
Modal Characterization of Weak Bisimulation for
Higher-order Processes

E x t e n d e d A b s t r a c t

Michael B aldamus
Berlin University of Technology

michael~cs.tu-berlin.de

Jtirgen Dingel
Carnegie Mellon University, Pittsburgh

jurgend@cs.cmu.edu

Abstract

Context bisimulation [12, 1] has become an important notion of behavioural
equivalence for higher-order processes. Weak forms of context bisimulation are
particularly interesting, because of theh" high level of abstraction. We present a
modal logic for this setting and provide a characterization of a variant of weak
context bisimulation on second-order processes. We show how the logic permits
compositional reasoning. In comparison to previous work by Amadio and Dam [2]
on the strong case, our modal logic supports derived operators through a complete
duality and thus constitutes an appealing extension of Hennessy-Milner logic.

1 Introduction

First-order process calculi like CCS have long been known as a tractable tool for the
description of concurrent processes. Modal (temporal) logic on the other hand has
proved itself to be a powerful specification and verification device for such systems.
Hennessy-Milner logic [7], for instance, provides an adequate logical match to CCS,
and thus complements its algebraic nature very nicely. However, first-order process
calculi are limited in the sense that they assume a fixed interconnection structure be-
tween the processes involved. Recently, name-passing and higher-order calculi have
been proposed to remedy this obvious deficiency [10, 15]. They allow the communi-
cation of processes and functions, and thus support a powerful abstraction technique
which is similar to the one found in higher-order programming languages and caters
for systems with changing interconnection structure. Not surprisingly, this additional
expressive power complicates the theory significantly.

Certain higher-order calculi have received continued attention. One of them is
Thomsen's Plain CHOCS [15], which features a static treatment of the restriction oper-
ator and a bisimulation-based semantics. In [2], Amadio and Dam address the lack of
specification formalisms for Plain CHOCS and propose a modal logic which extends
Hennessy-Milner logic and characterizes strong context bisimulation (called CHOCS
bisimulation in [2]). Moreover, they present a sound and complete infinitar 7 proof sys-
tem for the subcalculus without restriction.

Strong forms of bisimulation are often too fine-grained and, as well-known from
the first-order setting, weak forms are more useful because they better capture the ob-
servable behaviour of processes. However, this higher level of abstraction in general
also makes weak notions of bisimulation less tractable. The presence of higher-order
processes aggravates this problem.

This paper picks up the thread initiated by [2], considers a variant of weak context

286

bisimulation (bisimulation for short), and presents what constitutes, to our knowledge,
the first logical characterization of weak context bisimulation. We propose a modal
logic that, in contrast to the one used in [2], supports full negation. Another significant
difference is of proof-technical nature. We introduce a new notion of context bisimu-
lation, which we call existential bisimulation. The proof of the characterization result
rests on the equivalence of bisimulation and existential bisimulation. Amadio and Dam
on the other hand approximate strong context bisimulation and heavily rely on the con-
gruence of these approximations. It is an open question how congruence of analogous
approximations in the weak case could be established.

A c k n o w l e d g m e n t . We would like to thank Rainer Glas for discussions which helped
us to find the right formulation of Definition 3.1(1).

2 Preliminaries

We adopt the process calculus used in [2] and briefly review its syntax and operational
semantics before we define weak transitions and our weak variant of bisimulation.

Syntax The following list introduces the syntactic sets and typical variables to be

used in the sequel.

�9 (c , . . . 6)C: channelnames

�9 (u , . . . E)N: variables, where the set of finite subsets of 7 is ranged over by
U, . . . ; (x , . . . E)Vp: process variables with V~ C V; (f , . . . C)VF: function

variables with Y~ C_ 'g

�9 (p , . . . E)1P~ process expressions, possibly containing free variables or channel
names;]?u: process expressions whose free variables are from U; 1?~': process
expressions whose free variables are from {u} ; IP: process expressions without
free variables; elements in F will be referred to as processes.

We require C, Vp, and V~ to be countably infinite. Note that processes may contain
free channel names, but no free variables. Process expressions are generated by the

following grammar:

P ::= x [(fP) I(NieIprei.Pi) [(P i P) l(uc'P) pre ::= c?x I c!P

where I ranges over finite index sets. The empty sum represents the process that can-
not do anything and is denoted by 0. As in [15, 2], our calculus does not contain any
data. Note, however, that they could easily be added. We use),-abstraction, which we
denote by P[u] rather than Au.P. Input prefixing,),-abstraction and restriction bind

the respective variable or channel name as follows:

operator c?x [u] vc
bound name x u c

287

The corresponding definition of a-conversion of bound variables and channel names
is standard and omitted. Throughout this paper, we will not distinguish between c~-
convertible expressions. Then, given that P[u] does not contain any free variable, P[u]
is a function if u = z and a functional if u = f . Whenever we want to refer to pro-
cesses, functions and functionals at the same time, we write P(u). In other words,
P(u) has to be thought of as either P or as P[u], depending on whether the statement
is to be instantiated to processes, functions, or functionals.

Second-order Substitution Communication will be modeled by the substitution of
expressions for free variables. More precisely, the communication rule (? !) below em-
ploys second-order substitution, where first the free function variable f in P.~ is re-
placed by a function P~ [z] and then the argument is replaced for z. The underlying
definition of first-order substitution for free variables, denoted by P[Q/z], is standard
and omitted. Note that in each of these substitutions c~-conversion of bound variables
and channel names will avoid unwanted capture of free variables or names.

Operational Semantics The operational semantics is given by three (families of) la-

beledtransition relations: For all c, z, f , wehave c?~> C P x P ~ (input), c!f~ C_ p x p f
(output) and ~ > _C P x P (silent move). Note that only processes, that is, closed pro-
cesses expressions, can perform transitions. Each of the transition relations is defined
as the smallest relation satisfying the following axioms and rules where # ranges over
labels.

(?) pre.P ~ P, for pre : c?x,~- (!) c!P1.P2 e!y> (fP1 I/2'2)

(P') Pk f* > Ps for some k E f implies 2ieIPi ~ + Ps

(I) P1 _E+ p~ implies/:'1 [P2 u> p~ [P'2; and symmetrically

(?!) P1 57~> P~ and P2 c!y> p~ implies Pa] P'2 __5_+ P.~[P~[x]/f]; and symmetrically

(u) P _.e_+ p, implies uc.P u > ue.P' provided that # r e?u, c!u

The communication rule (?!) deserves some explanation. Consider the following
typical scenario. Process P1 wants to transmit P~ along channel c and then behave like
P~'. Process Be on the other hand is waiting for input along c and then turns into P.~.
More precisely,

P1 - c!.P~.P~' ~ (fP~ [p~') and P2 - c?x.P,~ c?~> p,~.

Informally, rule (? !) models communication by placing the receiving process inside the
sending process. Second-order substitution then yields the expected result.

P: 1 (fP I P2')f 2fx]/fl : (P, AfP;/x] I

Note how this rule elegantly deals with two difficulties in the definition of higher-order
operational semantics: The communication neither causes free channel names to be-
come bound nor bound channel names to become unbound. In particular, the scope of

288

a channel name c that is privately shared between a transmitted process and the con-
tinuation of the sender before the communication, is unaffected by the communication.
That is, c will still be privately shared between the same Processes. We have, therefore,
what is called static scoping of channel names.

Weak Transitions The above transition relation is very low-level because it renders
all transitions, including silent "r-transitions, observable. The following definition of

weak transitions ~ remedies this. For all c, x, f , we have ~ _C I? x 1?x (input),

C_ ~ x 1?f (output) and ~ C_ 17 x 17 (silent move). Each of these relations is

defined as the smallest relation satisfying P ~ P ' if P ~- > * P ' and P ~ P~ if

p ~ t~> p , . Furthermore, let fi _-- # i f # = c?x,c!f, a n d S = e i f # = T.

Open Extension Let ~ be a binary relation on 17. 7~ can be extended to a binary
relation on 1?u: For all x, f , binary relations 7~ x, ~ f on 1?x, 1?y are given by P T~ x Q
if P[R/x] 7~ Q[R/x] for all R c 1? and P ~ f Q if P[R[yl/f] 7~ Q[R[yl/f] for
all y, R E 1?v. The open extension 7~ ~ of 7Z then is defined by 7~ ~ - U~ 7u'.
Note that 7d ~ does not consider any expression with more than one free variable. Our
definition of open extension is, therefore, not the usual one. It is, however, sufficient

for our purposes.

Context Bisimulation We now define the notion of bisimulation we will strive to

characterize by logical means in Section 4.

Definition 2.1. A binary relation ~ on 17 is a (weak late context) bisimulation if P T~

Q implies: Whenever P u > p , then, for some Q~, Q ~=~ Q, and P' 7~ ~ Qt, and
symmetrically. We d_enote by ~ the union of all bisimulations.

This notion differs from the one used in [2] only in that the matching transition by
Q may be weak. Moreover, this transition must not contain any trailing T-move, so
is what is called a delay bisimulation [6]. Also, considering the derivation of a com-
munication transition, note that the receiver does not know the identity of the process
transmitted until the (?!)-rule is applied. Such a communication scheme is called late
which makes ~ is a late bisimulation. For a conceptual discussion and practical ap-
plication of this combination, see [13, 5]. We do not know whether the results of this
paper could be obtained for classically weak and/or non-late, that is, early forms of

bisimulation.

3 Existential Bisimulation

We now introduce a new notion of bisimulation on higher-order processes called exis-
tential bisimulation. It bridges the gap between bisimulation and logical equivalence,
that is, our characterization proof falls into two parts: 1) Two processes are bisimilar if
and only if they axe existentially bisimilar. 2) Two processes are existentially bisimilar

if and only if they satisfy the same modal formulas.

289

The intuition behind existential bisimulation is given by the following simple idea:
AI~ operational semantics is assigned to function(al)s by regarding function(at)-argu-
merit-result triples of the form (P[u], Q(x), P[Q(x)/u]) as labeled transitions. For ex-
ample, the first three steps of the overall operational semantics of the process c?x.d!x.O
are

g~f
/~1 d!/~l.0 ~-fR1 [0[f]

c?x ~ d! f
c?x.d!x.O > d!x.O[x] d!R2.0 ~-fR2 I O[f]

Re

Each process has a transition for each action it can perform. Each function(N) has a
transition for each of its potential arguments. (In the diagram this aspect is indicated by
dot notation.) To obtain a notion of observational equivalence we now need to define
how a transition of a process can be matched by another transition of another process.

For process transitions we adopt the standard definition: A transition of the form P ">

P ' has to be matched by a transition of the form Q ==~ Q'. For function(al) transitions,

however, we now have a choice: A transition of the form P[u] R(~ P[R(x)/u] could
be matched by either

�9 a transition Q[u] R(~) Q[R(x)/u], where the argumentis the same, or

�9 a transition Q[u] s(~t Q[S(x)/u], where R(x) must be bisimilar to S(x) and
P[R(x)/u} must be bisimilar to Of S(x)/u 1. More precisely, P[u] and QIul are
bisimilar if, for every R(x), there exists a S(x) so that R(x) is bisimilar to S(x)
and P[R(x)/u] is bisimilar to Q[S(x)/u], and conversely.

Adopting the first option leads us to bisimulation, adopting the second to existential
bisimulation. The latter notion forms the basis of our modal characterization of ~.

In the study of higher-order functional languages such as the typed A-calculus it
proved extremely useful to compare functions by means of logical relations [11]. In
this setting, two functions are related if whenever they are applied to related arguments
they yield related results. From this perspective, existential bisimulation appears to be
a hybrid between the standard notion of bisimulation on the one hand and the concept
of logical relations on the other. Given the apparent mix of functional and concurrent
concepts in our process calculus this is not surprising.

Before we introduce existential bisimulation formally, we would like to point out
that an entirely different route to modal logic for higher-order process may be possible
by using S angiorgi's results about the fully abstract translation of higher-order into ~--
calculus processes [12]. Satisfaction of modal formulas in Such a framework would be
defined wrt. zr--calculus processes and their transitions. Note, however, that any char-
acter/zation resnlt obtained using this approach would, therefore, be significantly less
direct than ours.

290

Existential Extension The formal definition of existential bisimulation is based on
the notion of existential extension. This construction is similar to the open extension of
a binary relation on 11'. Lemma 3.2 states the central property of existential extension,
which is appropriately called existential property.

Definition 3.1. Let ~ be a binary relation on 17.

1. For all U, V, a relation 7~g, v _C 1?u x 1?v is given by ~ g , v -= 7~ if U = V = 0

and, otherwise, P ~ u,v Q if, for W = U u V:

I.a. V x E W , R E

I.b. V f E W , x, R E

II.a. Vx E W, R E

lI.b. V f E W,x, R E

3 Sa E]P R 7-4 ~ S~ A P[R/z] �9 " G r

nu-~,v-~ O.[R/~]
�9 �9 0,~

R A P[&[xJ/f] ~ u - y , y - f Q[n[x]/f] ~ . ~ S~ E ~ . S~ 74{~},{~ t

2. A binary relation 7Z ~ on 1?o is given by ~ -= Uv, v ~ v,v. We call ~ the exis-
tential extension of T4.

Lemma 3.2. P ~ Q implies:

i.a. Vx , RE1? . S S ~ EI? . R ~ Sa A P[R/x] T~ ~ Q[S~/x]

Lb. V f , x , R E ~x. 3 S , E 1?x. R 7-4 ~ S, A P[R[x]/f] ~ Q[SI[x]/f]

ii.a. Vx , R E 1 ? . 3 S 2 E 1 7 .$2 7-4 ~ R A P[S2/x] 7-4 ~ Q[R/x]

ii.b. V f , x , R E 1?*. 3S2 E 17". $2 7-4 ~ R A P[S2[x]/f] ~ Q[R[x]/f]

Plvof Straightforward by induction on the generation of 7~ ~. []

Existential Bisimulation

Definition 3.3. A binary relation 7-4 on 17 is an existential (weak late context,) bisimu-

lation if P 7~ Q implies: Whenever P ~ P ' then, for some Q t Q ~ Q, and
P~ ~ Q', and symmetrically. We denote by ~3 the union of all existential bisimula-

tions.

Lemma 3.4. Existential bisimilarity is an equivalence and, at the same time, P ,.~3 Q

if and only if" Whenever P g-~ P' then, for some Q', Q ~=~ Q' and P' , ~ Q', and
symmetrically. As a consequence, ~3 is the largest existential bisimulation.

Theorem3.5. ~3 = ~.

Proof "D_": By the fact that ~ itself is a bisimulation together with the easily proved

property 7~ ~ C 7-4 ~.
"C": (Outline) This direction requires far more extensive reasoning. The idea behind

the proof is as follows: Consider Lemma 3.4: P ~3 Q iff whenever P ~ P ' then, for
some Q~, Q g==~ Q~ and P ' ~ Q', and symmetrically. Assume, also, congruence of

291

~ and, for simplicity's sake, pt , Q~ E 1?x for some x. Then: P~ ~ Q~ implies VR
]P. 3S ~ I?. R ~ S A P'[R/x] ~ Q'[S/x]. Further, R ~? S plus congruence
of ~? implies Q'[R/x] , ~ Q'[S/x], so symmetry and transitivity of ~? imply VR
17. Q'[R/x], so P' ~? Q~, so ~ is a bisimulation, so ~ C_ ,~. The
problem is that proving congruence of weak bisimulation on higher-order processes is
inherently difficult [12, 5, 4], and even more so in the case of existential bisimulation.

To solve this problem we use a variation of a method that was originally developed
by Howe to prove congruence of applicative bisimulation in functional computational
frameworks [8]. Howe's method has already been adapted to prove congruence of stan-
dard forms of weak bisimulation on co-order processes [5, 4]. We need to give the fol-
lowing definition: A constructor co has the form f , c?x, c!, Z, I or uc. Constructors

may be applied to families of expressions, co (P), where the result is defined according
to the grammar. The size of P must of course coincide with the arity of co and, in the
case of 57,, every element of P must be of the form pre.P.

f(P) =-fP I(P ,P2)
e?x(P) =_ c?x.P Z(prei.Pi)iei =- Ei~iprei.P~ uc(P) =- ue.P

The centerpiece of the whole proof then consists of the existential Howe closure , ~ of
~3. This relation is defined to be the smallest binary relation on t? ~ for which

x ~ Q and ~ ~ ~) co(O.) , ~ Q
x O co() Q '

where P and Q) must be of the same size,/5 ~ ~) is understood component-wise and

co(P) and co((2) must be well-formed. For the Howe closure ~', of ~3, one would
use the same definition with ~o_, instead of ~ . A number of standard general properties
can be shown for Howe closures provided that the underlying relation is an equivalence
and preserved by the renaming of unbound variables, names and the like. Analogous
properties can be shown in mostly identical or similar ways for ~ : 1) ~ is reflexive,
2) ~ C_ ~ , 3) ~3~3~"~ _c ~ , where ~3~3~'~ is the relational composition of ~ and
~3,~ 4) ..~ is a congruence, 5) ~ * is symmetric.

Next, we show that, for all P, Q ~ 2, p ~ Q implies: Whenever P "> P ' then,

for some Q', Q ~ Q' and P ' ~ Q'. This proof can be done by transition induction
on P --f-+ P', using (1)-(4). Further, let ~ ~3~ - ~ n 17x1?. We can prove (~,.~ ~ ~*

3 ~J to be a simulation, using the preceding property in combination with induction
on the length of sequences of the form Po ~ ~ 3 "~3 P~. Then, by (5), ~ * "'" (~3c) is a
b/simulation. At the same time, an easily proved lemma is is ~ C (~ c)*, so we
have indeed ~3 _C ~. []

The full proof of Theorem 3.5 is presented in our technical report [3].

Approximating Existential Bisimulation For the proof of the characterization the-
orem in [2], Amadio and Darn show that strong bisimulation ..~ can be obtained as the
limit of a descending chain of equivalence relations ~ where k is a natural number.

292

We will transfer this idea to our setting and also generalize the approximation from
natural numbers to ordinals. Let ORD denote the class of ordinals ranged over by
and)~. A basic result of set theory says that ORD is a proper class, that is, not a set.

Definition 3.6. A ORD-indexed family of binary relations ~'~ "~3 on]P is given as fol-
lows:

i. P ~o Q always.

ii. P ~ + 1 Q if: Whenever P ~ P ' then, for some Q', Q ~ Q' and P ' ~ a
Q~, and symmetrically.

iii. For every limit ordinal)~, P ~3 x Q if P ~ Q for every ~ <)~.

Finally, P ~ORD Q if P ~ Q for every ~ �9 ORD. " 3

Proposition 3.7. ~ORD = ~3.

Proof Similar to the proof of the corresponding approximation result for weak bisim-
ulation on CCS in [9]. For details see [3]. []

Note that, by the proof of Theorem 3.5, ~? is a congruence because ~ is one [4].
However, it is still an open question whether ~ is a congruence for every t~.

4 M o d a l C h a r a c t e r i z a t i o n o f B i s i m i l a r i t y

Modal Formulas Properties of process expressions are expressed using modal for-
mulae generated by the grammar below. An important syntactic feature of modal for-
mulae is that, just like process expressions, they have one of three orders. Formulae of
order 0, 1, or 2 describe processes, functions or functionals respectively. Let r ~,i Xi
range over modal formulas of order i, where i �9 {0, 1,2}. We omit these superscripts
when the ranges of possible orders are determined by the context.

r ::= Ajcz ej] -'r for i e {0,1,2}
r ::~___ (C?X>r 1 i i

::= for i �9 {1,2}

where I is a countable index set, that is, conjunctions maybe infinite but countable. We
use the standard abbreviations: T = A (~ and _L = ~ T and r V r = -,(~r A -'r

In contrast to [2], the logic features the dualities familiar from Hennessy-Milner

logic, we define -= and [r162 -

Realization The logic allows two kinds of modal judgments. The meaning of P
(~}r is familiar from Hennessy-Milner logic: P can make a weak transition labeled
with ~ and then behave as specified by qS. The intuition behind P[u] ~ (4))r is that
there is an argument satisfying r so that the application of the function(al) P[u] to it

293

results in a process satisfying r More precisely, (r162 describes a functional P[f]
for which there is a function Q[x] satisfying r so that P[Q[x]/f] satisfies r (r162
on the other hand, specifies a function P[x] for which there is a process Q satisfying r
so that P[Q/x] satisfies ~o. Formally,

P(~) ~ A~e~ r

PM ~ (r162

if, for every i ~ [, P(u) ~ r
if not P(u) ~ r
if, for some P ' , P ~ P ' and P'(u) ~ r
where u is the variable that possibly occurs in #
if, for some Q(x), Q(x) ~ r and P[Q(x)/u] ~ r

Note that [r162 is equivalent to Amadio and Dam's implication operator r =~ r in [2].

Example 4.1. Consider the following process expressions.

P~ _= (x I P~)[x] where P~ = c!O.OId?y.O and
P,~ = ue.(c?z.e!z.d!z.O l e?w.P,~) where P,~ E

P~ can be thought of as a client which when given a server P2 first provides input to the
server along c and then expects the result on d. In this particular case, P1 just outputs
the 0 process and P2 just passes its input along after having copied it to the parallel sub-
process P,J. In the overall system 1"1 [P2/x] = P'2 I P[both processes can communicate
as expected and then halt. More precisely, they are allowed to engage in an arbitrary
but finite number of internal actions and then reach a state from which no further action
is possible: P~] P~ ~ @)r where Chlt ~--- [e]Z A Ac,x,f[C?X]Z A [c!f]•

Modal Depth [r denotes the modal depth of a formula and is defined as follows:

I A ~ r -= ~ p (l r b r - Ir I(~)r - ~ + Ir I(r162 -- ~ (1 r Ir
Definition 4.2. For every ~, we define an equivalence ~ on processes, functions and
functionals by

P(u) ~ Q(u) if, for all Cwith [r _< ~, P(u) ~ r ~ Q(u) ~ r
P(u) ~,L Q(u) if, for every ~, P(u) , ~ Q(u).

Characteristic Formulas For all processes, functions or functionals P(u), Q(u) and
every t~:

�9 We choose some r with P(u) ~ r and Q(u) ~ r
provided that P(u) r Q(u).

�9 r ~ fr if P(u)r Q(u)
[T if P(~) ~ Q(u)

Lemma 4.3. Q(u) ~ r if andonly if Q(u) , ~ P(u).

Proof. "~": Immediate since]r < ~ and P(u) b r "=~"" By contraposi-
tion. [] - "

294

The Characterization Theorem For the proof of the characterization of ~ in terms
of ~L, we need to extend ~ to function(aDs: P[u] ~ Q[u] if P ~ ~ Q.

Proposition 4.4. ~ , = ~'~

Proof. By transfinite induction on a, following the lines of the proof of Proposition
10.6 in [9]. Only the cases where a funcfion(al) meets some formula of the form (r162
are new. We restrict ourselves accordingly.

base case: Immediate since P(u) ,~o~ Q(u) for all P(u), Q(u).

successor case: "D"; Using structural induction on r where [r < t~ + 1, we show that
P(u) ~,~+1 ~3 Q(u) implies: P(u) ~ r ~ r

In the non-standard case we consider the sub-case where P(u) = P[f] , Q(u) =
Q[f] and r = (r proving that P[fJ ~ r implies Q[f] ~ r The desired equivalence
follows by symmetry. [By P[f] ~ (~b)x: There exists a R[x] so that R[x] ~ r and
P[R[xJ/f] > X.] By P[f] ~ + t Q[f]: There exists a &[x] so that R[x] ~,~+1 SI[x]
and P[R[x]/f] ~ + 1 Q[& [x]/f]. [By structural induction, taking into account that

I(V,>r -< ,~ + 1 implies Ir < '~ + 1: &[x] ~ r and Q[&[x]/f] ~ x. l BY
definition: Q[fl ~ (r

"C';_ By contraposition, assuming P(u) r Q(u). In the non-standard case we
again consider the sub-case where P(u) = P[f] and Q(u) = Q[f]. I By assumption:

(a) or (b), where:

a. 3Nix]. VSI[x]. R[x] r S, [x] V P[R[x]/I] r O[Sl [x]/f]

b. ~/~[X].VS2[X]-S2[X] r]~[x] V P[S2[x]/I] r O[R[xl/f]

Because (a) and (b) are practically the same, we consider only (b). I In this case, by
icn+l)r where the argument Nix] is as in (b). I Sup- Lemma 4.3: Q[f] ~ \ nD] o[R[x]/]]

pose now P[f] ~ (r162 I By definition: There exists a S2[x] so that

S,2[x] ~ r and P[&[x]/f] ~ r] By Lemma 4.3 and induction on the
n[*l

order: S,2[x] ~,~+1 R[x] and P[&[x]/f] ,.~,~+1 Q[R[x]/f], contradiction. I Thus,
g-bl ~q-1 Note /~n+ l \A~q-1 __ p[f] @N,I)r x~,ni~F,eO[nD]/y]l < ~ + 1.

limit case: By induction on the order. The non-standard cases are once again those
situations where a function(al) meets some formula of the form (r162 They can be
dealt with in practically the same way as we have done it in the successor case. []

The proof of the corresponding result in [2] for the strong case hinges on ,-, and ~,,k
being congruences. It is important to note that our proof does not rely on this kind of

requirement.
Finally, we can state and prove the actual characterization. To this end, we need to

extend ~ to function(al)s, similarly as we did it with ~ : P[u] ,~ Q[u] if P ~~ Q.

Theorem 4.5. '~----'L -~ ~'~"

Plvof We give the proof for the restriction of ,-~'L tO processes. The proof of the full re-
sult would require us to elaborate somewhat on the third and fifth steps. This additional

reasoning, however, is straightforward.

295

~ L : N~ " ~ ~ L

_ , ~ . , O R D

= "~3

; def.
; Proposition 4.4

; def.
; Proposition 3.7
; Theorem 3.5 []

5 Compositional Verification

We will now demonstrate how both the process calculus and the modal logic support
compositional reasoning. Compositionality will be achieved by means of a well-known
technique called assumption-commitment reasoning. In this approach, proofs are split
into two parts: First we prove that a component of the overall system satisfies a cer-
tain property under the assumption that the environment behaves in a certain way. In a
second step, we show that the environment does indeed behave as assumed. We will il-
lustrate the application of this idea by means of the example of Section 4. The client P1
makes certain assumptions about the server it will work with. If the server does meet
those assumptions, then the overall system will behave as desired. More precisely,

P1 ~ [Osrv](@)r where r -=- (c?z)([T]((d[f)T)).

qSs~ is the environment assumption the client wants a server to satisfy. It specifies that
the server should first be able to receive input along c and then, for all of those inputs,
it should be able to offer output along d. If the input to P1 satisfies Os~v then P1 can
engage in an arbitrary but finite number of internal actions and then stop. We see that
process P2 does meet the requirement expected of the server: P2 P qSs~. The logic
now allows us to conclude that the overall system/:'1 P2 = P2 I P~ will work correctly:
P2 I P~ ~ (e)r In sum, instead of reasoning about the entire system as in Section
4, we can reason about each of its constituents separately and thus reap the benefits of
compositionality. Note that both P1 P2 and P'2 exhibit invisible transitions and that this
example consequently could not have been expressed in the strong setting used in [2].

6 Conclusion and Further work

We have given what constitutes, to our knowledge, the first logical characterization of a
weak variant of context bisimulation on second-order processes. The characterization
hinges on a novel notion of observable equivalence on higher-order processes called
existential bisimulation. This notion, apart form its proof technical importance, also
seems to be of conceptual value as it matches the combination of functional and con-
current features of the process calculus. The modal logic comprises negation and all
dualities known from Hennessy-Milner logic. We have demonstrated that the process
calculus on the one hand and the modal logic on the other hand mesh very well and
open up a way towards modular verification of higher-order processes.

So far, we clearly lack a syntactic framework which permits the formal derivation of

296

statements like P ~ q~. Unfortunately, our attempts to equip the presented combination
of process calculus and logic with a proof system have failed. The fact that a # - m o v e
by a parallel composition P1 [/:'2 may hide arbitrarily many communications between
the two processes poses a substantial problem. Additionally, the rules for parallel com-
position seem to require a congruenceproperty our setting does not offer. Alternatively,
we tried to find a complete axiomatization along the lines of [14]. However, a straight-
forward adaption of the results in [14] is encumbered by the more complex modalities.

The results of this paper rest on the notion of existential bisimulation. There is
some hope that this new notion may also be fruitfully applied to other higher-order
calculi. The most promising candidates seem to be oa-order calculi like Sangiorgi's
HOTr [12]. In this setting, context bisimulation also serves as the notion of observa-

tional equivalence.

References

[1] R.M. Amadio. On the Reduction of CHOCS-Bisimulation to 7r--calculus Bisimulation. In
Concurrency Theory, LNCS 715, pages 112-126. Springer, 1993. Proceedings CONCUR.

[2] R.M. Amadio and M. Dam. Reasoning about Higher-order Processes. In P.D. Mosses,
M. Nielsens, and M.I. Schwartzbach, editors, Theory and Practice of Software Develop-
ment, LNCS 915, pages 202-216. Springer, 1995. Proceedings TAPSOFT.

[3] M. Baldamus and J. Dingel. Modal Characterization of Weak Bisirnulation for Higher-
order Processes. Report 96-27, Berlin University of Technology, Computer Science De-
partment, 1996. Retrievable via the Hypatia electronic library.

[4] M. Baldamus and T. Frauenstein. Congruence Proofs for Weak Bisimulation Equivalences
on Higher-order Process Calculi. Report 95-21, Berlin University of Technology, Com-
puter Science Department, 1995.

[5] W. Ferreira~ M. Hennessy, and A. Jeffrey. A Theory of Weak Bisimnlation for Core CML.
In Functional Programming, pages 201-212. ACM Press, 1996. Conference proceedings.

[6] R.J. van Glabeek. The Linear Time - - Branching Time Spectrum II. In CONCUR, LNCS
715, pages 66-81. Springer, 1993. Proceedings.

[7] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal
of the ACM, 32:137-161, 1985.

[8] D. Howe. Equality in Lazy Computation Systems. In Logic in Computer Science, pages

198-203, 1989. Proceedings LICS.
[9] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[10] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, (Parts I and 1I).

Information and Computation, (100):1-77, 1992.
[11] J.C. Mitchell. Type Systems for Programming Languages. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, pages 365-458. North-Holland, 1990.
[12] D. Sangiorgi. Expressing Mobility in Process Algebras: First-order and Higher-order

Paradigms. Cst-99-93, Department of Computer Science, University of Edinburgh, 1993.
[13] D. Sangiorgi. Bisimulation in Higher-order Calculi. Report RR-2508, INRIA-Sophia

Antipolis, 1995. To appear in Information and Computation.
[14] C. Stifling. Modal Logics for Communicating Systems. Theoretical Computer Science,

(49):311-347, 1987.
[15] B. Thomsen. Plain CHOCS - - A Second Generation Calculus for Higher-order Processes.

Actalnformatica, (30):1-59, 1993.

