
Termination Proofs Using gpo Ordering Constraints

Thomas Genet and Isabelle Gnaedig

INRIA Lorraine & CRIN CNRS - BP 101
54602 Villers-l~s-Nancy CEDEX FRANCE

Phone: (+33) 3-83-59-30-18 - Fax: (+33) 3-83-27-83-19
E-mail: {Thomas.Genet, Isabelle.Gnaedig}@loria.fr

Abst rac t . We present here an algorithm for proving termination of
term rewriting systems by gpo ordering constraint solving. The algo-
rithm gives, as automatically as possible, an appropriate instance of the
gpo generic ordering proving termination of a given system. Constraint
solving is done efficiently thanks to a DAG shared term data structure.

1 I n t r o d u c t i o n

To prove termination of a Term Rewrite System (TRS for short), the most
commonly used method is to define a well-founded ordering between terms and
show that each rewrite step is a strictly decreasing step. In general, the proof
is made by verification: orderings are proposed by the user and tested until an
appropriate one is found.

Our goal here is to reduce human expertise by working in a constructive way:
starting from constraints on a generic ordering, we help the user to build an
appropriate specific instance of this ordering by using semi-automatic constraint
solving methods.

The generic ordering, we start from, is the general path ordering (gpo) de-
signed by Dershowitz and Hoot [2] for expressing in a single notion a large set
of well known orderings: syntactic orderings such as rpo [10] or Ipo [8], as well
as semantic orderings like spo [8] or polynomial orderings [9]. It is based on a
lexicographic combination of terminat ion]unctions. Particular orderings, such
as those cited above, are obtained by instantiating termination functions with
particular values.

Our idea here is to combine the genericity of gpo with the constructive power
of the constraint approach, to provide a method as automatic as possible for
proving termination of TRS. Starting from inequalities on a general path or-
dering, we reduce the set of possible instantiations of termination functions by
constraint solving, until a particular ordering is found when possible.

The problem tackled here is different from the constraint approach of or-
dering problems already proposed [1, 13, 14, 12, 7]. All are concerned with the
satisfiability problem of ordering constraints (existence of a ground substitution
validating the ordering constraints). In our approach however, we t ry to find
a gpo ordering for validating inequalities between terms with variables, for any
value of the variables.

250

2 T h e s t a r t i n g p o i n t : g p o

Let F be a set of function symbols with arity, X a set of variable symbols,
T(F, X) the set of terms defined on F and X, and T (F) the set of ground
terms. For definitions of multiset, ordering, quasi-ordering, multiset extension,
lexicographic extension, well-founded ordering, rewriting, see [3].

Let us recall the definition of gpo ordering from [2]. This definition is based on
component orderings defined as follows. A component ordering on T (F) is a pair
(~i, _>i) such that (i) ~?i is a homomorphism from T (F) to an algebra A and >_i
is a well-founded quasi-ordering on A, or (ii) ~i is a function (called multiset ex-
traction function in [2]) from terms to multisets of selected immediate subterms,
that is ~ i (f (s l ; . . . , S n)) = { s j l , . . . , s j ~ } , such that j l ,j,~ E { 1 , . . . , n } and
~4 is the multiset extension of gpo itself.

For any quasi-ordering _>i, we have: ~i = ~i A _<i and >i = _>i f1 ~i.
The ~i are called gpo termination functions. For any term s e T (F) , we denote
by 04,j(s) the tuple (t?4(s),...,Sj(s)), where 0 < i < j and ~4, . . . ,0 j are gpo
termination functions. Let >le~ be the associated ordering, i.e the lexicographic
combination of orderings >4 , . . . , >j , and ~lex be the associated equivalence, i.e.
the lexicographic combination of equivalences ~ i , . . . , - ~ j , such that >4 , . . . , > j
and ~ i , . . . , _~ j are respectively related to the homomorphisms 0i,...,tOj. Let
>_le~ be the relation >lex U -~lCx. We denote (~0,k by (9.

Def in i t i on 1. (General Path Ordering)(Dershowitz & Hoot [2]). Let (04, _>4) be
component orderings. The general path ordering >_gpo on T (F) is inductively
defined by >_gpo = >gpo U ~gpo where s = f (s l , . . . , s n) >gpo g (t l , . . . , t m) = t
iff either (i) s4 >_gpo t for some subterm s4 of s, or (ii) s >gpo t l , . . . , s >gpo tm
and O(s) >lex O(t). The equivalence ~gpo is defined by s = f (s l , . . . , s~) ~gpo
g (t l , . . . , t m) = t i f f s >gpo t l , . . ' , s >gpo tin, t >gpo S l , . . . , t >gpo sn and
e(s) e(t).

T h e o r e m 2. (Dershowitz ~ Hoot [2]) Let ~-gpo be a gpo. A rewrite system R
terminates on T (F) if (i) la >gpo ra for all rules l -+ r of R, all ground substi-
tution a and, (ii) Vs , t E T (F) , s -+R t and s ~gpo t implies f (. . . , s , . . .) ~_gpo
f (. . . , t , . . .) for any ground context f (.).

Let �9 = (To,k,~le~) be a specific instance of (O, >__l~), where 70,k is the com-
bination of gpo termination functions TO,..., ~'k, and ~ o , . " , ~k are the related
quasi-orderings; ~-t~ is the lexicographic combination of ~ o , . . . , ~'k, ~ t ~ is the
lexicographic combination of ~ 0 , . . . , ~ , and ~e~ = ~e~ U ~e~. When choos-
ing a specific �9 -- (To,~, ~ l ~) for (O, > t~) , we obtain instances of gpo, such
as for example lexicographic path ordering (Kamin ~: L~vy [8]), multiset path
ordering, polynomial path ordering (Lankford [9]). For more details, see I2]. An

~"gpo" instance of the gpo based on a particular �9 = (T0,k, ~tex) will be denoted
For operationally proving termination of TRSs with gpo, the usual approach

~"gpo aS a n consists in defining a specific gpo ~-~o on ground terms and using
ordering on terms with variables by proving that for all rules 1 --~ r of the
TRS, we have 1 ~ r and Vs, t e T (F , X) , V~ such that sa, ta �9 T (F) , we ~'- gpO

251

t ==~ sa ~ ta. We choose here to explicitly define gpo on have s ~-gpo ~-gpo
terms with variables. We extend the definition of O and > l ~ to T(F,~X) in the
following way:

D e f i n i t i o n 3. Let s, t e T(F, X), and let (9 and >le~ be defined on T (F) .
(i) (9(s) >t~ (9(t) iff Va s.t. sa, ta E T (F) , we have (9(sa) >te~ (9(ta),
(ii) (9(s) ~--z~ (9(t) iff Va s.t. s~r, ta E T(F) , we have (9(sa) ~-z~ (9(ta),
(iii) (9(s) >_z~ (9(t) iff (9(s) >t~ (9(t) or (9(s) ~-lr (9(t).

With this extension of the termination functions to T(F, X), the. definition of
the general path ordering is extended to T(F, X) . From now on, we, will use the
definition of gpo on T(F, X) .

T h e o r e m 4. [5] The general path ordering >_apo is a quasi-ordering on T(F, X)
having the subterm property.

Propos i t ionb. [5] (Ground stability) Let s , t e T (F , X) and ~ = ((9, >_te~). I f
t (resp. s ~ t) then for any substitution ~ s.t. sa, ta E T (F) , we have 8 ~'gpo ~gpo

tcr (resp sa "..~ ta). 8iT ~'gpo e'~ gpo

Thanks to Proposition 5, for proving the first condition of Theorem 2 (termina-
tion theorem), it is enough to prove that: l ~-gpo r for all rules l --+ r of R, and
for a ground stable instance ~ of gpo. Restricting to ground stable instances ~'-gpo
of gpo is not critical since the instances of gpo used in practice are ground stable.

3 Solving g p o constraints using a term sharing data
s t r u c t u r e

In this paper, gpo ordering constraints are quantifier free first order formulas
built on s > t and s ,-~ t where s, t C T(F, X) . Solving a gpo ordering constraint
s > t (resp. s .-~ t) is to decide whether there exists a particular instance ~ of

t (resp. s ~ v t), in constructing a specific ~5. Solving gpo gpo such that s ~ gpo ~ gpo
constraints is undecidable in general, but our goal is to build a procedure giv-
ing, when possible, an appropriate ordering in a semi-automatic way. First, our
solving process automatically produces constraints on ((9, ~tex) from gpo con-
straints. Second, constraints on ((9, _>le~) are solved, by finding an appropriate
instance for O and ~le~, in a semi-automatic way.

We choose to use a Directed Acyclic Graph (DAG) representation with term
sharing for constraints (as in [11] in the context of completion). We thus avoid
explosion of the size of the formulas, appearing during the resolution with a clas-
sical constraint representation. In this DAG structure, terms are graphs where
nodes are labeled by symbols and edges represent the subterm relation. The
DAG representation allows sharing of common subterms of distinct terms. On
this DAG representation of terms, we additionally define edges representing or-
dering constraints labeled by logical formulas, called here proof obligations. Proof
obligations (O-proofs for short) are defined as follows (recall that (9 denote
(90,k = (00 , . . . , Ok)):

252

Def in i t i on 6. Let X~, be a set of variables called the set of O-proof variables.
Let T be the trivial (_0-proof, s,t E T(F ,X) , P E X p . The set ~ of (o-proofs
is inductively defined by (i) T E 7), (ii) P E P, (iii) O(s) >lex O(t) E :P, and
O(s)-~le~O(t) E:P,(iv) A A B E P , i fA, B E P , (v) A V B E : P , i fA, B E P .

We now define satisfiability of (.0-proofs.

De f in i t i on 7. Let �9 be the pair (T0,k, ~l~x)- Let P, A, B E P and s, t E T(F, X).
satisfies P, denoted �9 ~ P if (i) P = T, or (ii) P = A V B and (~ ~ A or
~ B), or (iii) P = A A B and (~ ~ A and �9 ~ B), or (iv) P = O(s) >1r O(t)

and To,k(S) ~'lr To,k(t), or (v) P = O(s) -----z~ O(t) and To,k(S) ~le~ To,k(t).

Let us now define the DAG representation of rewrite rules. We call those graphs
Ordering Constraint Solving Graphs (OCS graphs for short).

Def in i t i on 8. An OCS graph is a graph G = (V, E) where V is the set of vertices
(or nodes) labeled by symbols of F or variables of X, and E C V • V is the set of
edges labeled by S, R, > or ~ for Subterm, Rewrite, inequality and equivalence
edges respectively. The S, R, > edges are directed. The >, ,,~ edges are also
labeled by an (.0-proof. The subterm edges are also labeled by a natural i called
the rank of the subterm edge. For any node 9 v E V, labeled by f E F of arity n,
for all i -- 1 . . . n, there exists 64 E V and a unique subterm edge (Y:, 64) E E of
rank i.

The subterm and the rewrite edges in OCS graphs represent the direct subterm
relation in the term and the rewrite relation between terms in rules respectively.
The edges labeled by (0-proofs represent the constraints on (O, >le~), obtained
from gpo constraints in the first step of our solving process. Let us define the
function Term mapping any node Y: of an OCS graph to a term t, such that Y:
is the top node of the OCS graph representing t.

Def in i t i on 9. Let G = (V, E) be an OCS graph and Y: E V. The function Term
from V into T(F, X) is inductively defined in the following manner: (i) if Y: is
labeled by x E X, then Term(Y:) = x, (ii) if Y: is labeled by f E F of arity n,
then Term(y:) = . f (Term(~) , . . . , Term(Tn)) where for all i -- 1 . . . n, ~ E V,
and (Y:, ~) E E is a subterm edge of rank i.

De f in i t i on 10. Let l, r E T(F, X). An OCS representation of the rewrite rule
1 --+ r is an OCS G -- (V, E) such that (i) there exist two nodes Y:, 6 E V and a
unique rewrite edge (Y:, 6) E E such that Term(Y:) = 1 and Term(F) = r, and
(ii) V~', Y:' E V s.t. ~ ~ ~ ' , we have Term(y:) ~ Term(y:').

In the previous definition, note that (ii) ensures sharing of subterms in the OCS
representation of a rewrite rule. In the following, for any OCS graph G -- (V, E)
with Y:,6 E V, Y: > 6 (resp. Y: -- 6) denote an inequality edge (resp.
equivalence edge) (Y:, 6) E E. We note Y: ~ - 6 (resp. ~ - ~ 6) if there is
no inequality edge (resp. equivalence edge) (Y:, 6) E E. If Term(2 r) --- s and
Term(F) =- t, then Y : ~ 6 (resp. Y:- ~ 6) is also denoted by s- ~ t
(resp. s -- t). Inequality and equivalence edges are called ordering edges. In the

253

following figures, plain arrows denote subterm edges, plain arrows labeled by R
denote rewriting edges and dashed lines denote inequality and equivalence edges.
Rank labels are omitted but can be deduced from the figures since subterm edges
are always ordered by rank from left to right.

Example 1. The OCS representation of the rewrite rule f(g(a), x) --+ g(f (x , b))
with an inequality edge labeled by an O-proof label A is presented in Graph 1.1.
The OCS Graph 1.2 shows how the constraint g(a) > g(b), duplicated in the
previous example of decomposition of f(g(a), g(a)) > g(b) can be represented by
a unique edge labeled by an O-proof label B.

1. ,g f ~g

a x b a
Graph 1.1 Graph 1.2

An OCS graph allows sharing of terms and sharing of constraints, but it may
duplicate O-proofs [5]. To avoid this, we introduce substitutions on O-proofs,
called P-substitutions. A P-substitution a is an application from Xp into P,
which can be uniquely extended into a homomorphism a : P ~+ P. Our structure
for solving gpo ordering constraints is composed of an OCS graph representing a
rewrite rule and a P-substitution. Ordering edges of the OCS graph are labeled
either by the trivial O-proof T or by an O-proof variable. The application of the
substitution to an inequality (resp: equivalence) edge label of the graph gives an
O-proof of the corresponding inequality (resp: equivalence).

Defini t ion 11. A Structure for Ordering Constraint Solving (SOCS for short)
of a rule 1 --~ r is a pair (G I la) where G is an OCS graph representing the rule,
and a is a P-substitution.

Example 2. Here is a possible SOCS for the rule h(f (x)) --+ g(x):

h =- ~_P' P ~+ O(f(x)) >le= O(g(x))
I--''""~"--__>--__~_2g P' ~-+ P

X

In this SOCS, the inequality edge between nodes labeled by f and g means
that we have at least one possible O-proof P for f (x) > g(x). On the right
hand side of the SOCS, we find the related P-substitution mapping the variable
P to the related O-proof. The mapping P ' ~-~ P means that the O-proof P is
also an O-proof for edge h(f (x)) > g(x).

4 T h e C - d e d u c t i o n r u l e s

We now define the deduction rules, applied on SOCS to infer constraints on
(O, >l~=) from gpo constraints. Let us first introduce embedding, which expresses
a notion of sub-formula in (.0-proofs.

254

Def in i t i on 12. Let P, Q E P be O-proofs. P is embedded in Q, denoted P ~ Q
i f (P = Q) o r [Q = A v B a n d (P _ A o r P _ B)] .

For solving gpo constraints on a set of rewrite rules, we start from a set of
initial SOCS, one for each rule. Initial SOCSs are SOCSs whose OCS graphs
have no ordering edge and whose P-substitutions are empty. The gpo constraint
solving on SOCS is achieved by a set of deduction rules. These rules transform
a SOCS by adding ordering edges to the OCS graph and by constructing the
corresponding P-substitution, whose application provides the corresponding (_9-
proofs. Solving is processed independently for each SOCS corresponding to each
rewrite rule, and ends when no deduction rule applies any longer. Let us denote
by C the set of deduction rules and by C-deduction process the deduction process
defined by C. The set of C-deduction rules is given in Figure 1, where an edge

>v denotes either >P or .~v. Let (a[[v), (j3[]5) be SOCS. A deduction rule

~11~ of C matches a SOCS (Gila) if a is a pattern of G (i.e. if a = (V~, E~) and
G = (Vc, EG), there exists a bijection from Va into V~ and a bijection from E~
into E~, where V~ C_ Vc and E~ C_ Ea) , if ~ matches a, and if the precondition

of ~ is verified. Then, the application of the rule consists in replacing the

pattern a of G by the pattern fl (which can be identical) and by replacing ~ by
5 in a. Each time a new ordering edge is constructed in G, it is supposed to be
labeled by a new O-proof variable. Note that nodes ~" and ~ of the C-deduction
rules must always match distinct nodes of G. This prevents from adding cyclic
inequality ordering edges (always false w.r.t, gpo) and cyclic equivalence edges
(always unnecessary for deductions).

Note also that no special strategy is required when rules are applied: neither
for the choice of the pair of nodes, nor for the choice of the rule to apply. As a
result, the process can be parallelized.

The set of deduction rules C in Figure 1 is proven sound and complete in [5].

T h e o r e m 1 3 . [5](Complexity) Let l --+ r be a rewrite rule, (Gila) the initial
SOCS of I -+ r, N the number of nodes of G, and M the non-zero maximal
arity of function symbols of the rule. The complexity in time and space of the
C-deduction process starting from (Gila) is polynomial in N and M in the worst

case.

As explained above, each rule of a rewrite system is treated independently. For
constraint solving on the whole set of rules, we have to gather the results relative

to rules.

De f in i t i on 14. Let R be a rewrite system (li -+ ri, i -- 1 . . . n) whose SOCSs
(Gi 1[ai), representing the rules li -+ ri are in C-normal form. Let Pi be the
O-proof label of the edge li > r~ in Gi for any i = 1 . . . n . The global O-proof

of R is the O-proof: Plal A ... A P~an.

255

Let G = (V, E) be an OCS
Z-,H, Sx,. . . , $, e V
g,v ,%, . . . ,T ,~ �9 v
Y # G

is labelled by f fi F
is labelled by 9 E F

the arity of f is n
the arity of 9 is m
Term(.T) = s �9 T(F, X)
Term(G) = t ~ T(F, X)
P , P ' , P ~ , . . . P , ~ �9 X~,,
PI P'~ e X'p,
a � 9
a is a P-substitution

1. S U B T E R M P r o p e r t y

i I a P reCond :

U

3. S U B T E R M Extens ion
.T_=P_:>__.]) aU{P~-~c~} PreCond:

" P' # T ,

LI'~- -P-> - - ' "~ .'" a U { P H. a V P' }

5. S U B T E R M Simplification
.T - -P->- - 'V a U { P ~ o l } PreCond:

H

y _ Z_>__.]2 a U {P ~,',', T }

z, ;,f""
~f,i//

7. T H E T A > Extens ion

~ : E - > - - . G I laU{P~+M

9"-

PreCond:
P r -1-,
(P~ ^ . . . Pro^
o(~) >~= o(t)) ~

y=2-P->--.G aU{P~-~c~V(PIA
"<'..z~ /\ ...AB.~A
9".'k/ \ e(s) >~o~ e(o)}

2. SUBTERNI Firs t
V a P reCond :

"" P'#T

s I
H

4. S U B T E R M Trivial
~r ~ a P reCond : I ~.r y . ~ v

/4""

7:_ I_>__.V a

6. T H E T A >
~'~ G a P reCond :

%...T~

5r: -P-:> _ _ .G " ~ '~ ' / , \ a U {P ~-+ (P1A
"r] \ . . . A P,~A

9"" oO) >~0~ o(O)}
%...T.~

8. T H E T A

/ \ .~.,~.,,~ Y",...~ / ~ / \2";'<W \
Sr: .8~ ~ . :.Tin

PreCond :
. r ..~ G

.T~--P~-~-~-Tj ~ aU {P ~' (PIA ,
/ \ / \ . . ^ ^ P; ̂

v:' . '~.:.T.~ e(s) ~ze= e(t))

F i g u r e 1: The C-deduction rules

256

Note that if there is a rule li -e ri such that there is no edge li > P~ ri
in Gi, then there is no possible termination proof with gpo for the whole TRS
R. Definition 14 shows that O-proofs offer a nice method for dealing with the
problem of incrementally adding rules in TRS. This feature can be very useful
for completion procedures. Note also that, in a SOCS, we generate inequality
edges and equivalence edges for the two possible orientations of the rewrite rules
(left to right and right to left).

5 An example of C-deduction process

Consider the following system, borrowed from [2], for computing factorial in
unary arithmetic. Let R be:

p(s(x)) --+ x (1)
fact(O) --+ s(O) (2)
f a c t (s (x)) -~ s(x) • f ac t (p (s (x))) (3)
0 x y --+ 0 (4)

The termination of R cannot be proven with a simplification ordering since rule
(3) is self-embedded. However it is possible to prove termination of R with gpo.
The resolution process on the initial SOCS representing the rule (3) gives the
following SOCS:

~(x) x y -~ (x x y) + y (5)
x + 0 -~ x (6)
x + 8(y) ~ s(x + y) (7)

75

~. ~"2" ~ - (~ ~ X

fact :. - -~-/~- ~ - - fact

s 4 " P

X

P1 ~ O(fact(s(x))) >l~ O(p(s(x)))
P2 ~-~ P1 A O(fact(s(x))) >le~ O(fact(p(s(x))))
Pa ~ P2 A O(fact(s(x))) >t~ tg(s(x) x fact(p(s(x))))

Its complete construction, not detailed here by lack of place, can be found in [5].
In the following, P O) , " " P(7) denote the O-proofs for rules (1) to (7) respec-
tively and a the P-substitution of the final SOCS for rule (3). Since after deduc-
tion on the SOCS for rule (3), we obtain f a c t (s (x)) >P3 s(x) • f ac t (p (s (x))) ,
the O-proof P(3) for rule (3) is P3a. Note that O-proofs for rules (1), (4)
and (6) are trivial ones. Thus, the global O-proof for the complete TRS is

6 Proving satisfiability of O-proofs

At this stage of the solving process, we have obtained a set of saturated SOCS
(one for each rewrite rule), with non-instantiated O-proofs in the P-substitution
part: no assumption is made on 6) nor on >_lex- The next step of our solving
process consists of proving the satisfiability of an O-proof P by finding solutions,
i.e. particular values �9 = (T0,k, ~lex) of (6), >_Aex) such that �9 ~ P. Let us show
how to proceed in practice for verifying the satisfiability of an O-proof, using

257

the partial instantiation process we now define. In the following, an instantiated
literal (resp. non-instantiated literal) of an O-proof is either of the form ~'i(s) ~-~
Ti(t) or Ti(s) ~i Ti(t) (resp. Oi,j(s) > l ~ Oi,j(t) or Oi,j(s) ~--l~ Oi,j(t)) where ~'i
are termination functions and ~i are associated orderings.

D e f i n i t i o n 15. Given 0 <_ i < j , a Oi,j O-proof is an O-proof whose every
non-instantiated literal is either of the form 0i, j (s) >le~ Oi,j (t) or of the form
Oi,j (s) ~-lr Oi,j (t) where s, t are terms of T(F, X).

D e f i n i t i o n 16. Given 0 _< i < j and P a Oi,j O-proof, a left partial instantiation
(LPI for short) of P is obtained by instantiating every Oi in P by a particular
termination function 7i.

Note that if we consider an O-proof Oid(s) >l~ Oi,j(t), its LPI is ~-i(s) ~i
Ti(t) V [Ti(S) .~ Ti(t) A Oi+t,j(s) >z~ Oi+l,j(t)]. If we consider an O-proof
Oi,j (s) ~-l~ Oi,j (t), its LPI is Ti(S) ~i Ti(t)AOi+l,j (S) ~--t~ Oi+l,j (t). A practical
method for finding a solution to our constraint problem in a global O-proof
thanks to LPI can be based on DAGs. An O-proof DAG is an and-or DAG
representing an O-proof where a conjunctive O-proof a A fl is represented by the

DAG ~ , a disjunctive O-proof a V ~ is represented by the DAG ~ ; A, B
are DAGs representing a and ~ respectively.

D e f i n i t i o n 17. Given 0 _< i < j and G a Oi,j O-proof DAG, an i-path of G is a
pair (p, A) where p is a path from top to bot tom of G, and A is a tuple of sets
(Ao,. . . , Ai-1, Ai), where A~ (0 < u < i - 1) is the set {aid e p, a = T~(s) >~
Tu(t) or a = T~(S) ~--~ r~(t),s,t E T(F ,X)} and Ai = {aid e p,a = Oi,j(s) >le~
Oi,j (t) or a = Oi,j (s) ~--lr Oi,j (t), s, t C T(F, X) }.

D e f i n i t i o n 18. Let S be a finite set. A set of inequalities and equalities
A = {a ~-/~la, ~ E S} U {a ~ / ? l a , ~ E S} is compatible if there exists a quasi-
ordering ~ s on S s u c h t h a t a ~- r A ~ a ~ s / 3 a n d a ~ / 3 E A
a ~ s ~ (where ~ s stands for ~-s U ~s) .

Informally, an O-proof contains a solution if its O-proof DAG contains an i-
path from top to bottom, whose literals are instantiated and whose sets are
compatible. Let us now introduce the notion of minimal i-path, minimizing the
set of constraints on non-instantiated termination functions Oi,k and related
ordering >lex.

D e f i n i t i o n 19. Let (p,A) be an i-path, where A = (A0 , . . . , Ai-1, Ai). The i-
path (p, A) is minimal if A0 , . . . , Ai-1 are compatible sets, and if there exists
no i-path (p ' ,B), such that B = (Bo , . . . ,B i - l ,B i) , where Bo, . . . ,B i_ l are
compatible sets and B~ CAi .

Note that, in general, a minimal i-path is not unique.

D e f i n i t i o n 20. A satisfiable i-path is a minimal i-path (p, (Ao,. . Ai)) where
Ai -= O. "'

258

A satisfiable i-path in an O-proof DAG represents a solution of the related (_%
proof. We now illustrate these definitions, on our previous example. In Section 5,
we obtained P(3) = P3a where a denotes the P-subst i tut ion of the final SOCS
for rule (3). P~a can be represented by the O-proof DAG:

(9(fact(s(x))) >te~ (9(p(s(x)))
I

O(fact(s(x))) >ze~ O(fact(p(s(x))))
I

O(fact(s(x))) > , ~ (9(s(x) x fact(p(s(x))))

Recall that 69 is a simplified notation for 69O,k. In order to find a specific O0,k
and a related > t ~ satisfying this O-proof, we apply a left partial instantiation
on (g0,k. Let (00, _>o) be a precedence:/90 is a function mapping any term to its
root symbol, and _>0 is an ordering on F, still unknown, that we want to infer
automatically. Left partial instantiation applied to the previous O-proof DAG
leads to the following O-proof DAG:

//'"
! fact >F P fact ~--F P

:. ~,~ Ol,k(p(s(x))

"].:..:..:..:..:..:..:..:..: :--:-.:-.:..:..:..:..:..:..:..:..:..:..:..:..:.

fact > f fact fact ~--i~ fact ":":"[-.1..:....

.. :: 7:.--.....
:" fact >F • fact ~--F •
............ ~ el,k(s(x) x.:fact(p(~(~)))

"" _ . - - *

We now search for a solution, which has to be a satisfiable i-path. The paths
labeled by Qand (~ among others, are 1-paths. Path Qis associated with the tu-
ple A = (Ao, A1} where Ao = { fac t >F p, fac t ~--F fact , fac t ~F • and Aa =
{Ol,k(fact(s(x))) >t~ Ol,k(fact(p(s(x)))) , (91,k(fact(s(x))) >lez (~l,k(8(x) X

fact(p(s(x))))}. Path (~) is associated with tuple B = (B0,B1} where B0 =
{ fac t >F p, fac t ~--F fact , fac t >F • and B1 = {(91,k(fact(s(x)))
>t~ (91,k(fact(p(s(X))))}. Sets Ao and B0 are both compatible. However, the
1-path (i) is not minimal since B1 C A1. In this particular example, there is a
unique minimal 1-path which is (~). Note that there is no satisfiable 1-path in
this (_0-proof DAG since B1 ~ 0. We then search for a satisfiable 2-path. Since (~)
is the unique minimal 1-path, and since a minimal 2-path is deduced from a
minimal 1-path, we start from (~) to deduce a minimal 2-path (p, (Bo,B~,B~})
by applying an additional LPI.

Note that achieving partial instantiation with precedence, testing the com-
patibility of A0 and B0, and comparing 1-paths with respect to C, can be autom-
atized. Thus the deduction of minimal 1-paths can be achieved automatically.

259

Finding a minimal 1-path allows us to separate the termination proof in two
parts: a first part which can be automatically solved (we deduced a precedence),
and a second part requiring human expertise. In our example, the proof requir-
ing human expertise is satisfiability of the formula in B1 to infer B~ and B~. We
then apply left partial instantiation on B1 and search for a satisfiable 2-path.
For 81, the user may choose the function interpreting f ac t as factorial, s as
successor, p as predecessor and 0 as zero, and for _>1, he may choose _>N: the
greater or equal relation on natural numbers, as in [2]. In the (_0-proof DAG,
~l,k (fact(s(x))) >zez Ol,k (fac t (p(s(x)))) becomes:

.. - . . . " ~ ~

.:(z + 1)! > x! (z + 1)! = x!

L_ " ' . . 02,k(fact(s(z)) >lez 692,k(fact(p(s(x)))

Then, validity of (x+ 1)! >2r x! has to be proved by the user. If we choose an inter-
pretation where constants are interpreted as natural numbers, then (x+l)[>N x!
is valid. Thus, we get a satisfiable 2-path associated with the tuple:
({ fac t >F P, fac t >F X}, {(x + 1)! > ~ x!}, {}).

If we proceed similarly on the global O-proof DAG for the whole TRS, the
algorithm ends with a satisfiable 2-path for the global O-proof DAG, which is:
({ fact >F s, f ac t >F p, f ac t ~F fact , f ac t >F • • >F +, • ~F X,+ >F
s ,+ --~F +}, {(x + 1)! >]r x!, (x + 1) X y >N x x y , x + y + 1 >X x +y}, {}). For
details, see [5].

Note that in particular cases of gpo, like lpo, where the compatibility testing
of every gpo termination function is automatic, the whole gpo solving process can
be automatically achieved. For the Ipo case, starting from a set of inequalities
representing the rules of a TRS, the algorithm provides a precedence proving
termination of the initial TRS (if such a precedence exists). An implementation
of the lpo case, providing a decision procedure for the existence of a lpo for a
given TRS has been developed in ECLiPSe 1. See [51 for examples of execution
on big size conditional and unconditional TRSs. Let us cite another approach
to find a precedence for syntactical orderings like lpo or rpo [4]. However, this
method, unlike ours, is not goal directed since the search for a precedence is not
guided by the inequalities to be proved. In the case where solving cannot be fully
automatic, the interest of our approach is that the process focusses user's effort
to the key parts of the proof, by automatically proving simple properties and
extracting difficult ones.

7 P e r s p e c t i v e s

In this paper, we proposed a termination proof algorithm for rewrite rule systems
using gpo constraint solving on OCS graphs, a shared term data structure defined
to represent constraints. Next prospects are the improvement of O-proof satis-
fiability. We are studying how to automatize satisfiability procedures for more

1 ECRC Common Logic Programming System

260

syntactic and semantic terminat ion functions. For instance, automat ic polyno-
mial terminat ion functions, based on [6, 15], could certainly be integrated. We
are also studying how to combine completion on SOUR Graphs [11] with auto-
matic terminat ion proofs, taking advantage of the similarity between the graph
deduction process on SOCS and on SOUR.

Acknowledgments
We would like to thank H61~ne Kirchner, Claude Kirchner, Nachum Dershowitz,
Christopher Lynch, Polina Strogova and Christophe Ringeissen for comments on
this paper.

References

1. H. Comon. Solving inequations in term algebras. In Proc. 5th LICS Symp.,
Philadelphia (Pa., USA), pages 62-69, June 1990.

2. N. Dershowitz and C. Hoot. Natural termination. TCS, 142(2):179-207, May
1995.

3. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, edi-
tor, Handbook of Theoretical Computer Science, chapter 6, pages 244-320. Elsevier
Science Publishers B. V. (North-Holland), 1990.

4. R. Forgaaxd and D. Detlefs. An incremental algorithm for proving termination of
term rewriting systems. In J.-P. Jouannaud, editor, Proc. 1st RTA Conf., Dijon
(France), pages 255-270. Springer-Verlag, 1985.

5. T. Genet and I. Gnaedig. Termination proofs using gpo ordering constraints
(extended version). Technical report, INRIA, 1997. RR-3087, available at
http ://www. loria, f r/equipe/protheo, html.

6. J. Giesl. Generating polynomial orderings for termination proofs. In J. Hsiang,
editor, Proc. 6th RTA Conf., Kaiserslautern (Germany), volume 914 of LNCS.
Springer-Verlag, 1995.

7. P. Johann and 1%. Socher-Ambrosius. Solving simplification ordering constraints.
In J.-P. Jouannaud, editor, Proc. 1st CCL Conf., Munich (Germany), volume 845
of LNCS, pages 352-367. Springer-Verlag, 1994.

8. S. Kamin and J.-J. L~vy. Attempts for generalizing the recursive path ordering.
Unpublished manuscript, 1980.

9. D. S. Lankford. On proving term rewriting systems axe noetherian. Technical
report, Louisiana Tech. University, Mathematics Dept., Ruston LA, 1979.

10. P. Lescanne. On the recursive decomposition ordering with lexicographical status
and other related orderings. JAR, 6:39-49, 1990.

11. C. Lynch and P. Strogova. Sour graphs for efficient completion. Technical Report

95-R-343, CRIN, 1995.
12. R. Nieuwenhuis. Simple lpo constraint solving methods. IPL, 47(2), 1993.
13. R. Nieuwenhuis and A. Rubio. Theorem proving with ordering constrained clauses.

In D. Kaput, editor, Proe. 11th CADE Conf., Saratoga Springs (N. Y., USA), vol-
ume 607 of LNCS, pages 477-491. Springer-Verlag, 1992.

14. D. Plaisted. Polynomial time termination and constraint satisfaction tests. In
C. Kirchner, editor, Proc. 5th RTA Conf., Montreal (Canada), volume 690 of
LNCS, pages 405-420, Montreal (Quebec, Canada), June 1993. Springer-Verlag.

15. J. Steinbach. Generating polynomial orderings. IPL, 49:85-93, 1994.

