
Generating Efficient, Terminating Logic Programs

Jonathan C. Martin I and Andy King 2

Department of Electronics and Computer Science, University of Southampton, Southampton,
SO9 5NH, UK. j cm93r@ecs, soton, ac. uk

2 Computing Laboratory, University of Kent at Canterbury,
Canterbury, CT2 7NF, UK. a. r a . k ingSukc , ac . uk

AbstracL The objective of control generation in logic programming is to auto-
matically derive a computation rule for a program that is efficient and yet does
not compromise program correctness. Progress in solving this important problem
has been slow and, to date, only partial solutions have been proposed where the
generated programs are either incorrect or inefficient. We show how the control
generation problem can be tackled with a simple automatic transformation that
relies on information about the depths of SLD-trees. To prove correctness of
our transform we introduce the notion of a semi delay recurrent program which
generalises previous ideas in the termination literature for reasoning about logic
programs with dynamic selection rules.

1 Introduct ion

A logic program can be considered as consisting of a logic component and a control
component [8]. Although the meaning of the program is largely defined by its logical
specification, choosing the right control mechanism is crucial in obtaining a correct and
efficient program. In recent years, one of the most popular ways of defining control
is via suspension mechanisms which delay the selection of an atom in a goal until
some condition is satisfied. Such mechanisms include the block declarations of SICStus
Prolog [7] and the DELAY declarations of Grdel [6]. These mechanisms are used to
define dynamic selection rules with the two main aims of enhancing performance
through coroutining and ensuring termination. In practise, however, these two aims
are not complementary and it is often the case that termination, and hence program
correctness, is sacrificed for efficiency.

Consider, for instance, the Append program given below (in GOdel style syntax)
with its standard DELAY declaration which delays the selection of an AppencF3 atom
until either the first or third argument is instantiated to a non-variable term.
Append([], x, x).
Append([ulx], y, [ulz]) .-- Append(x, y, z).

DELAY Append(x, _, z) UNTIl_ Nonvar(x) v Nonvar(z).

Interestingly, although it is intended to assist termination the delay declaration is not
sufficient to ensure that allAppend/3 goals terminate. The goal ~ Append([x Ixs], ys, xs),
for example, satisfies the condition in the declaration and yet is non-terminating [14].

Termination can only be guaranteed by strengthening the condition in the delay
declaration. This is where the trade off between efficiency, termination and completeness
takes place. I ne stronger the condition, the more goals suspend. Although termination
may eventually be assured, it may be at the expense of not resolving goals which have
finite derivations. Also the stronger the delay condition, the more time consuming it
usually is to check. Thus one of the main problems in generating control of this form is
finding suitable conditions which are inexpensive to check and guarantee termination
and completeness. We will refer to this as the local termination issue, to contrast it with
another global aspect of the termination problem which we will examine shortly.

274

1.1 Local Termination

There have been several attempts at solving the local termination problem. We will ex-
amine each of these in the context of the Append program above, though each technique
has wider applicability.

Linearity In the case of single literal goals, one additional condition sufficient for
termination is that the goal is linear, that is, no variable occurs more than once in the
goal [10]. Although this restriction would prevent the looping Append/3 call above from
proceeding, it would also unfortunately delay many other goals with finite derivations
such as +-- Append(Ix, x], ys, zs).

Rigidity An alternative approach by Marchiori and Teusink [11] and Mesnard [13]
proposes delaying Append/3 goals until the first or third argument is a list of determinate
length. Termination is obtained for a large class of goals, but at a price. Checking such
a condition requires the complete traversal of the list and the condition must be checked
on every call to the predicate 3. Naish argues that this approach can be "... expensive to
implement and ... can delay the detection of failure in a sequential system and restrict
parallelism in a stream and-parallel system" [14].

Modes Naish goes on to solve the problem with the use of modes. Termination can
be guaranteed with the above DELAY declaration if the modes of the Append/3 calls
are acyclic, or more generally cycle bounded [14]. This restriction essentially stops the
output feeding back into the input. Although modes form a good basis for solving the
local termination problem, they have not been shown to be satisfactory for reasoning
about another termination problem, that of speculative output bindings.

1.2 Global Termination

Even when finite derivations exist, delay conditions alone are not, in general, sufficient
to ensure termination. Infinite computations may arise as a result of speculative output
bindings [14], which can occur due to the dynamic selection of atoms. I nere are sever.al
problems associated with speculative output bindings (see [14] for a discussion of these).
Here we are only interested in the effect that they have on termination, and this is what
we call the global termination issue. To illustrate the problem caused by speculative
output bindings consider the Quieksort program shown be!ow. This is an exam.pie of
a well known program whose termination behaviour can be unsatlstactory. Wltla tlae
given dela), declarations, tlae program can De ShOWn to terminate m rorwaro moae, tnat
is for queries of the form ,-- Quicksort(x, y) where x is bound and y is uninstantiated. In
reverse mode, however, where y is boundand x is uninstantiated, the program does not
always terminate. More precisely, a query such as ~ Quieksort(x, [1,2,3]) will terminate
existentially, i.e. produce a solution, but not universally, i.e. produce all solutions. In fact,
experimentation with the GOdel and SICStus implementations indicates that when the
list of elements is not strictly increasing, e.g. in .-- Quieksort(x, [1,1]) and +-- Quieksort(x,
[2,1]), the program does not even existentially terminate! This is illustrat!ye of the subtle
problems that dynamic selection rules pose in reasoning anout terminauon, ana wnlcn
suggest that control should ideally be automated to avoid them.

Quicksort([], []).
Quicksort([xlxs], ys) *- Partition(xs, x, I, b) A Quicksort(I, Is) A

Quicksort(b, bs) A Append(Is, [xlbs], ys).

DELAY Quicksort(x, y) UNTIL Nonvar(x) v Nonvar(y).

3 In [13] the check is, in fact, only performed on the initial call, but there is no justification for
this optimisation given in the paper. For non-structurally recursive predicates, e.g. Quicksort/2
of Sect. 1.2, such an optimisation is usually not possible.

275

Partition([], _, [], []).
Partit ion([xlxs], y, [xlls], bs) , - x < y A Partit ion(xs, y, Is, bs).
Part i t ion([xlxs], y, Is, [xlbs]) . - x > y ^ Partit ion(xs, y, Is, bs).

DELAY Partition(x, _, y, z) UNTIL Nonvar(x) v (Nonvar(y) A Nonvar(z)).

To improve matters, the delay conditions can be strengthened in the manner pre-
scribed by Naish or Marchiori and Teusink. In general, however, no matter how strong the
delay conditions are, they are not always sufficient to ensure termination, even though a
terminating computation exists. To see why, consider augmenting the Quieksort program
with the clause

Append(x, [_ix], x) , - False.

The declarative semantics of the program are completely unchanged by the addition
of this clause and one would hope that the new program would produce exactly the
same set of answers as the original. This will not be the case, however, if this clause is
selected before all other Append/3 clauses. Consider the query ~ Ouieksort(x, [1,2,3]).
Following resolution with the second clause of Quieksort/2, the only atom which can
be selected is Append(Is, [xlbs], [1,2,3]). When this unifies with the above clause, both
Is and bs are immediately bound to the term [1,2,3]. As a result of these speculative
output bindings the previously suspended calls Quicksort(I, Is) and Quicksort(b, bs) will
be woken before the computation reaches the call to False. The net result is an infinite
computation due to recurring goals of the form ~ Quieksort(x, [1,2,3]).

The problem here is that the output bindings are made before it is known that the goal
will fail and no matter how stringent the conditions are on the Ouieksort/2 goals, loops of
this kind cannot generally be avoided. The reason for this is that a delay condition only
measures a local property of a goal without regard for the computation as a whole. The
conditions can ensure that goals are bounded, but are unable to ensure that the bounds
are decreasing.

Local Computation Rule To remedy this, Marchiori and Teusink [11] propose the use
of a local computation rule. Such a rule only selects atoms from those that are most
recently introduced in a derivation. This ensures that any atom selected from a goal,
is completely resolved before any other atom in the goal is selected. The effect in the
above example is that the call to False would be selected and the Append/3 goal fully
resolved before the calls to Quicksort/2 are woken. This prevents an infinite loop. The
main disadvantage of local computation rules is that they do not allow any form of
coroutining. This is clearly a very severe restriction.

Delayed Output Unification A similar solution proposed by Naish [14] is that of
delaying output unification. In the example above, assuming a left-to-right computation
rule, the extra Append/3 clause would be rewritten as

Append(x, y, z) , - False A y = [_]x] A Z = x.

The intended effect of such a transformation is that no output bindings should be
made until the computation is known to succeed. This has parallels with the local
computation rule and also restricts coroutining.

Constraints Mesnard uses interargument relationships compiled as constraints to guar_
antee that the bounds on goals decrease [13]. For example, solving the constraint
[YSllength =]lsIlength + 1 + [bS[length before selecting the atom Append(Is, [xlbs],
ys) ensures that bs and Is are only bound to lists with lengths less than that of ys. This
is enough to guarantee termination, but is expensive to check as it requires calculating
the lengths of all three arguments of Append/3.

276

1.3 Our Contribution

In summary, we see that the most promising approaches to control generation, while
guaranteeing termination and completeness, produce programs which are inefficient,
either directly due to expensive checks which must be performed at run-time or indirectly
by restricting coroutining.

In this paper we present an elegant solution to the above problems. To solve the
local termination problem, we use delay declarations in the spirit of [11] combined with
a novel program transformation which overcomes the inefficiencies of their approach.
Simultaneously, the transformation inexpensively solves the global termination problem
without grossly restricting coroutining. The transformation is simple and is easy to
automate. Transformed programs are guaranteed to terminate and are also efficient.

The technique is based on the following idea. If the maximum depth of the SLD-tree
needed to solve a given query can be determined, then by only searching to that depth
the query will be completely solved, i.e. all answers (if any) will be obtained, in a finite
number of steps. We first present the technique through an example. Then we formalise
the transformation and prove termination for the transformed programs.

2 Example

We demonstrate our program transformation on the Ouicksort.program from theintro~
duction. The transformed program is shown below. Termination ls.gu~ap, teea for an
queries ,-- Ouicksort(x, y). Furthermore when x or y is a ground list ot integers, t~e
computation does not flounder and if it succeeds then the set ot answers prooucea is
complete with respect to the declarative semantics.

Ouicksort(x, y) , - SetDepth_O(x, y, d) A Ouicksort_l (x, y, d).

DELAY Quicksort_l(_~ _, d) UNTIL Ground(d).

Quicksort_l (x, y, d) ~ Quicksort_2(x, y, d).

Quicksort.2([], I], d) ~ d >_ 0.
Quicksort_2([xlxs], ys, d + 1) ,-- d > 0 ^ Partition(xs, x, I, b) A Qu cksort_2(I, Is, d) A

Q~cksort_2(b, bs, d) A Append(Is, [xlbs], ys).

Partition(xs, x, 1, b) ,--- SetDepth_P(xs, I, b, d) A Partition_l (xs, x, I, b, d).

DELAY Partit ion_l(. d) UNTIL Ground(d).

Partition_l (xs, x, I, b, d) ,-- Partition.2(xs, x, I, b, d).

Partition_2([], _, [], [], d) ,-- d > 0.
Partition_2([xlxs], y, [xlls], bs ,d + 1) , - d > 0 A x < y A Partition_2(xs, y, Is, bs, d).
Partition_2([xlxs], y, Is, [x[bs], d + 1) ~- d > 0 A x ~> y A Partition-2(xs, y, Is, bs, d).

Append(x, y, z) . - SetDepth-A(x, z, d) A Append_l(x, y, z, d).

DELAY Append_l(. . . . _, d) UNTIL Ground(d).

Append_l (x, y, z, d) *-- Append_2(x, y, z, d).

Append_2([.], x, x, d) ~- d >_ 0.
Append-2([ulx], y, [ulz], d + 1) ,-- d > 0 A Append_2(x, y, z, d).

The predicate SetDepth_Q(x, y, d) calculates the lengths of the lists x and y, delaying
until one of the lists is found to be of determinate length, at which point the variable d is

277

instantiated to this length. Only then can the call to Quicksort_l/3 proceed. The purpose of
this last argument is to ensure finiteness of the subsequent computation. More precisely,
d is an upper bound on the number of calls to the recursive clause of Quicksort_2/3 in
any successful derivation. Thus by falling any derivation where th e number of such calls
has exceeded this bound (using the constraint d > 0), termination is guaranteed without
losing completeness. The predicates SetDepth_P/4 and SetDepth.A/3 are defined in a
similar way.

2.1 Local and Global Control

The local control problem is solved in the first instance with a rigidity check in the style
of [11]. This ensures that the initial goal is bounded. Boundedness of subsequent goals,
however, is enforced by the depth parameter and further rigidity checks on these depth
bounded goals are redundant. This allows, for example, the call Quicksort_2(I, Is, d) to
proceed, without fear of an infinite computation, even if both I and Is are uninstantiated,
providing d is ground. A huge improvement in performance is possible by eliminating
these checks. The global control problem is also neatly solved. By restricting the search
space to be finite, even though speculative output bindings may still occur, they cannot
lead to infinite derivations.

2.2 A Simple Optimisation

Even though many of the rigidity checks have now been removed, the efficiency of the
program is still unsatisfactory. This is due to the rigidity checks which are performed
on each call to Append/3 and Partition/4. It is easy to show that the depths of these
subcomputations are bounded by the same depth parameter occurring in Quicksort.2/3.
Hence, we can replace the atoms Partition(xs, x, I, b) and Append(Is, [x[bs], ys) in the
body of Quieksort_2./3 with the atoms Partition_2(xs, x, I, b, d) and Append_2(Is, [xlbs],
ys, d) respectively.

This optimised version of the program is quite efficient. The only rigidity checks
that are performed are those on the initial input, exactly at the point where they are
needed to guarantee termination. Following the initial call to Quieksort_2/3 the program
runs completely without delays and the only other overhead is the decrementation of
the depth parameter and some trivial boundedness checks. The net result is that, with
the Bristol G6del implementation, the program actually runs faster on average than the
original program with the Nonvar delay declarations !

2.3 Coroutining

Notice in particular how the global termination problem is overcome without reducing
the potential for coroutining. Simply knowing the maximum depth of any potentially
successful branch of the SLD-tree allows us to force any derivations along this branch
which extend beyond this depth to fail without losing completeness. These forced failures
keep the computation tree finite but do not restrict the way in which the tree is searched.
The addition of the falling Append/3 clause from the introduction (which would appear
here as an Append_2/3 clause) cannot effect the termination of the algorithm, even if
the same coroutining behaviour of the original program is used. Of course, we need to
constrain the computation rule such that

1. the test d > 0 is always selected before any other atoms in the body of the clause
with a subterm d, and

2. the depth parameter is ground on each recursive call (or for any atom with a subterm
d in the optimised version)

278

but this is not nearly as restrictive as using the local computation rule. Indeed, using the
default left-to-right selection rule (with delay) these conditions will clearly be satisfied
in the above program.

2.4 Termination and Efficiency

With termination guaranteed, the programmer is now free to concentrate on the pro-
gram'sperformance. Notice for the program above that the order of the ~oals in the
body of Quicksort_2 is critical to the efficiency of the algorithm. For the best pertor-
mance, they must be arranged so that the computation is data driven. In fact, by defining
SetDepth_Q/3 by

SetDepth_Q(x, y, d) ,--
Length(x, d)/x
Length(y, d).

the computation will be data driven in both forward and reverse modes with the ordering
of the goals as above. This dependence on the ordering can be reduced by introducing
the typical delay declarations used for this program. These declarations do not effect
the terminating nature of the algorithm, in that they will not cause the algorithm to
loop, though they may possibly reduce previously successful or failing derivations
to floundering ones. They are inserted solely to improve the performance through
coroutining. Alternatively, one may seek to optimise the performance for different
modes through multiple specialisation, for example. The important point is that with this
approach the trade-off between termination and performance is significantly reduced.
In seeking an efficient algorithm, correctness does not have to be compromised.

3 Preliminm'ies

Terms, atoms and formulae are defined in the usual way [9]. A program P is a set of
clauses of the form V(a +-- w) where a is an atom and w is either absent or a conjunction
of atoms. We denote by body(a ,-- w) the set of atoms appearing in w. Given a program
P, then Zp de4agtes the alphabet of predicate symbols in P. We denote by vat(o) the
set of variablesdn a syntactic object o. A grounding substitution for a syntactic object
o is a substitution in which each variable in o is bound to a ground term. We denote by
tel(A) the predicate symbol of the atom A. We denote a tuple of elements (all,..., dn)
by d and writefdi E d if di is the ith element of the tuple d. If the atom p(tl, �9 �9 tn) is
denoted by p(t)~,~-then the atom p(tl, �9 �9 tn, d) is denoted by p(t, d). Finally, we denote
the minimal model of a program P by M(P).

4 The TranSformation

Our aim is to develop a program transformation which is able to derive correct and
efficient programs from logical specifications. We divide the development into three
stages where we: consider termination, completeness and efficiency respectively.

4.1 Termination
To prove termination of the transformed programs we will need to introduce a new
program class Which subsumes that of delay recurrent programs introduced in [1 I]. Its
introduction is motivated by an overly restrictive condition imposed in the definition of
delay recurrency,. By removing this unnecessary condition we obtain the new class of
programs which we call semi delay recurrent. Our transformed programs will lie within
this class. The following notions, due to Bezem [5], will be needed.

279

Definition 1 level mapping [5]. Let P be a program. A level mapping for P is a func-
tion I. I : Bp ~ 1~ from the Herbrand base to the natural numbers. []

A level mapping is only defined for ground atoms. The next definition lifts the
mapping to non-ground atoms and goals.

Definition 2 bounded atom and goal [5]. An atom A is bounded wrt a level mapping
l i l~l , isboundedontheset[A]ofvariablefreeinstancesofA. If Aisboundedthen

denotes the maximum that |. takes on A. A goal G =~-- A1 , . . . , A,~ is bounded if
every Ai is bounded. If G is bounded then I[G]I denotes the (finite) multiset consisting
of the natural numbers I[A1]I,..., I[&]l- []

Level mappings are used to prove termination in the following way. Let G =
Go, G1, G2, . . . be the goals in a refutation of G and I.I a level mapping. Given that
G is bounded wrt I.I and I[Gdl > I[a~+~]l for all i, we can deduce that the sequence
G = Go, Gl, G2,. . �9 is finite by the well-foundedness of the natural numbers. To prove
the goal ordering property, that I[Gd I > I[G~+l] I for all i and for all possible refutations
of G, one must examine the clauses and the computation rule used. Various classes of
program have been identified, where this property is satisfied for a given computation
rule [1, 2, 5, 11]. Bezem, for example, introduced the class of recurrent programs [5],
where the goal ordering property is always satisfied, regardless of the computation rule.

Definition3 recnrrency [5]. Let P be a definite logic program and I-] a level mapping
f o r P . A c l a u s e H ~ B1 .. ,B,~isrecurrent(wrt .Difforeverygroundingsubstitution
O, IHO > I B~OI for all i E [1, n]. P is recurrent (wrt 1.) if every clause in P is recurrent
(wrt .). []

One problem with recurrency, as noted in [3], is that it does not intuitively relate
to the principal cause of non-termination in a logic program - recursion. The definition
requires that level mappings decrease from clause heads to clause bodies irrespective
of the recursive relation between the two. This relation is formalised in the following
definition.

Definition 4 predicate dependency. Given Zp defined by a program P, we say that
p E Zp directly depends on q E Zp if there is a statement in P with head p(~) and a
body atom q(~7). The depends on relation is defined as the reflexive, transitive closure
of the directly depends on relation, p and q are mutually dependent, written p _ q, if p
depends on q and q depends on p. []

Notice that there is a well-founded ordering among the predicates of a program induced
by the depends on relation. We write p -7 q whenever p depends on q but q does not
depend on p, i.e. p calls q as a subprogram. By abuse of terminology we will say that
two atoms are mutually dependent (with each other) if they have mutually dependent
predicate symbols.

Apt and Pedreschi [3] observed that while it is necessary for the level mapping to
decrease between the head p(t) of a clause and each body atom q(~7) with p ~ q, a strict
decrease is not required for the other atoms in the body. They introduced the notion of
semi-recurrent program which exploited this observation. Their definition still insisted,
however, that the level of the head was at least greater or equal to the level of all body
atoms, whereas in fact it does not matter if the level of non-mutually dependent atoms
is greater than in the head provided that these atoms are bounded whenever they are
selected.

Marchiori and Teusink [11] noticed that boundedness of atoms ~ould be enforced
by using delay declarations but did not fully exploit this fact combined with the above

280

observation in defining delay recurrency, a version of recurrency for programs using
dynamic selection rules. Their definition required a decrease in the level mapping from
the head to the non-mutually dependent atoms when in fact boundedness was already
guaranteed by the delay declarations.

We generalise their definition here by removing this restriction. The new definition
will prove useful for defining a large class of terminating programs which permit
coroutining. We first need the following two definitions from [11].

Definition 5 direct cover [11]. Let I.I be a level mapping and c : H ~ B a clause.
Let A E body(c) and C C body(c) such that A ~ C. Then C is a direct cover for
A wrt I.I in c, if there exists a substitution 0 such that A8 is bounded wrt I.I and
dorn(O) C_ vat (H, C). A direct cover C for A is minimal if no proper subset of C is a
direct cover for A. []

Definition6 cover [11]. L e t / . / b e a level mapping and c : H +--- B a clause. Let
A E body(c) and C C body(c). Then C is a cover for A wrt I.I in c, if (A, C) is an
element of the least set S such that

1. (A, 0) E S whenever the empty set is the minimal direct cover for A wrt I-I in c,
and

2. (A, C) E S whenever A ~ C, and C is of the form

{A1, .., Ak) U D1 U . . . U Dk

s.t. {A1, .., Ak} is a minimal direct cover of A in c and Vi E [1, k], (Ai, Di) E S. •

Intuitively, a cover of an atom A in a clause is a subset of the body atoms which
must be (partially) resolved in order for A to become bounded wrt some level mapping.
Where possible, we will assume in the following that the level mapping is fixed for a
given program. The following definition generalises that of a delay recurrent program
in [11].
Definition 7 semi delay recurrency. Let 1. [be a level mapping and I an interpretation
for a program P. A clause c : H +-- B 1 , . . . , Bn. is semi delay recurrent wrt I.I and [if

1. I is a model for c and
2. if t e l (H) ~- rel(Bi), then for every cover C for Bi and for every grounding

substitution 0 for c such that I ~ CO, we have that [HOI > IBiOI.

A program P is semi delay recurrent wrt I.I and I if every clause is semi delay recurrent

wrt I.I and I. []
Note that delay recurrency is not equivalent to semi delay recurrency. Every delay

recurrent program is semi delay recurrent, but the converse is not true.

Example 1. The following program is semi delay recurrent, but not delay recurrent.
[]

P([xIY]) * - Append(_, -, -) ^ P(Y).
Due to the possibility of speculative output bindings, in order to be sure that the

condition I ~ CO holds, each atom in C must be completely resolved. In [11] local
selection rules are used to ensure this property. A local selection rule only selects
the most recently introduced atoms in a derivation and thus completely resolves sub-
computations before proceeding with the main computation.

Notice, however, that for semi delay recurrency, it is only necessary for the covers
of those atoms which are mutually dependent with the head of the clause to be resolved
completely. This means that following the resolution of these covers, an arbitrary amount
of coroutining may take place amongst the remaining atoms of the clause. To formalise
a selection rule based on this idea we introduce the notion of covers and covered atoms

in a goal.

281

Definition8 covers and covered atoms in a goal. Let G =+--- A1, �9 �9 An be a goal
and suppose that the atom Ai is resolved with the semi delay recurrent clause c : H +-- B
giving 0 E mgu(H, Ai). If A E body(B) and rel(A) ~_ rel(H), then AO is a covered
atom in G' and CO is a cover of AO in G' where C is a cover of A in c and G' is the
resolvent of G. []

Definition 9 semi local selection rule. A semi local selection rule only selects a cov-
ered atom in a goal if one of its covers in a previous goal has been completely resolved.
D

A semi local selection rule ensures that before selecting a covered atom A, we first
fully resolve a cover of A. Before giving the main result of our construction, we need
the following definition taken from [11].

Definition 10 safe delay declaration [11]. A delay declaration for a predicate p is safe
wrt 1.] if for every atom A with predicate symbol p, if A satisfies its delay declaration,
then A is bounded wrt 1.1. []

Theorem 11. Let P be a program with a delay declaration for each predicate in P. Let
1. [be a level mapping and / an interpretation. Suppose that

1. P is semi delay recurrent wrt 1.] and I
2. The delay declarations for P are safe wrt 1.]

Then every SLD-derivation for a query Q, using a semi-local selection rule is finite. []

We are now able to develop a program transformation based on the above result.
We begin by transforming a given program into one which is semi delay recurrent, but
with equivalent declarative semantics. Then by adding safe delay declarations we can
obtain a program which terminates for all queries using a semi-local selection rule.

Definition l2 semi delay recurrent transform sdr. The transform sdr is defined as
follows.

p E ~E'p =r E L'sdr(P) Ap sdr E ~r'sdr(P) wherep sdr ~ L'p

V(p(3) -~--) E P =~ V(psdr(t,-) *---) E sdr(P)

c = V(p({) ~-- w) E P ~ V(psdr(t -, d) *--- d = uc(d) A w') E sdr(e)

where w' is obtained from w by replacing each atom in w of the form qi(2) with
q~dr (2, di) i fp '~ qi, -d is a tuple such that di E d i fp _ qi and uc is a function with the

property that u~(d) > di Vdi E d. The variables d and di, Vi are domain variables over
gq. Finally for each p E X'p we introduce the auxiliary clause

V(p({) +--- pdepth (3, d) A psdr([, d)) E sdr(P)

where 3 is a tuple of variables. []

Lemma 13 semi delay recnrrency. If for each p E ZTp, the clauses defining pdepth
are semi delay recurrent wrt M(sdr(P)) and 1. 1, then the program sdr(P) is semi delay
recurrent wrt M(sdr(P)) and the level mapping . defined by

Ipsdr({, d)l = d
Ip(t) l = o

[pdepth (~)[[[pdepth (3)[[

for all p E ~V~p. []

282

By Theorem 11 and Lemma 13 we can obtain a program which terminates for all
queries under a semi-local computation rule by adding for each predicate, a delay
declaration which is safe wrt the level mapping defined in Lemma 13. Note also that
d = u(d) is the only atom in the body of each non-auxiliary clause which will be a
covering atom in a goal. This means that after its resolution, an:arbitrary amount of
coroutining may take place between the atoms in w'.

Example 2. The program of Section 2 is obtained.by applying the above transform, with
u(d) = d + 1, to the Ouicksort program of Section 1 and adding safe delay declara-
tions. Notice that the number of suspension checksperformed has been minimised by
introducing an auxiliary clause pl (7) ~-- p2(t) for eachpredicate p. []

4.2 Completeness

Having obtained a terminating program, we need to prove that the declarative seman-
tics Of the transformed program coincide with those of the original program. In this
way, under the assumption that the transformed program is deadlock free [12], we can
guarantee that all computed answers of this program are complete wrt the declarative
semantics of the original program. We have the following result.

Lemma14 equivalence. I f M (P) ~ p(t) andd C {d I M(sdr (e)) ~ p(t, d)} implies

M(sdr(P)) ~ pdepth (7, d) then for all p E Zp

p(t) E M(P) ~r p(t) E M(sdr (e)) []

The problem then is to define pdepth for each p E ~ P such that the above equiva-
lence result holds. Our novel solution to this problem uses information about the success
set of the program. Suppose we can deduce, for example, that for a given goal G, all
computed answers for G can be found in an SLD-tree of fixed depth, then we can
compute the SLD-tree to that depth and no more, and be sure that we have found all
answers for G. In reality, the granularity is finer, relying not on the depth of the SLD-tree
as a whole but rather on the lengths of individual branches. More precisely, for each
predicate p we find an upper bound on the number of calls to p. It will often be the case
that this bound relates to the input arguments of the predicate. We thus use interargument

relationships to capture this relation. Essentially, we define pdepth as the interargument

relationship of the predicate psd r.

Definition 15 interargument relationship. Given p E ~p , a norm I. I and a model M
for p/n, an interargument relationship for p/n wrt S is a relation I C l'q '~, such that if

M ~ p(7) then p(lTI) c I. []

Interargument relationships can be automatically deduced using, for example, the
analysis described in [4].

Example 3. The analysis in [4] can be used to deduce the argument size relations

IQuicksortabs/3 = {(x, y, d) I x -- y, d = x}, IAppendabs/4 = {(x, y, z, d}] z =

z + y ,d = x} and/PartitiOnabs/5 = {(w, x, y, z, d) I w = y + z ,d = w}. These

relations can be used to derive the definitions of SetDepth_Q/3, SetDepth-A/3 and
SetDepth-P/4 for the program sdr(Quicksort) in Section 2. []

Example 4. Given the following predicate Split from the program Mergesort

283

Split([], [l, [1).
Split([xlxs], [x[o], e) ~-- Split(xs, e, o).

the argument size relation ISplitabs/3 = {(z, y, z, d} [d = z, d < 2y, d < 2z + 1}

can be derived. From this we can derive a program which terminates for all queries ,---
Split(x, y, z) where either x, y or z is a list of determinate length and the remaining two
arguments are (optionally) unbound. We know of no other technique in the literature
which can prove termination of these queries. The majority of approaches can only
reason about the decrease in the level mapping of successive goals in a derivation. For
the level mappings ISplit(tl, h , t3)11 = Itll and ISplit(tl, t2, t3)12 = It21 the decrease
only occurs on every second goal. A similar problem which our approach can also deal
with occurs in [13].

4.3 Efficiency

We now give a brief appraisal of our approach from a performance perspective.
In theory, the rigidity checks should not incur much more overhead than the original

delay declarations. For example, checking rigidity of the first argument of the query .--
Append([1,2,3], y, z) requires three Nonvar tests - exactly the same number that would be
required if the query were executed using the conventional delay declarations. There are
additional costs due to unification and the calculation of the depth bound, but these costs
could be minimised through careful implementation. We have naively implemented and
tested some sample programs and some of the preliminary results are given below. The
experiments have been carded out in SICStus Prolog [7] on a Sparc 4.

Program Goal Length Time(s) for P U{G} Time(s) for sdr(P) U{G}
P G of list k one solution all solutions one solution all solutions
8-queens qn(_) 0.4 6.8 0.3 5.3
permsort ps(k, _) 10 6.8 do 0.7 0.7
permsort ps(_, L) 8 1.7 10.5 2:6 10.8
quicksort qs(L, _) 4000 3.7 4.5 4.8 6.0
quicksort qs(_, L) 8 1 2 m s oo 6 m s 83.0

The main overhead is due to the rigidity checks and our implementation in this respect
is rather naive and could be improved. Even in our experimental implementation this
overhead only reaches a maximum factor of about three for the simplest programs, e.g.
Append. The power of our approach, however, lies in its scalability and it is here where
we believe the most impressive performance gains are to be made. Preliminary tests
indicate that the most benefit is obtained from larger programs where only one rigidity
test is performed at the beginning of the program and the rest of the computation is
bounded by the depth bounds. Then our programs can outperform the original ones
with the delay declarations, particularly as the amount of backtracking or coroutining
Increases.

5 Conclusion

The aim of control generation is to automatically derive a computation rule for a program
that is efficient but does not compromise program correctness. In our approach to this
problem we have transformed a program into a semantically equivalent one, introduced
delay declarations and defined a flexible computation rule which ensures that all queries
for the transformed program terminate. Furthermore, we have shown that the answers
computed by the transformed program are complete with respect to the declarative
semantics. This is significant.

284

Beyond the theoretical aspects of the work, we have demonstrated its practicality.
In particular, we have shown how transformed programs can be easily implemented in
a standard logic programming language and how such a program can be optimised to
reduce the number of costly rigidity checks needed to ensure termination, dramatically
improving its performance. Furthermore, we have seen how the termination problems
caused by speculative output bindings can be eliminated without the use of a local
computation rule or other costly overhead. The coroutining behaviour which is then
possible contributes significantly to the efficiency of the generated code.

In terms of correctness, we have only considered termination and completeness
in this work, though other correctness issues also need investigating. For example,
Section 2.2 illustrates how the problem of deadlock freedom may be handled.

The efficiency issues also require further investigation. We have separated to some
extent the issues of termination and performance and it is not now clear what role
extra delay declarations might play in improving the performance of the transformed
programs, or even whether other techniques such as multiple specialisation would be
more appropriate.

Acknowledgements

The authors would like to thank Elena Marchiori for providing useful literature and
clarifying their understanding of delay recurrency.

References

1. K.R. Apt and M. Bezem. Acyclic programs. In ICLP, pages 617-633. M1T Press, 1990.
2. K.R. Apt and D. Pedreschi. Proving termination of general Prolog programs. In TACS'91,

volume 526 of LNCS, pages 265-289. Springer-Verlag, 1991.
3. K.R. Apt and D. Pedreschi. Modular termination proofs for logic and pure Prolog programs.

In Fourth International School for Computer Science Researchers. OUP, 1994.
4. E Benoy and A. King. Inferring argument size relations with CLP(R). In LOPSTR'96.

Springer-Verlag, 1996.
5. M. Bezem. Characterizing termination of logic programs with level mappings. In NA-

CLP'89, pages 69-80, Cleveland, Ohio, USA, 1989. MIT Press.
6. P.M. Hill and J.W. Lloyd. The Gi~del Programming Language. MIT Press, 1994.
7. Intelligent Systems Laboratory, SICS, PO Box 1263, S-164 28 Kista, Sweden. SICStus

Prolog User's Manual, 1995.
8. R. Kowalski. Algorithm = Logic + Control. CACM, 22(7):424-436, July 1979.
9. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

10. S. L0ttringhaus-Kappel. Control Generation for Logic Programs. In ICLP'93, pages 478-
495. MIT Press, 1993.

11. E. Marchiori and E Teusink. Proving termination of logic programs with delay declarations.
In ILPS'95, pages 447--461. MIT Press, 1995.

12. E. Marchiori and E Teusink. Proving deadlock freedom of logic programs with dynamic
scheduling. In JICSLP'96 Post-Conference Workshop W2 on Verification and Analysis of
Logic Programs, Bonn, 1996. TR-96-31, University of Pisa, Italy.

13. F. Mesnard. Towards Automatic Control for CLP(X) Programs. In LOPSTR'95. Springer-
Verlag, 1995.

14. L. Naish. Coroutining and the construction of terminating logic programs. In Australian
Computer Science Conference, Brisbane, February 1993.

