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A b s t r a c t .  In this article we derive an algorithm for computing the "optimal" wait-free 
program on two processors that implements a given relation from the semantics of a small 
atomic read/write shared-memory parallel language. This algorithm is compared with the 
more general algorithm given in [9, 13] based on the participated set algorithm of [1]. An 
extension to this is given, where we add a test&set primitive to the previous language. This 
work is a natural follow up of [8]. 

1 I n t r o d u c t i o n  a n d  R e l a t e d  W o r k  

The  work reported here is concerned with the robust or fault-tolerant implementa t ion  of distr ibuted 
programs.  More precisely, we are interested in wait-free implementa t ions  on a dis t r ibuted machine  
composed  of two uni ts  communica t ing  through a shared memory  via a tomic  read /wr i te  registers 
(described in Section 2). This  means  tha t  the processes executed on the  two processors (say P and 
P ' )  m u s t  be as loosely coupled as possible so tha t  even if one fails to terminate ,  the  other  will carry 
oil compu ta t i on  and  find a correct partial result. This  excludes all mu tua l  exclusion constructs  such 
as semaphores ,  moni to rs  etc. Wait-freeness is also intended to help solve an efficiency problem: if 
one of the  processors is much  slower than  the other, can we still implement  a given funct ion in such 
a way tha t  the  fas t  process will not have to wait too much  for the slow one? 

This  field of  d is t r ibuted  comput ing  has  received up to now considerable at tent ion.  Typically, one 
is interested in implement ing  a distributed database  in which remote t ransact ions  do not  have 
to wait  for each others.  The  kind of functions we have to consider then is more  like coherence 
relations between the possible local inputs  on each processor and the  final global ou tpu t  of the  
machine.  For instance,  when two transact ions wish to change the same shared i tem in the  da tabase  
in an  asynchronous  manner ,  one has to choose which transact ion will get  the  leading r61e, to keep 
the  da tabase  coherent .  This  is the  well known consensus problem. Formally, if we represent the  
values of  the  shared  i tems by integers then the  consensus problem is the  i n p u t / o u t p u t  relation 
A C (77 x 77) x (27 x 77) defined as follows, given tha t  a pair of  integers represents a pair of local 
values on P ,  P'. 

(a) For all integers i, (i, i )A( i ,  i). This  means  tha t  if P and P '  s ta r t  with the same  local input  value 
i, then  they m u s t  end with the same  ou tpu t  value i as well. This  corresponds to the  fact tha t  they  
can only agree on the  value i in tha t  case. 

(b) For all i, j ,  ( i , j )Zl ( i ,  i) : if P and P '  s tar t  with different local input  values, say i, j ,  then  P and  
p i  can agree on value i. 

(c) For all i, j ,  ( i , j ) A ( j , j )  : p and p / c a n  also agree on value j .  

W h a t  if now one of the  two processors fails to terminate?  If we represent failure by the  symbol  _1., 
then  the  coherence relation A has  to be extended so tha t  it expresses the  behaviour  of  the  sys tem 
in nas ty  cases. 

(d) For all i, (i, _l_)A(i,.l.) : if  P '  fails then P mus t  te rminate  and stick to its local value i. 

We should also a s sume  (e) for all j ,  (-l-,j)z2(_L,j) : if P fails then P~ m u s t  t e rmina te  and stick to 
its local value j .  
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In fact, i t  is well known tha t  this relation cannot  be implemented in a wait-free manner  on a shared 
memory machine with atomic read/wri te  registers [4], whereas the following approximate  consensus, 
called pseudo-consensus in [9], has a solution: 

(a') For all i, j booleans, (i,j) A(i, i), ( i , j)A(j, j) .  This is the same as (a), (b) and (c) (for boolean 
values 0 and 1). 

(b ' )  (0, 1)A(1,0).  
(c') Same as (d) and (e). 

We have just  slightly relaxed the agreement problem by adding rule (b') specifying tha t  we could 
agree except for input  (0~ 1) where a minor  error is tolerated. We can implement  this one in a 
wait-free manner ,  as will be shown in Section 6.5. 

We follow here the geometric view on distr ibuted computa t ion used in recent l i t terature  in dis- 
t r ibuted protocols [2, 3, 9, 10, 11, t2, 13, 15] and in some ways in recent t i t terature  in semantics 
of concurrency [6, 8, 5, 14, 17]. The idea is tha t  wait-free relations exhibit  some geometr ical  prop- 
erties (Section 5). We give another  way of proving this (with respect to the way of M. Herlihy, N. 
Shavit  and S. Rajsbaum),  s tar t ing with a semantics of a shared memory language, br inging these 
considerations close to the semantics and language people. 

Not  only do these relations exhibit  certain properties, but  conversely any relation which exhibits  
these properties can be constructed algorithmically at  least in the case of two processors. We derive 
a different algori thm than the one of [9, 13] based on the part icipating set a lgor i thm of [1] directly 
from the semantics of our language (Section 6). I ts short  proof stems directly from its construction.  
Then,  after giving a few examples, we compare bo th  algori thms (Section 7) and show tha t  ours gives 
the  programs with the min imum number  of comparisons and accesses to the shared memory  for all 
possible executions, hence produces the most  efficient code for comput ing any wait-free relation. 

This  in turn  is generalized to deal with a new computabi l i ty  result concerning a tomic  read/wri te  
shared memory plus a test~zset primitive.  It  can be shown now tha t  any "finite" binary relation 
can be computed,  and a general algori thm for doing so is sketched in Section 8. 

2 T h e  m a c h i n e  a n d  l a n g u a g e  

We consider a shared memory machine with two processors such as the  one pictured in Figure 1. 
The  shared memory is formalized by a collection of registers V = {x, x~}. Processor P (rasp. P') has 

I,, I . '  .... [ . . . . .  ITI P u ~ r ] u" v' r" P' 

READ / 

Processes 

Shared Memory  

Fig. 1. Sketch of a shared memory machine with atomic read/write registers. 

a local memory composed of locations Vp = {u, v, r - . - }  (resp. Vp, - {u', v', r . . . .  }). All reads and 
writes are done in an asynchronous manner  on the shared memory. There is no conflict in reads, 
nor in writes since we ensure tha t  the writes of dist inct  processors are made on dist inct  par t s  of the  
shared memory (P  is only allowed to write on x, P~ is only allowed to write on x~: SWAS or Single 

Write Atomic Snapshot  model). 
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We use the following syntax for the shared memory language handling this machine. We first have 
a g rammar  for instructions I, and then another  one for processes P, 

I := update  ] scan [ r = f ( ra  , . . - ,  r,~) 

where r, r l , - - . ,  rn are local registers and f is any partial recursive function. 

P : = I  

[ case (Ul, 42 . . . . .  Uk) of  
"1 1 ( a l , a  2 . . . . .  a l ) :  P 

n n (al,a2 . . . . .  a~) : P 

d e f a u l t  : P 

] P;P 

where (ui) i  are any local registers. We suppose tha t  all tuples (a~)i are different. Programs are 
P r o g  := (P  I P )  (we are considering programs on two processors only), update  is the instruct ion 
tha t  writes the local value u (resp, v') of processor P (resp. P~) in the shared variable x (resp. x~). 
scan  reads the shared array in one round and stores it into a local register of the process in which 
it is executed, scan  executed in P (resp. P ' )  stores ~' (resp. x) in v (resp. u'). r = f ( r l , - - - , r n )  
computes the part ial  recursive function f with arguments  r l ,  - . . ,  rn and stores the result in r. case 
is the ordinary case s ta tement  on any tuple of local registers, with any finite number  of branches 
allowed. ; is the sequential composit ion of processes. [ is the parallel composit ion of processes. 

3 C o n c r e t e  S e m a n t i c s  

We denote bo th  the shared and local stores by p which is a function from V U (UiVi) to 77, the 
domain  of values. The  semantics is given in terms of a t ransi t ion system generated by the rules 
below. The  states  of the transit ion system are pairs ({p, p '} ,  p) where P (respectively p ' )  is the 
text of the program yet to be executed on the first processor (respectively second processor) and p 
is the value of the global and local memories at  this point  of the computat ion.  

(update) :({update; n, P'}, p) =vd~t------2r ({n, . ' } ,p[ .  ~- ul) 

(scan) :({scan; R,  P ' } ,  p) sca__~n ({n ,  P '} ,  ply t-- z']) 

(vale) :({(r  = f ( r l - - ,  rn));  R, pt}, p) cal~c ({.R, pt}, p[r ~ f ( r l . . ,  rn)]) 

(case): If 3k,  Vi, ui  = a k, 

(al . . .a~)-  p~ 
" "  ; R , P '  , case ( { P k ; R , P ' } , p )  

I (ara l : ':" I 
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Otherwise, 

( a l . . . a l ) :  P~ 
. . .  ; R, P' , case ({p; R, P'}, p) 

l (,~'...a~') : P, l 
\ default : e ] 

We also add the obvious symmetric rules where we interchange the r61es of P and P ' .  In [8], 
the semantics was given in terms of Higher-Dimensional Automata (HDA). This played a key 
r6le in giving the geometric cha'~acterization of the computable wait-free relations (to be used 
in Section 5). As we restricted to binary relations (i.e. to biprocessor computations) the geometric 
properties we need to consider are graph-theoretic properties (mainly about the number of connected 
components). This is why we simplified the HDA semantics to its skeleton of dimension one, i.e. 
the transition system generated by the rules above. 

4 A b s t r a c t i o n  o f  t h e  S e m a n t i c s  

From the operational semantics of last section, we define some kind of denotational abstraction. We 
only retain from the concrete semantics the relation between the input value and the output value 
of each process. Formally, the input and output values are nodes of a graph that  we will call the 
compatibility graph 5 '7 /=  (V, E) defined as follows (see Figure 2 for a picture of S[1.Mln77 ) . 

- its set of vertices is V = {P} x 77 U {P'} x 77, 
- its set of edges is E = {(Vh v~)/vl = (P, r), v2 = (P~, s)} with the obvious boundaries. 

Following [8] we define two projections P1 and Po onto $77. pl only retains the initial value of 
the local variable u of P and v ~ of P~. Po only retains the final value of x for P and of x' for P'. 
Formally, 

- if ({P, P'}, p) is an initial state, Pl ({P, P'},  P) = ((P, p(u)), (P', p(v))), 
- if ({e, e}, p) is a final state (e denoting the empty string), po({e, e}, p) = ((P, p(x)), (P', p(x'))). 

The image by P1 of the set of initial states for a program {P, P '} is called the input graph Z. The 
image by PO of the set of final states is called the output graph O. They are particular eases of the 
input complex and output complex (respectively) of [9]. They were seen as the initial and final cuts 
of the dynamic HDA semantics (respectively) in [8]. 
Now the "denotational" relation z~ C_ Z x O, or specification graph, induced by the semantics is 

defined as, 
(vl, ~ )~ (v l ,  v~) 

if and only if 

(~1, ~2) = po({~, ~}, p'), - ( v l , v 2 ) = p , C { P , P ' } , p ) ,  ' ' P '  - there is a trace in the semantics of P [ starting at state ({P,P~},p) and ending at state 

({,~, ~}, p'). 
We extend the relation A to nodes of the graph as well. Nodes of the specification graph represent 
the solo executions of P or 19'. We write them as (vl, .l.) or (P, vl) for the solo execution of P from 
state vl, (_1_, v2) or (P ' ,  v2) for the solo execution of P ' .  Then (vl, .1.)A(v~, .L) if and only if there is 
a solo execution of P starting with private (i.e. local) state vl and ending with state v~. We have 
the obvious similar definition for solo executions of P ' .  
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( P , ~ P , M )  

(P ' , I )  (P' ,2) (P' ,3)  ... (P ' ,M) 

Fig. 2. The input graph for values in [1, M/N 77. 

5 G e o m e t r i c  P r o p e r t i e s  

Specification graphs represent the relation computed by programs wri t ten  in our wait-free language. 
Conversely, given a binary relation, there is a full-abstraction problem: can we determine whether 
it can be implemented in our language (that  is, whether it is a wait-free binary relation or whether 
it is the "denotat ional"  semantics of some program in our language)? The  answer is yes, and could 
be proved as a particular case of a general theorem by M. Herlihy and N. Shavit  [12]. The  criterion 
in our case is as follows. Suppose that  P and Pt ran alone (i.e. with the other  process not  being 
fired in parallel) are the identity functions on their inputs, and tha t  the allowed initial s tates  are 
such tha t  p(x) = p(y) = .1_ (no prior knowledge is available), then, 

L e r n m a  1. Let {el . . . . .  e~} be the image of a segment e = ((P, u), (P', v)) of the input graph under 
the relation A, i.e. the set of segments e' such that eAe ~. Then e l , . . . , ek  is a path from (P,u) to 
(P~, v) in the output graph. 

S K E T C H  OF PROOF. Looking at the semantics one can prove tha t  we can only change one value at  a 
t ime (i.e. x or x ~) when exchanging information through pairs of scan~update, making a connected 
path  of value changes. Formally this is proved by induction on the operat ional  semantics.  For a full 
proof  of this: look at  [7]. [] 

This  geometric condition is satisfied for the pseudo-consensus relation as one can see by looking at  
the specification graph of Figure 3. 

A 

. . . . . . . . .  ) . . . . . . . . . . . . . . . . . . . .  . . . .  

- 2 - _ 2 2 2 2 2 2  ', 
(P ' . l )  " ' - . , ( P , I )  (P ' , l )  . ~ "  (P,I) - - - - -  " - - -  A . . . . .  b. ~' ~f 

. . . . . . . .  (P ' , l )  (P.I) (P ' . l )  (P.I) 

Fig. 3. The specification of the binary Fig. 4. The specification of the binary consen- 
pseudo-consensus, sus. 

The  s i tuat ion is not  quite the same with binary consensus (Figure 4). An easy inspection shows 
t ha t  the image of the segment ((P, 0), (P ' ,  1)) is a set of two disconnected segments, thus  violating 
L e m m a  1. Therefore, binary consensus cannot be implemented in a wait-free manner .  The intui t ion 
behind this result  is quite simple. Consensus requires tha t  a process can tell whether  it is the first or 
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last to choose, because otherwise there is no way to be sure that  the two processes will agree on any 
value. This means it needs a synchronization, a break of the connexity of the cuts of the dynamics 
[8]. This is of course impossible in a wait-free language, at least with such simple information 
exchanges as atomic scan and updales. Similarly, if the input is given locally to the processes a.s 
we supposed in Lemma 1, parallel or (or ordered binary consensus) cannot be implemented in a 
wait-free manner. There is though a wait-free solution for parallel or if the input is stored in the 
shared memory right from the beginning: 

Pro9 = P I P' 

P = update; scan; P '  = update; scan; 

case v o f  case u' o f  

1 : u = 1;update 1 : v ~ = l;updale 

default  : update default  : update 

A 

" (P,O) " " ' ~  (P'.O) (P,O} . "  (P'.O) 

. . . .  7 , ' - - - .  " ,  

(P',I) " - .  (P,I) (P',I) - ~ "  (P.I) 

The specification of parallel or. 

6 A l g o r i t h m i c s  

We will derive the algorithm from Lemma 1. First of all we will try to meet the requirements of 
the lemma. This will be the aim of Sections 6.1 and 6.2. Then we will find a way to describe in a 
recursive manner all paths e l , .  �9 ek that  appear in the lemma as image of a segment e. This is the 
aim of Section 6.3. Finally we will define the general algorithm in Section 6.4. 

6.1 R o t a t i o n  of  t h e  spec i f i ca t ion  g r a p h  

We wish here to construct part  of the code in charge of ensuring that  we are left with solving 
a specification problem zl such that  (u, 3-)A(u, 3-) and (• r )A(•  v). Suppose (u, .L)A(f(u) ,  J_) 
and (-L,v)A(3_,g(v)). f and g are partial recursive functions. Then the program Prog = P ( f )  1 
p'(g) with P ( f )  and P'(9) defined below solves the specification A if and only if P t P '  solves 
the specification A' with ( f (u) ,  J . )A ' ( f (u) ,  2_), (.L,g(v))A'(.L,g(v)) and ( f (u ) ,g (v ) )A ' ( f (u ' ) ,g (v ' ) )  

whenever (u, v)A(u' ,  v'). 
P ( f )  = u = f(u);  Pt(g) = v' = f(v ' ) ;  

p P '  

SKETCH OF PROOF. The line of code before the calls to P and pi only acts on the local memory 
of each processor, hence there is no other action than the one deduced from the purely sequential 

behaviour of P ( f )  and P'(g) respectively. [] 

6.2 M i n i m a l  u n f o l d i n g  of  t h e  o u t p u t  g r a p h  

We now suppose that  we have to solve a specification problem with a relation which is such that  it 
is the identity relation when restricted to the vertices of the graph. We fulfill now the hypotheses 

of Lemma 1. 
Let e = ((P, u), (P' ,  v)) be any segment of the input graph, and Ge be the subgraph of the output 
graph (connected by Lemma 1), image of e by the specification relation A. Let Ge be the directed 
graph generated by Ge where each segment has an inverse. To exemplify the whole process described 
in this section, look at Figure 5 for the specification graph corresponding to a segment e = (a, b) 
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(the graph G~ is at the right-hand side of the picture), and to the left of Figure 6 for a picture of G~. 
An unfolding of Ge is any path p from (u, .l.) to (_k, v) in Ge such that  p traverses all segments of 
Ge. The minimal unfolding is the shortest of such paths. Its interest lies in the fact tha t  from there 
we will be able to generate a code for P and P '  that will implement this subpart of the specification 
graph. We will see in next section and in Section 7.2 that the length of this code is linearly related 
to the length of this unfolding, hence the usefulness of finding the shortest path to get the most 
efficient code. 

2 

b b b b 

Fig. 5. Example of a specification graph. Fig. 6. Minimal unfolding (right) of the graph 
(left). 

An algorithm for determining such a minimal unfolding is based on a breadth-first traversing strategy 
[16] of the graph, the traversing being complete when the criterion "having gone through all non- 
oriented segments and ending at (2_, v)" is met. For instance, this algorithm constructs the minimal 
unfolding of G~ which is pictured at the right of Figure 6. 

6.3 M a i n  code  

We can now suppose that  all paths image by A of any segment of the input graph are made of 
distinct segments by the unfolding of last section (one should say, oriented segments). We can also 
still suppose that  A restricted to vertices is the identity relation. 

S u b d i v i s i o n  of  a s e g m e n t  i n to  t h r e e  s egmen t s  The program Prog = P[update] I P'[update] 
with P and pt defined below (being programs with one hole D in which we can plug any other 
program) implements the specification graph below (the segments not being pictured are mapped 
onto themselves). 

ease (~, ~) of  case (u', r  o f  ~ (P"Y) 
~ (P.• 

( ~ , r  : u =  ~';uvdate;fl (~ ,U' )  : r = y ; u p d a t e ; D  ( P ' , ' r  
default : update default : (P" 

]Subdivision of a segment into 3 segments. 

SKETCH OF PROOF. Using the semantics, we have the following three possibilities, since the only 
possible interactions are between the scan and update statements (the rest of the processes only 
act on their local memory), 

(i) Suppose the scan operation of P is completed before the update operation of pt  is started: P 
does not know x ~ so it chooses to write z. Prog ends up with ((P, z), (P' ,  y)). 

(it) Symmetric case: Prog ends up with ((P, x'), (P',  y')). 
(iii) The scan operations of P and P '  are simulaneous. Pro9 ends up with ((p, x'), (P', y')). 

U 
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Example i. - The binary pseudo-consensus whose specification graph is given in Figure 3 is precisely 
this program with z = 0, z '  = I, y = 0, y' = 1. 
- We can carry on the example specified in Figure 5, setting for instance a = (P, x), b = (P', Z{) and 
c = (P' ,  y) the program implementing the specification (i.e. the subdivision of the segment (a, b) 
into the minimal unfolding ((a, c), (c, a), (a, b))) is Prog = P [ P '  with, 

P = update; scan; P '  = update; scan; 

case (u, v) o f  case (u', v') o f  

(x, b/) : u = x; update (x, yJ) : v' = y; update 

Subdiv i s ion  of  a segment  in to  a p a t h  The program 

r X Prog = P ( x l , y l , " ' , x . , Y n )  I P ( 1 , Y l , ' " , x ~ , Y . )  

with P and P '  defined below, implements the specification graph of the right-hand side, 
(P,x) 

P(x~, y~ , . . - ,  x . ,  y . )  = P ( ~ ,  y~, * . ,  y . )  

[P(xn,  Y . - I , ' " ,  x~, Yl)] 

P ' (z l ,  Y l , ' " ,  xn, Yn) = P ' ( x l ,  Yl, an, Yn) 

[ P ' ( x . ,  y . _ ~ , - - . ,  ~ ,  y~)] 

/ 
(p',y') 

(P,x) 

(P"Y i ) <  
~ (P,x.~) 

(P',Y ~ ) <'~u 
k >  (P,x~) 

(P"Y" ~) ~'-~k 
" /,~ (P,x) 

(P',y)~ 

Subdivision of a segment into a path. 

where P ( x l ,  Yl, x . ,  yn) t P ' ( x l ,  Yl, x . ,  Yn) is the program of last section with x = xl, y - yI, x' = z~ 

and yl = y..  
SKETCH OF PROOF. The idea is to subdivide the segment (xl, y.) in a recursive manner (see above). 
First subdivide ( x l , y . )  into { ( x l , y , . ) , ( x . , Y l ) , ( z n , Y n ) }  by using the program P ( z l , y l , z . , y . )  [ 
P ' ( x l ,  yl ,  x . ,  yn). Then subdivide recursively (x.,  yl) into the path of length n - 1 (x.,  y . - 1 , . . . ,  
x2, Yl) using P ( z . ,  y = - l , . . . ,  x2, yl) I P'(zn,  yn - t  . . . . .  z2, yl)- Prog works since (as all the segments 
(xl, Yi) are distinct) there is no interference between P ( z l ,  yi ,  x . ,  y~) and P ' ( z . ,  y~- I  . . . . .  x2, yt)  
nor between P ' ( x l , y l , z . , y . )  and P ( ( z n , y n - l , . . . ,  x2, yl) .  [] 

Example 2. Consider the specification graph pictured in Figure 7. The minimal unfolding is shown in 
two different ways in Figure 8. Using the result above, the code for implementing it is Prog = P I P '  
with P = P(0, 0, 0, 0)[P(0, 0, 1, 0)[ P(1, 1, 1,0)]] and P'  = P'(0, 0, 0, 0)[P'(0, 0,1, 0)[P'(1,1, 1, 0)]]. 

( P ' , I )  

Fig. 7. A specification graph. 

( P ' , 0 ) ~  ff',o) 

= ( P ' , I ) <  (P,|) 

Fig. 8. The corresponding minimal unfolding and 
minimal path. 
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6.4 T h e  a l g o r i t h m  

The specification graph is given. The algorithm terminates with an error (if the relation specified 
is not wait-free) or with the text of the two processes that  implements the relation. The algorithm 
is as follows, 

- Determine the rotation code (Section 6.1), 
- For all segments e = ((P, u), (P', v)) of the input graph, do, 

�9 determine the connected subgraph Ge of the output graph, image of e under the specification 
relation A, 

�9 determine the minimal unfolding ((P, xa) . . .  (P, xn), (P' ,  y,)) of G,  (Section 6.2), 
�9 The program up to that  point is 

Proge = P(xz . . . . .  yn) I P'(xz . . . . .  Yn) 

of Section 6.3, 
- Mix the code for all segments. 

We saw all the material needed in the previous sections except the "mixing" of the code for all 
segments. As a matter  of fact, we have shown how to derive a code for the specification of just  
one input (a segment). Now we have to mix the codes for all inputs. The idea here is quite simple: 
Miz(Prog l ,  Prog2) (Progz = P1 ] P~, Prog2 = P~ I P~) is essentially a program whose processes 
are Mix(P1,  P2) and Mix(P~,P~) such that  all their case entries are the union of the case entries 
of P1 and P2 (respectively of P~ and P~). Formally, Mix is an operation on processes that  can be 
defined when applied to the processes that  subdivide segments, if (z, y') # (X, y i ) ,  

M i z ( P ( x ,  y, z', Y~)[P1], P(X,  Y, X' ,  Y')[P~]) = update; scan; 

case (u, v) o f  

(z, yl) : u = x'; update; Pz 

(X, Y')  : v ~ = XI; update; P2 

6.5 E x a m p l e ,  t h e  b i n a r y  case 

As in [8] we might be interested in the case where the values of the registers are booleans, i.e. 0 
or 1. There is then an easy classification theorem of all binary wait-free relations, on which we can 
examplify our algorithmic construction. By Lemma 1 we know that all four segments of the input 
graph must be mapped onto paths of the output complex, between the respective images of the 
vertices. We also know that  the output graph must be a subgraph of the binary 2-sphere (which is 
the graph pictured in Figure 9). 

~.0) ('P',O) 

(P',l) (P.I) 

Fig. 9. The binary 2-sphere 

( h )  

r 

(c) 

Fig. 10. The three possible output graphs for wait-free 
binary relations 
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Therefore we have the three possibilities (a), (b), and (c) of Figure 10 for the output  graphs (up to 
"rotation"). There are actually many more possibilities for the allowed relations between the input 
and output complexes. 

- A typical "type (a)" program is the identity for processes P and P' .  The relation in this case 
is therefore the identity relation on the binary 2-sphere. But this is not the only relation of this 
type. 

- Typical "type (b)" program is pseudo-consensus. 
- Typical "type (c)" programs are two constant processes in parallel. 

In fact all these can be seen to have a normal form of the type 

Mix(P(O, yo, zo, 0), P(O, Y'o, Z'o, 1), P(1, yl, x~, 0), P(1, ~ ,  z~, I)) 

7 C o m p a r i s o n  w i t h  r e l a t e d  w o r k  

7.1 T h e  p a r t i c i p a t i n g  set  a n d  Herlihy~s a l g o r i t h m  

The participating set algorithm aims at solving the simplex agreement task of [9], tha t  is, a gener- 
alization to any number of processors of the specification graph for pseudo-consensus. 

c~c. 

( p ' , y ' )  

�9 r162 

(p '  y ' ) - - -  

Fig. 11. Herlihy's iterated subdivision on the bi- Fig. 12. The worst complexity case for a specifi- 
nary sphere, cation graph. 

The intuition behind the algorithm is to subdivide all segments of the input graph, in a uniform 
manner, and enough so that  all the subdivisions of the segments we need to implement the relation 
can be deduced from it. As a matter of fact, if we have subdivided a segment into N segments, then 
all subdivisions into M segments, M < N can be deduced from it by just  identifying the points in 
the finer subdivision which are not needed. The effect of the iterated participating set algorithm is 
(as shown in Figure 11) to create at iteration i a subdivision of all segments into 3 ~ segments. 

7.2 C o m p l e x i t y  m a t t e r s  

As one might have already noticed, we have a strong relationship between the length of the minimal 
unfoldings, the number of times the program has to test the values of its variables, and the number 
of reads in the main memory. Let ~(e) be the maximum number of tests tha t  Prog has to make for 
all executions starting at segment e. Let s(e) be the maximum number of scan tha t  Prog has to 
execute for M1 executions starting at segment e. Then, calling p(e) the minimal unfolding of Ge, 

L e m m a  2. l e n g t h ( p ( e )  ) - 1 
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SKETCH OF PROOF. Looking at the algorithm of Section 6, we see that  all paths are recursively 
decomposed using the programs of type P(x ,  y, z ' ,  y')~ ] P ' (x ,  y, z' ,  y')~ such tha t  at  iteration x, 
we have subdivided e into a path  of  length 1 + 2r. The cost in terms of  tests and accesses to the 
main memory  of each iteration is one. This entails the result. [] 

Whereas in ease of Herlihy's algorithm we have up to 3maxe(s(e)) accesses to the shared memory. 
In the case when all segments are mapped onto a segment except for one (like the one of Figure 
12), the cost of computat ion is the same for all inputs and can be quite enormous. The algorithm 
proposed in this article is optimal in the sense that  it minimizes s[e) and t(e) for all e whereas 
Herlihy's one subdivides all segments a power of three times uniformly. 

Notice tha t  the maximal  complexity of the computation of wait-free relations on [0, M] Cl 2~ is not 
very high and is at tained by our implementation for the specification graph shown in Figure 12 
(for all input  segments).  It is such that  for M1 inputs e, s(e) = t(e) is asymptotically ~ M  2 with 
� 8 9  

SKETCH O~ PROOF. In all Ge there are M = segments. Hence an unfolding of G~ has at least. M a 
segments and at most  2M = segments. We use Lemma 2 to conclude, t3 

8 T e s t & S e t  o p e r a t i o n s  

In this section we add to the language a test&set operation (t&s) on a flag f shared by the two 
processes P and P ' .  This is done by extending the case statement to include a test on ~&s(f}.  This 
simple extension to the language changes quite dramatically what kind of relation it can compute.  

L e m m a 3 .  The specification graph of the figure below can be implemented in our new language. 

SKETCH OF PROOF. The following program implements the "splitting" of one segment into two 
others (where ? means any value), 

Prog = P I P '  

P = update; scan; 

case (u, v,t&s(f)) o: 
(x, ?, O) : u = z; updale 

(z ,y ,  1) : u = xl;npdate 

P'  = update; scan; 

case (u', v', t&s( f ) )  o f  

(?, y, 0) : v' = y; update 

(z ,y ,  1) : v' = g'; update 

(P'.Y) (P',y) (P,x') [ "l 
6 

(P.x) (P,x) (p',y') 

Splitting of  a segment. 

The value of t & s ( f )  is found equal to 0 by the first process which tests it, and is found equal to 1 
by the second process which tests it. [] 

In particular, the binary consensus can be solved using test&set. Now we can state,  

T h e o r e m 4 .  For the S W A S  model between two machines plus test&set  on a sharvd flag, the rela- 
t ions Zl that can be computed are e~actly the relations such that the image o f  any segment (x, y) 
is a f ini te  union o f  connected components, one of  which contains (P, x), and one o f  which contains 
(Q, y). 

SKETCH OF PROOF. Basically, a given (finite) program can only split (a finite number of times) a 
segment and apply any subdivision on these segments. The constructive algorithm follows immedi-  
ately, o 
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9 Conclus ion  

We have shown tha t  wait-free binary relations could be constructed algorithmically and imple- 
mented  in a small  shared-memory  language, giving another  proof of  the  results of  [13]. This  new 
proof is interest ing since it comes directly, th rough simple t ransformat ion steps and geometric 
intuit ions,  from the semant ics  of  the language. It is also interesting since it gives an  opt imal  imple- 
menta t ion  of  these relations in te rms  of the  number  of  tests  and read/wri te  operat ions in the main  
(shared) m e m o r y  the processes have to execute. Numerous  generalizations of this  work should be 
considered. We ha~e been trying to keep things as simple as possible in this  article for making  the  
main  ideas clear. A straightforward generalization would be the construct ion of 1-resilient n-ary  
relations (i.e. relations on n processors whose implementa t ion  can tolerate up to one failure of  a 
process) since it involves the  same sort of  geometric phenomena  on graphs.  A far less straightfor-  
ward generalization would be the construction of S-resilient n-ary  relations with t > 2 since this  
involves higher-dimensional  geometry. 

Acknowledgements Many thanks  to A. Venet and F. Vgdrine. Diagram macros from P. Taylor. 
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