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AbstracL The objective of control generation in logic programming is to auto- 
matically derive a computation rule for a program that is efficient and yet does 
not compromise program correctness. Progress in solving this important problem 
has been slow and, to date, only partial solutions have been proposed where the 
generated programs are either incorrect or inefficient. We show how the control 
generation problem can be tackled with a simple automatic transformation that 
relies on information about the depths of SLD-trees. To prove correctness of 
our transform we introduce the notion of a semi delay recurrent program which 
generalises previous ideas in the termination literature for reasoning about logic 
programs with dynamic selection rules. 

1 Introduct ion  

A logic program can be considered as consisting of a logic component and a control 
component [8]. Although the meaning of the program is largely defined by its logical 
specification, choosing the right control mechanism is crucial in obtaining a correct and 
efficient program. In recent years, one of the most popular ways of defining control 
is via suspension mechanisms which delay the selection of an atom in a goal until 
some condition is satisfied. Such mechanisms include the block declarations of SICStus 
Prolog [7] and the DELAY declarations of Grdel [6]. These mechanisms are used to 
define dynamic selection rules with the two main aims of enhancing performance 
through coroutining and ensuring termination. In practise, however, these two aims 
are not complementary and it is often the case that termination, and hence program 
correctness, is sacrificed for efficiency. 

Consider, for instance, the Append program given below (in GOdel style syntax) 
with its standard DELAY declaration which delays the selection of an AppencF3 atom 
until either the first or third argument is instantiated to a non-variable term. 
Append([], x, x). 
Append([ulx], y, [ulz]) .-- Append(x, y, z). 

DELAY Append(x, _, z) UNTIl_ Nonvar(x) v Nonvar(z). 

Interestingly, although it is intended to assist termination the delay declaration is not 
sufficient to ensure that allAppend/3 goals terminate. The goal ~ Append([x Ixs], ys, xs), 
for example, satisfies the condition in the declaration and yet is non-terminating [14]. 

Termination can only be guaranteed by strengthening the condition in the delay 
declaration. This is where the trade off between efficiency, termination and completeness 
takes place. I ne stronger the condition, the more goals suspend. Although termination 
may eventually be assured, it may be at the expense of not resolving goals which have 
finite derivations. Also the stronger the delay condition, the more time consuming it 
usually is to check. Thus one of the main problems in generating control of this form is 
finding suitable conditions which are inexpensive to check and guarantee termination 
and completeness. We will refer to this as the local termination issue, to contrast it with 
another global aspect of the termination problem which we will examine shortly. 
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1.1 Local Termination 

There have been several attempts at solving the local termination problem. We will ex- 
amine each of these in the context of the Append program above, though each technique 
has wider applicability. 

Linearity In the case of single literal goals, one additional condition sufficient for 
termination is that the goal is linear, that is, no variable occurs more than once in the 
goal [10]. Although this restriction would prevent the looping Append/3 call above from 
proceeding, it would also unfortunately delay many other goals with finite derivations 
such as +-- Append(Ix, x], ys, zs). 

Rigidity An alternative approach by Marchiori and Teusink [11] and Mesnard [13] 
proposes delaying Append/3 goals until the first or third argument is a list of  determinate 
length. Termination is obtained for a large class of goals, but at a price. Checking such 
a condition requires the complete traversal of the list and the condition must be checked 
on every call to the predicate 3. Naish argues that this approach can be "... expensive to 
implement and ... can delay the detection of failure in a sequential system and restrict 
parallelism in a stream and-parallel system" [14]. 

Modes Naish goes on to solve the problem with the use of modes. Termination can 
be guaranteed with the above DELAY declaration if the modes of the Append/3 calls 
are acyclic, or more generally cycle bounded [14]. This restriction essentially stops the 
output feeding back into the input. Although modes form a good basis for solving the 
local termination problem, they have not been shown to be satisfactory for reasoning 
about another termination problem, that of speculative output bindings. 

1.2 Global Termination 

Even when finite derivations exist, delay conditions alone are not, in general, sufficient 
to ensure termination. Infinite computations may arise as a result of speculative output 
bindings [14], which can occur due to the dynamic selection of atoms. I nere are sever.al 
problems associated with speculative output bindings (see [ 14] for a discussion of these). 
Here we are only interested in the effect that they have on termination, and this is what 
we call the global termination issue. To illustrate the problem caused by speculative 
output bindings consider the Quieksort program shown be!ow. This is an exam.pie of  
a well known program whose termination behaviour can be unsatlstactory. Wltla tlae 
given dela), declarations, tlae program can De ShOWn to terminate m rorwaro moae, tnat 
is for queries of the form ,-- Quicksort(x, y) where x is bound and y is uninstantiated. In 
reverse mode, however, where y is boundand x is uninstantiated, the program does not 
always terminate. More precisely, a query such as ~ Quieksort(x, [1,2,3]) will terminate 
existentially, i.e. produce a solution, but not universally, i.e. produce all solutions. In fact, 
experimentation with the GOdel and SICStus implementations indicates that when the 
list of elements is not strictly increasing, e.g. in .-- Quieksort(x, [1,1 ]) and +-- Quieksort(x, 
[2,1]), the program does not even existentially terminate! This is illustrat!ye of the subtle 
problems that dynamic selection rules pose in reasoning anout terminauon, ana wnlcn 
suggest that control should ideally be automated to avoid them. 

Quicksort([], []). 
Quicksort([xlxs], ys) *-  Partition(xs, x, I, b) A Quicksort(I, Is) A 

Quicksort(b, bs) A Append(Is, [xlbs], ys). 

DELAY Quicksort(x, y) UNTIL Nonvar(x) v Nonvar(y). 

3 In [13] the check is, in fact, only performed on the initial call, but there is no justification for 
this optimisation given in the paper. For non-structurally recursive predicates, e.g. Quicksort/2 
of Sect. 1.2, such an optimisation is usually not possible. 
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Partition([], _, [], []). 
Partit ion([xlxs], y, [xlls], bs) , -  x < y A Partit ion(xs, y, Is, bs). 
Part i t ion([xlxs ], y, Is, [xlbs]) . -  x > y ^ Partit ion(xs, y, Is, bs). 

DELAY Partition(x, _, y, z) UNTIL Nonvar(x) v (Nonvar(y) A Nonvar(z)). 

To improve matters, the delay conditions can be strengthened in the manner pre- 
scribed by Naish or Marchiori and Teusink. In general, however, no matter how strong the 
delay conditions are, they are not always sufficient to ensure termination, even though a 
terminating computation exists. To see why, consider augmenting the Quieksort program 
with the clause 

Append(x, [_ix], x) , -  False. 

The declarative semantics of the program are completely unchanged by the addition 
of this clause and one would hope that the new program would produce exactly the 
same set of answers as the original. This will not be the case, however, if this clause is 
selected before all other Append/3 clauses. Consider the query ~ Ouieksort(x, [1,2,3]). 
Following resolution with the second clause of Quieksort/2, the only atom which can 
be selected is Append(Is, [xlbs ], [1,2,3]). When this unifies with the above clause, both 
Is and bs are immediately bound to the term [1,2,3]. As a result of these speculative 
output bindings the previously suspended calls Quicksort(I, Is) and Quicksort(b, bs) will 
be woken before the computation reaches the call to False. The net result is an infinite 
computation due to recurring goals of the form ~ Quieksort(x, [1,2,3]). 

The problem here is that the output bindings are made before it is known that the goal 
will fail and no matter how stringent the conditions are on the Ouieksort/2 goals, loops of 
this kind cannot generally be avoided. The reason for this is that a delay condition only 
measures a local property of a goal without regard for the computation as a whole. The 
conditions can ensure that goals are bounded, but are unable to ensure that the bounds 
are decreasing. 

Local Computation Rule To remedy this, Marchiori and Teusink [11] propose the use 
of a local computation rule. Such a rule only selects atoms from those that are most 
recently introduced in a derivation. This ensures that any atom selected from a goal, 
is completely resolved before any other atom in the goal is selected. The effect in the 
above example is that the call to False would be selected and the Append/3 goal fully 
resolved before the calls to Quicksort/2 are woken. This prevents an infinite loop. The 
main disadvantage of local computation rules is that they do not allow any form of 
coroutining. This is clearly a very severe restriction. 

Delayed Output Unification A similar solution proposed by Naish [14] is that of 
delaying output unification. In the example above, assuming a left-to-right computation 
rule, the extra Append/3 clause would be rewritten as 

Append(x, y, z) , -  False A y = [_]x] A Z = x. 

The intended effect of such a transformation is that no output bindings should be 
made until the computation is known to succeed. This has parallels with the local 
computation rule and also restricts coroutining. 

Constraints Mesnard uses interargument relationships compiled as constraints to guar_ 
antee that the bounds on goals decrease [13]. For example, solving the constraint 
[YSllength = ]lsIlength + 1 + [bS[length before selecting the atom Append(Is, [xlbs], 
ys) ensures that bs and Is are only bound to lists with lengths less than that of ys. This 
is enough to guarantee termination, but is expensive to check as it requires calculating 
the lengths of all three arguments of Append/3. 
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1.3 Our Contribution 

In summary, we see that the most promising approaches to control generation, while 
guaranteeing termination and completeness, produce programs which are inefficient, 
either directly due to expensive checks which must be performed at run-time or indirectly 
by restricting coroutining. 

In this paper we present an elegant solution to the above problems. To solve the 
local termination problem, we use delay declarations in the spirit of  [ 11 ] combined with 
a novel program transformation which overcomes the inefficiencies of their approach. 
Simultaneously, the transformation inexpensively solves the global termination problem 
without grossly restricting coroutining. The transformation is simple and is easy to 
automate. Transformed programs are guaranteed to terminate and are also efficient. 

The technique is based on the following idea. If  the maximum depth of the SLD-tree 
needed to solve a given query can be determined, then by only searching to that depth 
the query will be completely solved, i.e. all answers (if any) will be obtained, in a finite 
number of  steps. We first present the technique through an example. Then we formalise 
the transformation and prove termination for the transformed programs. 

2 Example 

We demonstrate our program transformation on the Ouicksort.program from theintro~ 
duction. The transformed program is shown below. Termination ls.gu~ap, teea for an 
queries ,-- Ouicksort(x, y). Furthermore when x or y is a ground list ot  integers, t~e 
computation does not flounder and if it succeeds then the set ot answers prooucea is 
complete with respect to the declarative semantics. 

Ouicksort(x, y) , -  SetDepth_O(x, y, d) A Ouicksort_l (x, y, d). 

DELAY Quicksort_l(_~ _, d) UNTIL Ground(d). 

Quicksort_l (x, y, d) ~ Quicksort_2(x, y, d). 

Quicksort.2([], I], d) ~ d >_ 0. 
Quicksort_2([xlxs], ys, d + 1) ,-- d > 0 ^ Partition(xs, x, I, b) A Qu cksort_2(I, Is, d) A 

Q~cksort_2(b, bs, d) A Append(Is, [xlbs], ys). 

Partition(xs, x, 1, b) ,--- SetDepth_P(xs, I, b, d) A Partition_l (xs, x, I, b, d). 

DELAY Partit ion_l( . . . . . . . .  d) UNTIL Ground(d). 

Partition_l (xs, x, I, b, d) ,-- Partition.2(xs, x, I, b, d). 

Partition_2([], _, [], [], d) ,-- d > 0. 
Partition_2([xlxs], y, [xlls], bs ,d  + 1) , -  d > 0 A x < y A Partition_2(xs, y, Is, bs, d). 
Partition_2([xlxs], y, Is, [x[bs], d + 1) ~- d > 0 A x ~> y A Partition-2(xs, y, Is, bs, d). 

Append(x, y, z) . -  SetDepth-A(x, z, d) A Append_l(x,  y, z, d). 

DELAY Append_l(  . . . .  _, d) UNTIL Ground(d). 

Append_l (x, y, z, d) *-- Append_2(x, y, z, d). 

Append_2([.], x, x, d) ~- d >_ 0. 
Append-2([ulx], y, [ulz], d + 1) ,-- d > 0 A Append_2(x, y, z, d). 

The predicate SetDepth_Q(x, y, d) calculates the lengths of the lists x and y, delaying 
until one of the lists is found to be of determinate length, at which point the variable d is 
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instantiated to this length. Only then can the call to Quicksort_l/3 proceed. The purpose of 
this last argument is to ensure finiteness of the subsequent computation. More precisely, 
d is an upper bound on the number of calls to the recursive clause of Quicksort_2/3 in 
any successful derivation. Thus by falling any derivation where th e number of such calls 
has exceeded this bound (using the constraint d > 0), termination is guaranteed without 
losing completeness. The predicates SetDepth_P/4 and SetDepth.A/3 are defined in a 
similar way. 

2.1 Local and Global Control 

The local control problem is solved in the first instance with a rigidity check in the style 
of [ 11 ]. This ensures that the initial goal is bounded. Boundedness of subsequent goals, 
however, is enforced by the depth parameter and further rigidity checks on these depth 
bounded goals are redundant. This allows, for example, the call Quicksort_2(I, Is, d) to 
proceed, without fear of an infinite computation, even if both I and Is are uninstantiated, 
providing d is ground. A huge improvement in performance is possible by eliminating 
these checks. The global control problem is also neatly solved. By restricting the search 
space to be finite, even though speculative output bindings may still occur, they cannot 
lead to infinite derivations. 

2.2 A Simple Optimisation 

Even though many of the rigidity checks have now been removed, the efficiency of the 
program is still unsatisfactory. This is due to the rigidity checks which are performed 
on each call to Append/3 and Partition/4. It is easy to show that the depths of these 
subcomputations are bounded by the same depth parameter occurring in Quicksort.2/3. 
Hence, we can replace the atoms Partition(xs, x, I, b) and Append(Is, [x[bs], ys) in the 
body of Quieksort_2./3 with the atoms Partition_2(xs, x, I, b, d) and Append_2(Is, [xlbs], 
ys, d) respectively. 

This optimised version of the program is quite efficient. The only rigidity checks 
that are performed are those on the initial input, exactly at the point where they are 
needed to guarantee termination. Following the initial call to Quieksort_2/3 the program 
runs completely without delays and the only other overhead is the decrementation of 
the depth parameter and some trivial boundedness checks. The net result is that, with 
the Bristol G6del implementation, the program actually runs faster on average than the 
original program with the Nonvar delay declarations ! 

2.3 Coroutining 

Notice in particular how the global termination problem is overcome without reducing 
the potential for coroutining. Simply knowing the maximum depth of any potentially 
successful branch of  the SLD-tree allows us to force any derivations along this branch 
which extend beyond this depth to fail without losing completeness. These forced failures 
keep the computation tree finite but do not restrict the way in which the tree is searched. 
The addition of the falling Append/3 clause from the introduction (which would appear 
here as an Append_2/3 clause) cannot effect the termination of the algorithm, even if 
the same coroutining behaviour of the original program is used. Of course, we need to 
constrain the computation rule such that 

1. the test d > 0 is always selected before any other atoms in the body of the clause 
with a subterm d, and 

2. the depth parameter is ground on each recursive call (or for any atom with a subterm 
d in the optimised version) 
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but this is not nearly as restrictive as using the local computation rule. Indeed, using the 
default left-to-right selection rule (with delay) these conditions will clearly be satisfied 
in the above program. 

2.4 Termination and Efficiency 

With termination guaranteed, the programmer is now free to concentrate on the pro- 
gram'sperformance. Notice for the program above that the order of the ~oals in the 
body of Quicksort_2 is critical to the efficiency of the algorithm. For the best pertor- 
mance, they must be arranged so that the computation is data driven. In fact, by defining 
SetDepth_Q/3 by 

SetDepth_Q(x, y, d) ,-- 
Length(x, d)/x 
Length(y, d). 

the computation will be data driven in both forward and reverse modes with the ordering 
of the goals as above. This dependence on the ordering can be reduced by introducing 
the typical delay declarations used for this program. These declarations do not effect 
the terminating nature of the algorithm, in that they will not cause the algorithm to 
loop, though they may possibly reduce previously successful or failing derivations 
to floundering ones. They are inserted solely to improve the performance through 
coroutining. Alternatively, one may seek to optimise the performance for different 
modes through multiple specialisation, for example. The important point is that with this 
approach the trade-off between termination and performance is significantly reduced. 
In seeking an efficient algorithm, correctness does not have to be compromised. 

3 Preliminm'ies 

Terms, atoms and formulae are defined in the usual way [9]. A program P is a set of 
clauses of the form V(a +-- w) where a is an atom and w is either absent or a conjunction 
of atoms. We denote by body(a ,-- w) the set of atoms appearing in w. Given a program 
P, then Zp  de4agtes the alphabet of predicate symbols in P.  We denote by vat(o) the 
set of variablesdn a syntactic object o. A grounding substitution for a syntactic object 
o is a substitution in which each variable in o is bound to a ground term. We denote by 
tel(A) the predicate symbol of the atom A. We denote a tuple of elements (all,..., dn) 
by d and writefdi E d if di is the ith element of the tuple d. If the atom p(tl, �9 �9 tn) is 
denoted by p(t)~,~-then the atom p(tl,  �9 �9 tn, d) is denoted by p(t, d). Finally, we denote 
the minimal model of a program P by M(P). 

4 The TranSformation 

Our aim is to develop a program transformation which is able to derive correct and 
efficient programs from logical specifications. We divide the development into three 
stages where we: consider termination, completeness and efficiency respectively. 

4.1 Termination 
To prove termination of the transformed programs we will need to introduce a new 
program class Which subsumes that of delay recurrent programs introduced in [ 1 I]. Its 
introduction is motivated by an overly restrictive condition imposed in the definition of 
delay recurrency,. By removing this unnecessary condition we obtain the new class of 
programs which we call semi delay recurrent. Our transformed programs will lie within 
this class. The following notions, due to Bezem [5], will be needed. 
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Definition 1 level mapping [5]. Let P be a program. A level mapping for P is a func- 
tion I. I : Bp ~ 1~ from the Herbrand base to the natural numbers. [] 

A level mapping is only defined for ground atoms. The next definition lifts the 
mapping to non-ground atoms and goals. 

Definition 2 bounded atom and goal [5]. An atom A is bounded wrt a level mapping 
l i l~l ,  isboundedontheset[A]ofvariablefreeinstancesofA. If Aisboundedthen 

denotes the maximum that |. takes on A. A goal G =~-- A1 , . . . ,  A,~ is bounded if 
every Ai is bounded. If G is bounded then I[G]I denotes the (finite) multiset consisting 
of the natural numbers I[A1]I,..., I[&]l- [] 

Level mappings are used to prove termination in the following way. Let G = 
Go, G1, G2, . . .  be the goals in a refutation of G and I.I a level mapping. Given that 
G is bounded wrt I.I and I[Gdl > I[a~+~]l for all i, we can deduce that the sequence 
G = Go, Gl, G2,. .  �9 is finite by the well-foundedness of the natural numbers. To prove 
the goal ordering property, that I[Gd I > I[G~+l] I for all i and for all possible refutations 
of G, one must examine the clauses and the computation rule used. Various classes of 
program have been identified, where this property is satisfied for a given computation 
rule [1, 2, 5, 11]. Bezem, for example, introduced the class of recurrent programs [5], 
where the goal ordering property is always satisfied, regardless of the computation rule. 

Definition3 recnrrency [5]. Let P be a definite logic program and I-] a level mapping 
f o r P . A c l a u s e H  ~ B1 .. ,B,~isrecurrent(wrt .Difforeverygroundingsubstitution 
O, IHO > I B~OI for all i E [1, n]. P is recurrent (wrt 1. ) if every clause in P is recurrent 
(wrt . ). [] 

One problem with recurrency, as noted in [3], is that it does not intuitively relate 
to the principal cause of non-termination in a logic program - recursion. The definition 
requires that level mappings decrease from clause heads to clause bodies irrespective 
of the recursive relation between the two. This relation is formalised in the following 
definition. 

Definition 4 predicate dependency. Given Zp defined by a program P,  we say that 
p E Zp directly depends on q E Zp if there is a statement in P with head p(~) and a 
body atom q(~7). The depends on relation is defined as the reflexive, transitive closure 
of the directly depends on relation, p and q are mutually dependent, written p _ q, if p 
depends on q and q depends on p. [] 

Notice that there is a well-founded ordering among the predicates of a program induced 
by the depends on relation. We write p -7 q whenever p depends on q but q does not 
depend on p, i.e. p calls q as a subprogram. By abuse of terminology we will say that 
two atoms are mutually dependent (with each other) if they have mutually dependent 
predicate symbols. 

Apt and Pedreschi [3] observed that while it is necessary for the level mapping to 
decrease between the head p(t) of a clause and each body atom q(~7) with p ~ q, a strict 
decrease is not required for the other atoms in the body. They introduced the notion of 
semi-recurrent program which exploited this observation. Their definition still insisted, 
however, that the level of the head was at least greater or equal to the level of all body 
atoms, whereas in fact it does not matter if the level of  non-mutually dependent atoms 
is greater than in the head provided that these atoms are bounded whenever they are 
selected. 

Marchiori and Teusink [11] noticed that boundedness of  atoms ~ould be enforced 
by using delay declarations but did not fully exploit this fact combined with the above 
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observation in defining delay recurrency, a version of recurrency for programs using 
dynamic selection rules. Their definition required a decrease in the level mapping from 
the head to the non-mutually dependent atoms when in fact boundedness was already 
guaranteed by the delay declarations. 

We generalise their definition here by removing this restriction. The new definition 
will prove useful for defining a large class of terminating programs which permit 
coroutining. We first need the following two definitions from [11]. 

Definition 5 direct cover [11]. Let I.I be a level mapping and c : H ~ B a clause. 
Let A E body(c) and C C body(c) such that A ~ C. Then C is a direct cover for 
A wrt I.I in c, if there exists a substitution 0 such that A8 is bounded wrt I.I and 
dorn(O) C_ vat (H,  C). A direct cover C for A is minimal if no proper subset of C is a 
direct cover for A. [] 

Definition6 cover [11]. L e t / . / b e  a level mapping and c : H +--- B a clause. Let 
A E body(c) and C C body(c). Then C is a cover for A wrt I.I in c, if  (A, C) is an 
element of the least set S such that 

1. (A, 0) E S whenever the empty set is the minimal direct cover for A wrt I-I in c, 
and 

2. (A, C) E S whenever A ~ C, and C is of the form 

{A1, .., Ak) U D1 U . . .  U Dk 

s.t. {A1, .., Ak} is a minimal direct cover of A in c and Vi E [1, k], (Ai, Di) E S. • 

Intuitively, a cover of an atom A in a clause is a subset of the body atoms which 
must be (partially) resolved in order for A to become bounded wrt some level mapping. 
Where possible, we will assume in the following that the level mapping is fixed for a 
given program. The following definition generalises that of a delay recurrent program 
in [11]. 
Definition 7 semi delay recurrency. Let 1. [ be a level mapping and I an interpretation 
for a program P.  A clause c : H +-- B 1 , . . . ,  Bn. is semi delay recurrent wrt I.I and [ if 

1. I is a model for c and 
2. if t e l (H)  ~- rel(Bi),  then for every cover C for Bi and for every grounding 

substitution 0 for c such that I ~ CO, we have that [HOI > IBiOI. 

A program P is semi delay recurrent wrt I.I and I if every clause is semi delay recurrent 

wrt I.I and I.  [] 
Note that delay recurrency is not equivalent to semi delay recurrency. Every delay 

recurrent program is semi delay recurrent, but the converse is not true. 

Example 1. The following program is semi delay recurrent, but not delay recurrent. 
[] 

P([xIY]) * -  Append(_,  -, -) ^ P(Y). 
Due to the possibility of speculative output bindings, in order to be sure that the 

condition I ~ CO holds, each atom in C must be completely resolved. In [11] local 
selection rules are used to ensure this property. A local selection rule only selects 
the most recently introduced atoms in a derivation and thus completely resolves sub- 
computations before proceeding with the main computation. 

Notice, however, that for semi delay recurrency, it is only necessary for the covers 
of those atoms which are mutually dependent with the head of the clause to be resolved 
completely. This means that following the resolution of these covers, an arbitrary amount 
of coroutining may take place amongst the remaining atoms of the clause. To formalise 
a selection rule based on this idea we introduce the notion of covers and covered atoms 

in a goal. 
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Definition8 covers and covered atoms in a goal. Let G =+--- A1, �9 �9 An be a goal 
and suppose that the atom Ai is resolved with the semi delay recurrent clause c : H +-- B 
giving 0 E mgu(H, Ai). If A E body(B) and rel(A) ~_ rel(H), then AO is a covered 
atom in G' and CO is a cover of AO in G'  where C is a cover of A in c and G' is the 
resolvent of G. [] 

Definition 9 semi local selection rule. A semi local selection rule only selects a cov- 
ered atom in a goal if one of its covers in a previous goal has been completely resolved. 
D 

A semi local selection rule ensures that before selecting a covered atom A, we first 
fully resolve a cover of A. Before giving the main result of our construction, we need 
the following definition taken from [ 11 ]. 

Definition 10 safe delay declaration [11]. A delay declaration for a predicate p is safe 
wrt 1. ] if for every atom A with predicate symbol p, if A satisfies its delay declaration, 
then A is bounded wrt 1.1. [] 

Theorem 11. Let P be a program with a delay declaration for each predicate in P.  Let 
1. [ be a level mapping and / an interpretation. Suppose that 

1. P is semi delay recurrent wrt 1. ] and I 
2. The delay declarations for P are safe wrt 1. ] 

Then every SLD-derivation for a query Q, using a semi-local selection rule is finite. [] 

We are now able to develop a program transformation based on the above result. 
We begin by transforming a given program into one which is semi delay recurrent, but 
with equivalent declarative semantics. Then by adding safe delay declarations we can 
obtain a program which terminates for all queries using a semi-local selection rule. 

Definition l2  semi delay recurrent transform sdr. The transform sdr is defined as 
follows. 

p E ~E'p =r E L'sdr(P) Ap sdr E ~r'sdr(P) wherep sdr ~ L'p 

V(p(3) -~--) E P =~ V(psdr(t,-) *---) E sdr(P) 

c = V(p({) ~-- w) E P ~ V(psdr(t -, d) *--- d = uc(d) A w') E sdr(e)  

where w' is obtained from w by replacing each atom in w of the form qi(2) with 
q~dr (2, di) i fp  '~ qi, -d is a tuple such that di E d i fp  _ qi and uc is a function with the 

property that u~(d) > di Vdi E d. The variables d and di, Vi are domain variables over 
gq. Finally for each p E X'p we introduce the auxiliary clause 

V(p({) +--- pdepth (3, d) A psdr([, d)) E sdr(P) 

where 3 is a tuple of variables. [] 

Lemma 13 semi delay recnrrency. If for each p E ZTp, the clauses defining pdepth 
are semi delay recurrent wrt M(sdr(P))  and 1. 1, then the program sdr(P) is semi delay 
recurrent wrt M(sdr(P))  and the level mapping . defined by 

Ipsdr({, d)l = d 
Ip(t) l = o 

[pdepth (~)[ [[pdepth (3)[[ 

for all p E ~V~p. [] 
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By Theorem 11 and Lemma 13 we can obtain a program which terminates for all 
queries under a semi-local computation rule by adding for each predicate, a delay 
declaration which is safe wrt the level mapping defined in Lemma 13. Note also that 
d = u(d) is the only atom in the body of each non-auxiliary clause which will be a 
covering atom in a goal. This means that after its resolution, an:arbitrary amount of 
coroutining may take place between the atoms in w'. 

Example 2. The program of Section 2 is obtained.by applying the above transform, with 
u(d) = d + 1, to the Ouicksort program of Section 1 and adding safe delay declara- 
tions. Notice that the number of suspension checksperformed has been minimised by 
introducing an auxiliary clause pl (7) ~-- p2(t) for eachpredicate p. [] 

4.2 Completeness 

Having obtained a terminating program, we need to prove that the declarative seman- 
tics Of the transformed program coincide with those of the original program. In this 
way, under the assumption that the transformed program is deadlock free [12], we can 
guarantee that all computed answers of this program are complete wrt the declarative 
semantics of the original program. We have the following result. 

Lemma14 equivalence. I f M ( P )  ~ p(t) andd C {d I M(sdr (e ) )  ~ p(t, d)} implies 

M(sdr(P))  ~ pdepth (7, d) then for all p E Zp  

p(t) E M(P)  ~r p(t) E M(sdr (e ) )  [] 

The problem then is to define pdepth for each p E ~ P  such that the above equiva- 
lence result holds. Our novel solution to this problem uses information about the success 
set of the program. Suppose we can deduce, for example, that for a given goal G, all 
computed answers for G can be found in an SLD-tree of fixed depth, then we can 
compute the SLD-tree to that depth and no more, and be sure that we have found all 
answers for G. In reality, the granularity is finer, relying not on the depth of the SLD-tree 
as a whole but rather on the lengths of individual branches. More precisely, for each 
predicate p we find an upper bound on the number of calls to p. It will often be the case 
that this bound relates to the input arguments of the predicate. We thus use interargument 

relationships to capture this relation. Essentially, we define pdepth as the interargument 

relationship of the predicate psd r. 

Definition 15 interargument relationship. Given p E ~p ,  a norm I. I and a model M 
for p/n,  an interargument relationship for p/n  wrt S is a relation I C l'q '~, such that if 

M ~ p(7) then p(lTI) c I. [] 

Interargument relationships can be automatically deduced using, for example, the 
analysis described in [4]. 

Example 3. The analysis in [4] can be used to deduce the argument size relations 

IQuicksortabs/3 = {(x, y, d) I x -- y, d = x}, IAppendabs/4 = {(x, y, z, d} ] z = 

z + y ,d  = x} and/PartitiOnabs/5 = {(w, x, y, z, d) I w = y + z ,d  = w}. These 

relations can be used to derive the definitions of SetDepth_Q/3, SetDepth-A/3 and 
SetDepth-P/4 for the program sdr(Quicksort) in Section 2. [] 

Example 4. Given the following predicate Split from the program Mergesort 
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Split([], [l, [1). 
Split([xlxs], [x[o], e) ~-- Split(xs, e, o). 

the argument size relation ISplitabs/3 = {(z, y, z, d} [ d = z, d < 2y, d < 2z + 1} 

can be derived. From this we can derive a program which terminates for all queries ,--- 
Split(x, y, z) where either x, y or z is a list of determinate length and the remaining two 
arguments are (optionally) unbound. We know of no other technique in the literature 
which can prove termination of these queries. The majority of approaches can only 
reason about the decrease in the level mapping of successive goals in a derivation. For 
the level mappings ISplit(tl, h ,  t3)11 = Itll and ISplit(tl, t2, t3)12 = It21 the decrease 
only occurs on every second goal. A similar problem which our approach can also deal 
with occurs in [13]. 

4.3 Efficiency 

We now give a brief appraisal of our approach from a performance perspective. 
In theory, the rigidity checks should not incur much more overhead than the original 

delay declarations. For example, checking rigidity of the first argument of the query .-- 
Append([1,2,3], y, z) requires three Nonvar tests - exactly the same number that would be 
required if the query were executed using the conventional delay declarations. There are 
additional costs due to unification and the calculation of the depth bound, but these costs 
could be minimised through careful implementation. We have naively implemented and 
tested some sample programs and some of the preliminary results are given below. The 
experiments have been carded out in SICStus Prolog [7] on a Sparc 4. 

Program Goal Length Time(s) for P U{G} Time(s) for sdr(P) U{G} 
P G of list k one solution all solutions one solution all solutions 
8-queens qn(_) 0.4 6.8 0.3 5.3 
permsort ps(k, _) 10 6.8 do 0.7 0.7 
permsort ps(_, L) 8 1.7 10.5 2:6 10.8 
quicksort qs(L, _) 4000 3.7 4.5 4.8 6.0 
quicksort qs(_, L) 8 1 2 m s  oo 6 m s  83.0 

The main overhead is due to the rigidity checks and our implementation in this respect 
is rather naive and could be improved. Even in our experimental implementation this 
overhead only reaches a maximum factor of about three for the simplest programs, e.g. 
Append. The power of our approach, however, lies in its scalability and it is here where 
we believe the most impressive performance gains are to be made. Preliminary tests 
indicate that the most benefit is obtained from larger programs where only one rigidity 
test is performed at the beginning of the program and the rest of the computation is 
bounded by the depth bounds. Then our programs can outperform the original ones 
with the delay declarations, particularly as the amount of backtracking or coroutining 
Increases. 

5 Conclusion 

The aim of control generation is to automatically derive a computation rule for a program 
that is efficient but does not compromise program correctness. In our approach to this 
problem we have transformed a program into a semantically equivalent one, introduced 
delay declarations and defined a flexible computation rule which ensures that all queries 
for the transformed program terminate. Furthermore, we have shown that the answers 
computed by the transformed program are complete with respect to the declarative 
semantics. This is significant. 
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Beyond the theoretical aspects of the work, we have demonstrated its practicality. 
In particular, we have shown how transformed programs can be easily implemented in 
a standard logic programming language and how such a program can be optimised to 
reduce the number of  costly rigidity checks needed to ensure termination, dramatically 
improving its performance. Furthermore, we have seen how the termination problems 
caused by speculative output bindings can be eliminated without the use of a local 
computation rule or other costly overhead. The coroutining behaviour which is then 
possible contributes significantly to the efficiency of the generated code. 

In terms of correctness, we have only considered termination and completeness 
in this work, though other correctness issues also need investigating. For example, 
Section 2.2 illustrates how the problem of deadlock freedom may be handled. 

The efficiency issues also require further investigation. We have separated to some 
extent the issues of termination and performance and it is not now clear what role 
extra delay declarations might play in improving the performance of the transformed 
programs, or even whether other techniques such as multiple specialisation would be 
more appropriate. 
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