])

(case): If 3k, Vi, ui = a k,

(al . . .a~)- p~
" " ; R , P ' , case ({ P k ; R , P ' } , p)

I (ara l : ':" I

228

Otherwise,

(a l . . . a l) : P~
. . . ; R, P' , case ({p; R, P'}, p)

l (,~'...a~') : P, l
\ default : e]

We also add the obvious symmetric rules where we interchange the r61es of P and P ' . In [8],
the semantics was given in terms of Higher-Dimensional Automata (HDA). This played a key
r6le in giving the geometric cha'~acterization of the computable wait-free relations (to be used
in Section 5). As we restricted to binary relations (i.e. to biprocessor computations) the geometric
properties we need to consider are graph-theoretic properties (mainly about the number of connected
components). This is why we simplified the HDA semantics to its skeleton of dimension one, i.e.
the transition system generated by the rules above.

4 A b s t r a c t i o n o f t h e S e m a n t i c s

From the operational semantics of last section, we define some kind of denotational abstraction. We
only retain from the concrete semantics the relation between the input value and the output value
of each process. Formally, the input and output values are nodes of a graph that we will call the
compatibility graph 5 '7 /= (V, E) defined as follows (see Figure 2 for a picture of S[1.Mln77) .

- its set of vertices is V = {P} x 77 U {P'} x 77,
- its set of edges is E = {(Vh v~)/vl = (P, r), v2 = (P~, s)} with the obvious boundaries.

Following [8] we define two projections P1 and Po onto $77. pl only retains the initial value of
the local variable u of P and v ~ of P~. Po only retains the final value of x for P and of x' for P'.
Formally,

- if ({P, P'}, p) is an initial state, Pl ({P, P'}, P) = ((P, p(u)), (P', p(v))),
- if ({e, e}, p) is a final state (e denoting the empty string), po({e, e}, p) = ((P, p(x)), (P', p(x'))).

The image by P1 of the set of initial states for a program {P, P '} is called the input graph Z. The
image by PO of the set of final states is called the output graph O. They are particular eases of the
input complex and output complex (respectively) of [9]. They were seen as the initial and final cuts
of the dynamic HDA semantics (respectively) in [8].
Now the "denotational" relation z~ C_ Z x O, or specification graph, induced by the semantics is

defined as,
(vl, ~)~ (v l , v~)

if and only if

(~1, ~2) = po({~, ~}, p'), - (v l , v 2) = p , C { P , P ' } , p) , ' ' P ' - there is a trace in the semantics of P [starting at state ({P,P~},p) and ending at state

({,~, ~}, p').
We extend the relation A to nodes of the graph as well. Nodes of the specification graph represent
the solo executions of P or 19'. We write them as (vl, .l.) or (P, vl) for the solo execution of P from
state vl, (_1_, v2) or (P ' , v2) for the solo execution of P ' . Then (vl, .1.)A(v~, .L) if and only if there is
a solo execution of P starting with private (i.e. local) state vl and ending with state v~. We have
the obvious similar definition for solo executions of P ' .

229

(P , ~ P , M)

(P ' , I) (P' ,2) (P' ,3) ... (P ' ,M)

Fig. 2. The input graph for values in [1, M/N 77.

5 G e o m e t r i c P r o p e r t i e s

Specification graphs represent the relation computed by programs wri t ten in our wait-free language.
Conversely, given a binary relation, there is a full-abstraction problem: can we determine whether
it can be implemented in our language (that is, whether it is a wait-free binary relation or whether
it is the "denotat ional" semantics of some program in our language)? The answer is yes, and could
be proved as a particular case of a general theorem by M. Herlihy and N. Shavit [12]. The criterion
in our case is as follows. Suppose that P and Pt ran alone (i.e. with the other process not being
fired in parallel) are the identity functions on their inputs, and tha t the allowed initial s tates are
such tha t p(x) = p(y) = .1_ (no prior knowledge is available), then,

L e r n m a 1. Let {el e~} be the image of a segment e = ((P, u), (P', v)) of the input graph under
the relation A, i.e. the set of segments e' such that eAe ~. Then e l , . . . , ek is a path from (P,u) to
(P~, v) in the output graph.

S K E T C H OF PROOF. Looking at the semantics one can prove tha t we can only change one value at a
t ime (i.e. x or x ~) when exchanging information through pairs of scan~update, making a connected
path of value changes. Formally this is proved by induction on the operat ional semantics. For a full
proof of this: look at [7]. []

This geometric condition is satisfied for the pseudo-consensus relation as one can see by looking at
the specification graph of Figure 3.

A

.)

- 2 - _ 2 2 2 2 2 2 ',
(P ' . l) " ' - . , (P , I) (P ' , l) . ~ " (P,I) - - - - - " - - - A b. ~' ~f

. (P ' , l) (P.I) (P ' . l) (P.I)

Fig. 3. The specification of the binary Fig. 4. The specification of the binary consen-
pseudo-consensus, sus.

The s i tuat ion is not quite the same with binary consensus (Figure 4). An easy inspection shows
t ha t the image of the segment ((P, 0), (P ' , 1)) is a set of two disconnected segments, thus violating
L e m m a 1. Therefore, binary consensus cannot be implemented in a wait-free manner . The intui t ion
behind this result is quite simple. Consensus requires tha t a process can tell whether it is the first or

230

last to choose, because otherwise there is no way to be sure that the two processes will agree on any
value. This means it needs a synchronization, a break of the connexity of the cuts of the dynamics
[8]. This is of course impossible in a wait-free language, at least with such simple information
exchanges as atomic scan and updales. Similarly, if the input is given locally to the processes a.s
we supposed in Lemma 1, parallel or (or ordered binary consensus) cannot be implemented in a
wait-free manner. There is though a wait-free solution for parallel or if the input is stored in the
shared memory right from the beginning:

Pro9 = P I P'

P = update; scan; P ' = update; scan;

case v o f case u' o f

1 : u = 1;update 1 : v ~ = l;updale

default : update default : update

A

" (P,O) " " ' ~ (P'.O) (P,O} . " (P'.O)

. . . . 7 , ' - - - . " ,

(P',I) " - . (P,I) (P',I) - ~ " (P.I)

The specification of parallel or.

6 A l g o r i t h m i c s

We will derive the algorithm from Lemma 1. First of all we will try to meet the requirements of
the lemma. This will be the aim of Sections 6.1 and 6.2. Then we will find a way to describe in a
recursive manner all paths e l , . �9 ek that appear in the lemma as image of a segment e. This is the
aim of Section 6.3. Finally we will define the general algorithm in Section 6.4.

6.1 R o t a t i o n of t h e spec i f i ca t ion g r a p h

We wish here to construct part of the code in charge of ensuring that we are left with solving
a specification problem zl such that (u, 3-)A(u, 3-) and (• r)A(• v). Suppose (u, .L)A(f(u) , J_)
and (-L,v)A(3_,g(v)). f and g are partial recursive functions. Then the program Prog = P (f) 1
p'(g) with P (f) and P'(9) defined below solves the specification A if and only if P t P ' solves
the specification A' with (f (u) , J .)A ' (f (u) , 2_), (.L,g(v))A'(.L,g(v)) and (f (u) ,g (v))A ' (f (u ') ,g (v '))

whenever (u, v)A(u' , v').
P (f) = u = f(u); Pt(g) = v' = f(v ') ;

p P '

SKETCH OF PROOF. The line of code before the calls to P and pi only acts on the local memory
of each processor, hence there is no other action than the one deduced from the purely sequential

behaviour of P (f) and P'(g) respectively. []

6.2 M i n i m a l u n f o l d i n g of t h e o u t p u t g r a p h

We now suppose that we have to solve a specification problem with a relation which is such that it
is the identity relation when restricted to the vertices of the graph. We fulfill now the hypotheses

of Lemma 1.
Let e = ((P, u), (P' , v)) be any segment of the input graph, and Ge be the subgraph of the output
graph (connected by Lemma 1), image of e by the specification relation A. Let Ge be the directed
graph generated by Ge where each segment has an inverse. To exemplify the whole process described
in this section, look at Figure 5 for the specification graph corresponding to a segment e = (a, b)

231

(the graph G~ is at the right-hand side of the picture), and to the left of Figure 6 for a picture of G~.
An unfolding of Ge is any path p from (u, .l.) to (_k, v) in Ge such that p traverses all segments of
Ge. The minimal unfolding is the shortest of such paths. Its interest lies in the fact tha t from there
we will be able to generate a code for P and P ' that will implement this subpart of the specification
graph. We will see in next section and in Section 7.2 that the length of this code is linearly related
to the length of this unfolding, hence the usefulness of finding the shortest path to get the most
efficient code.

2

b b b b

Fig. 5. Example of a specification graph. Fig. 6. Minimal unfolding (right) of the graph
(left).

An algorithm for determining such a minimal unfolding is based on a breadth-first traversing strategy
[16] of the graph, the traversing being complete when the criterion "having gone through all non-
oriented segments and ending at (2_, v)" is met. For instance, this algorithm constructs the minimal
unfolding of G~ which is pictured at the right of Figure 6.

6.3 M a i n code

We can now suppose that all paths image by A of any segment of the input graph are made of
distinct segments by the unfolding of last section (one should say, oriented segments). We can also
still suppose that A restricted to vertices is the identity relation.

S u b d i v i s i o n of a s e g m e n t i n to t h r e e s egmen t s The program Prog = P[update] I P'[update]
with P and pt defined below (being programs with one hole D in which we can plug any other
program) implements the specification graph below (the segments not being pictured are mapped
onto themselves).

ease (~, ~) of case (u', r o f ~ (P"Y)
~ (P.•

(~ , r : u = ~';uvdate;fl (~ ,U') : r = y ; u p d a t e ; D (P ' , ' r
default : update default : (P"

]Subdivision of a segment into 3 segments.

SKETCH OF PROOF. Using the semantics, we have the following three possibilities, since the only
possible interactions are between the scan and update statements (the rest of the processes only
act on their local memory),

(i) Suppose the scan operation of P is completed before the update operation of pt is started: P
does not know x ~ so it chooses to write z. Prog ends up with ((P, z), (P' , y)).

(it) Symmetric case: Prog ends up with ((P, x'), (P', y')).
(iii) The scan operations of P and P ' are simulaneous. Pro9 ends up with ((p, x'), (P', y')).

U

232

Example i. - The binary pseudo-consensus whose specification graph is given in Figure 3 is precisely
this program with z = 0, z ' = I, y = 0, y' = 1.
- We can carry on the example specified in Figure 5, setting for instance a = (P, x), b = (P', Z{) and
c = (P' , y) the program implementing the specification (i.e. the subdivision of the segment (a, b)
into the minimal unfolding ((a, c), (c, a), (a, b))) is Prog = P [P ' with,

P = update; scan; P ' = update; scan;

case (u, v) o f case (u', v') o f

(x, b/) : u = x; update (x, yJ) : v' = y; update

Subdiv i s ion of a segment in to a p a t h The program

r X Prog = P (x l , y l , " ' , x . , Y n) I P (1 , Y l , ' " , x ~ , Y .)

with P and P ' defined below, implements the specification graph of the right-hand side,
(P,x)

P(x~, y~ , . . - , x . , y .) = P (~ , y~, * . , y .)

[P(xn, Y . - I , ' " , x~, Yl)]

P ' (z l , Y l , ' " , xn, Yn) = P ' (x l , Yl, an, Yn)

[P ' (x . , y . _ ~ , - - . , ~ , y~)]

/
(p',y')

(P,x)

(P"Y i) <
~ (P,x.~)

(P',Y ~) <'~u
k > (P,x~)

(P"Y" ~) ~'-~k
" /,~ (P,x)

(P',y)~

Subdivision of a segment into a path.

where P (x l , Yl, x . , yn) t P ' (x l , Yl, x . , Yn) is the program of last section with x = xl, y - yI, x' = z~

and yl = y..
SKETCH OF PROOF. The idea is to subdivide the segment (xl, y.) in a recursive manner (see above).
First subdivide (x l , y .) into { (x l , y , .) , (x . , Y l) , (z n , Y n) } by using the program P (z l , y l , z . , y .) [
P ' (x l , yl , x . , yn). Then subdivide recursively (x., yl) into the path of length n - 1 (x., y . - 1 , . . . ,
x2, Yl) using P (z . , y = - l , . . . , x2, yl) I P'(zn, yn - t z2, yl)- Prog works since (as all the segments
(xl, Yi) are distinct) there is no interference between P (z l , yi , x . , y~) and P ' (z . , y~- I x2, yt)
nor between P ' (x l , y l , z . , y .) and P ((z n , y n - l , . . . , x2, yl) . []

Example 2. Consider the specification graph pictured in Figure 7. The minimal unfolding is shown in
two different ways in Figure 8. Using the result above, the code for implementing it is Prog = P I P '
with P = P(0, 0, 0, 0)[P(0, 0, 1, 0)[P(1, 1, 1,0)]] and P' = P'(0, 0, 0, 0)[P'(0, 0,1, 0)[P'(1,1, 1, 0)]].

(P ' , I)

Fig. 7. A specification graph.

(P ' , 0) ~ ff',o)

= (P ' , I) < (P,|)

Fig. 8. The corresponding minimal unfolding and
minimal path.

233

6.4 T h e a l g o r i t h m

The specification graph is given. The algorithm terminates with an error (if the relation specified
is not wait-free) or with the text of the two processes that implements the relation. The algorithm
is as follows,

- Determine the rotation code (Section 6.1),
- For all segments e = ((P, u), (P', v)) of the input graph, do,

�9 determine the connected subgraph Ge of the output graph, image of e under the specification
relation A,

�9 determine the minimal unfolding ((P, xa) . . . (P, xn), (P' , y,)) of G, (Section 6.2),
�9 The program up to that point is

Proge = P(xz yn) I P'(xz Yn)

of Section 6.3,
- Mix the code for all segments.

We saw all the material needed in the previous sections except the "mixing" of the code for all
segments. As a matter of fact, we have shown how to derive a code for the specification of just
one input (a segment). Now we have to mix the codes for all inputs. The idea here is quite simple:
Miz(Prog l , Prog2) (Progz = P1] P~, Prog2 = P~ I P~) is essentially a program whose processes
are Mix(P1, P2) and Mix(P~,P~) such that all their case entries are the union of the case entries
of P1 and P2 (respectively of P~ and P~). Formally, Mix is an operation on processes that can be
defined when applied to the processes that subdivide segments, if (z, y') # (X, y i) ,

M i z (P (x , y, z', Y~)[P1], P(X, Y, X' , Y')[P~]) = update; scan;

case (u, v) o f

(z, yl) : u = x'; update; Pz

(X, Y') : v ~ = XI; update; P2

6.5 E x a m p l e , t h e b i n a r y case

As in [8] we might be interested in the case where the values of the registers are booleans, i.e. 0
or 1. There is then an easy classification theorem of all binary wait-free relations, on which we can
examplify our algorithmic construction. By Lemma 1 we know that all four segments of the input
graph must be mapped onto paths of the output complex, between the respective images of the
vertices. We also know that the output graph must be a subgraph of the binary 2-sphere (which is
the graph pictured in Figure 9).

~.0) ('P',O)

(P',l) (P.I)

Fig. 9. The binary 2-sphere

(h)

r

(c)

Fig. 10. The three possible output graphs for wait-free
binary relations

234

Therefore we have the three possibilities (a), (b), and (c) of Figure 10 for the output graphs (up to
"rotation"). There are actually many more possibilities for the allowed relations between the input
and output complexes.

- A typical "type (a)" program is the identity for processes P and P' . The relation in this case
is therefore the identity relation on the binary 2-sphere. But this is not the only relation of this
type.

- Typical "type (b)" program is pseudo-consensus.
- Typical "type (c)" programs are two constant processes in parallel.

In fact all these can be seen to have a normal form of the type

Mix(P(O, yo, zo, 0), P(O, Y'o, Z'o, 1), P(1, yl, x~, 0), P(1, ~ , z~, I))

7 C o m p a r i s o n w i t h r e l a t e d w o r k

7.1 T h e p a r t i c i p a t i n g set a n d Herlihy~s a l g o r i t h m

The participating set algorithm aims at solving the simplex agreement task of [9], tha t is, a gener-
alization to any number of processors of the specification graph for pseudo-consensus.

c~c.

(p ' , y ')

�9 r162

(p ' y ') - - -

Fig. 11. Herlihy's iterated subdivision on the bi- Fig. 12. The worst complexity case for a specifi-
nary sphere, cation graph.

The intuition behind the algorithm is to subdivide all segments of the input graph, in a uniform
manner, and enough so that all the subdivisions of the segments we need to implement the relation
can be deduced from it. As a matter of fact, if we have subdivided a segment into N segments, then
all subdivisions into M segments, M < N can be deduced from it by just identifying the points in
the finer subdivision which are not needed. The effect of the iterated participating set algorithm is
(as shown in Figure 11) to create at iteration i a subdivision of all segments into 3 ~ segments.

7.2 C o m p l e x i t y m a t t e r s

As one might have already noticed, we have a strong relationship between the length of the minimal
unfoldings, the number of times the program has to test the values of its variables, and the number
of reads in the main memory. Let ~(e) be the maximum number of tests tha t Prog has to make for
all executions starting at segment e. Let s(e) be the maximum number of scan tha t Prog has to
execute for M1 executions starting at segment e. Then, calling p(e) the minimal unfolding of Ge,

L e m m a 2. l e n g t h (p (e)) - 1

235

SKETCH OF PROOF. Looking at the algorithm of Section 6, we see that all paths are recursively
decomposed using the programs of type P(x , y, z ' , y')~] P ' (x , y, z' , y')~ such tha t at iteration x,
we have subdivided e into a path of length 1 + 2r. The cost in terms of tests and accesses to the
main memory of each iteration is one. This entails the result. []

Whereas in ease of Herlihy's algorithm we have up to 3maxe(s(e)) accesses to the shared memory.
In the case when all segments are mapped onto a segment except for one (like the one of Figure
12), the cost of computat ion is the same for all inputs and can be quite enormous. The algorithm
proposed in this article is optimal in the sense that it minimizes s[e) and t(e) for all e whereas
Herlihy's one subdivides all segments a power of three times uniformly.

Notice tha t the maximal complexity of the computation of wait-free relations on [0, M] Cl 2~ is not
very high and is at tained by our implementation for the specification graph shown in Figure 12
(for all input segments). It is such that for M1 inputs e, s(e) = t(e) is asymptotically ~ M 2 with
� 8 9

SKETCH O~ PROOF. In all Ge there are M = segments. Hence an unfolding of G~ has at least. M a
segments and at most 2M = segments. We use Lemma 2 to conclude, t3

8 T e s t & S e t o p e r a t i o n s

In this section we add to the language a test&set operation (t&s) on a flag f shared by the two
processes P and P ' . This is done by extending the case statement to include a test on ~&s(f}. This
simple extension to the language changes quite dramatically what kind of relation it can compute.

L e m m a 3 . The specification graph of the figure below can be implemented in our new language.

SKETCH OF PROOF. The following program implements the "splitting" of one segment into two
others (where ? means any value),

Prog = P I P '

P = update; scan;

case (u, v,t&s(f)) o:
(x, ?, O) : u = z; updale

(z ,y , 1) : u = xl;npdate

P' = update; scan;

case (u', v', t&s(f)) o f

(?, y, 0) : v' = y; update

(z ,y , 1) : v' = g'; update

(P'.Y) (P',y) (P,x') ["l
6

(P.x) (P,x) (p',y')

Splitting of a segment.

The value of t & s (f) is found equal to 0 by the first process which tests it, and is found equal to 1
by the second process which tests it. []

In particular, the binary consensus can be solved using test&set. Now we can state,

T h e o r e m 4 . For the S W A S model between two machines plus test&set on a sharvd flag, the rela-
t ions Zl that can be computed are e~actly the relations such that the image o f any segment (x, y)
is a f ini te union o f connected components, one of which contains (P, x), and one o f which contains
(Q, y).

SKETCH OF PROOF. Basically, a given (finite) program can only split (a finite number of times) a
segment and apply any subdivision on these segments. The constructive algorithm follows immedi-
ately, o

236

9 Conclus ion

We have shown tha t wait-free binary relations could be constructed algorithmically and imple-
mented in a small shared-memory language, giving another proof of the results of [13]. This new
proof is interest ing since it comes directly, th rough simple t ransformat ion steps and geometric
intuit ions, from the semant ics of the language. It is also interesting since it gives an opt imal imple-
menta t ion of these relations in te rms of the number of tests and read/wri te operat ions in the main
(shared) m e m o r y the processes have to execute. Numerous generalizations of this work should be
considered. We ha~e been trying to keep things as simple as possible in this article for making the
main ideas clear. A straightforward generalization would be the construct ion of 1-resilient n-ary
relations (i.e. relations on n processors whose implementa t ion can tolerate up to one failure of a
process) since it involves the same sort of geometric phenomena on graphs. A far less straightfor-
ward generalization would be the construction of S-resilient n-ary relations with t > 2 since this
involves higher-dimensional geometry.

Acknowledgements Many thanks to A. Venet and F. Vgdrine. Diagram macros from P. Taylor.

References

I. E. Borowsky. Capturing the power of resiliency and set consensus in distributed systems. Technical
report, University of California in Los Angeles, 1995.

2. E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous computa-
tions. In Proc. of the ~5th STOC. ACM Press, 1993.

3. S. Chaudhuri. Agreement is harder than consensus: set consensus problems in totally asynchronous
systems. In Proc. of the 9th Annual ACM Symposium on Principles o] Distributed Computing, pages
311-334. ACM Press, August 1990.

4. M. Fisher, N. A. Lynch, and M. S. Paterson. Impossibility of distributed commit with one faulty
process. Journal of the ACM, 32(2):374-382, April 1985.

5. E. Goubault. The Geometry o] Concurrency. PhD thesis, Ecole Normale Sup~rieure, 1995. to be
published, 1997, also available at http://www.ens.fr/'goubanlt.

6. E. Goubault. Schedulers as abstract interpretations of HDA. In Proc. of PEPM'95, La Jolla, June
1995. ACM Press, also available at http://www.eus.fr/'goubault.

7. E. Goubanlt. The dynamics of wait-free distributed computations. Technical report, Research Report
LIENS-96-26, December 1996.

8. E. Goubault. A semantic view on distributed computability and complexity. In Proceedings o]
the 3rd Theory and Formal Methods Section Workshop. Imperial College Press, also available at
http://www.ens.fr/~goubault, 1996.

9. M. Herlihy. A Tutorial on Algebraic Topology and Distributed Computation. Technical report, pre-

sented at UCLA, 1994.
10. M. Herlihy and S. Rajsbaum. Set consensus using arbitrary objects. In Proc. of the 13th Annual ACM

Symposium on Principles of Distributed Computing. ACM Press, August 1994.
11. M. Herlihy and S. Rajsbaum. Algebraic topology and distributed computing, a primer. Technical

report, Brown University, 1995.
12. M. Herlihy and N. Shavit. The asynchronous computability theorem for t-resifient tasks. In Proc. of

the 25th STOC. ACM Press, 1993.
13. M. Herlihy and N. Shavit. A simple constructive computability theorem for wait-free computation. In

Proceedings of STOC'94. ACM Press, 1994.
14: V. Pratt . Modeling concurrency with geometry. In Proc. of the 18th ACM Symposium on Principles

of Programming Languages. ACM Press, 1991.
15. M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public knowledge.

In Proc. of the ~5th STOC. ACM Press, 1993.
16. B. Sedgewick. Algorithms. Addison-Wesley, 1988.
17. R. van Glabbeek. Bisimulation semantics for higher dimensional automata. Technical report, Stanford

University, Manuscript available on the web as http://theory.stanford.edu/'rvg/hda, 1991.

