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Abstract 

Context bisimulation [12, 1] has become an important notion of behavioural 
equivalence for higher-order processes. Weak forms of context bisimulation are 
particularly interesting, because of theh" high level of abstraction. We present a 
modal logic for this setting and provide a characterization of a variant of weak 
context bisimulation on second-order processes. We show how the logic permits 
compositional reasoning. In comparison to previous work by Amadio and Dam [2] 
on the strong case, our modal logic supports derived operators through a complete 
duality and thus constitutes an appealing extension of Hennessy-Milner logic. 

1 Introduction 

First-order process calculi like CCS have long been known as a tractable tool for the 
description of concurrent processes. Modal (temporal) logic on the other hand has 
proved itself to be a powerful specification and verification device for such systems. 
Hennessy-Milner logic [7], for instance, provides an adequate logical match to CCS, 
and thus complements its algebraic nature very nicely. However, first-order process 
calculi are limited in the sense that they assume a fixed interconnection structure be- 
tween the processes involved. Recently, name-passing and higher-order calculi have 
been proposed to remedy this obvious deficiency [10, 15]. They allow the communi- 
cation of processes and functions, and thus support a powerful abstraction technique 
which is similar to the one found in higher-order programming languages and caters 
for systems with changing interconnection structure. Not surprisingly, this additional 
expressive power complicates the theory significantly. 

Certain higher-order calculi have received continued attention. One of them is 
Thomsen's Plain CHOCS [15], which features a static treatment of the restriction oper- 
ator and a bisimulation-based semantics. In [2], Amadio and Dam address the lack of 
specification formalisms for Plain CHOCS and propose a modal logic which extends 
Hennessy-Milner logic and characterizes strong context bisimulation (called CHOCS 
bisimulation in [2]). Moreover, they present a sound and complete infinitar 7 proof sys- 
tem for the subcalculus without restriction. 

Strong forms of bisimulation are often too fine-grained and, as well-known from 
the first-order setting, weak forms are more useful because they better capture the ob- 
servable behaviour of processes. However, this higher level of abstraction in general 
also makes weak notions of bisimulation less tractable. The presence of higher-order 
processes aggravates this problem. 

This paper picks up the thread initiated by [2], considers a variant of weak context 
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bisimulation (bisimulation for short), and presents what constitutes, to our knowledge, 
the first logical characterization of weak context bisimulation. We propose a modal 
logic that, in contrast to the one used in [2], supports full negation. Another significant 
difference is of proof-technical nature. We introduce a new notion of context bisimu- 
lation, which we call existential bisimulation. The proof of the characterization result 
rests on the equivalence of bisimulation and existential bisimulation. Amadio and Dam 
on the other hand approximate strong context bisimulation and heavily rely on the con- 
gruence of these approximations. It is an open question how congruence of analogous 
approximations in the weak case could be established. 

A c k n o w l e d g m e n t .  We would like to thank Rainer Glas for discussions which helped 
us to find the right formulation of Definition 3.1(1). 

2 Preliminaries 

We adopt the process calculus used in [2] and briefly review its syntax and operational 
semantics before we define weak transitions and our weak variant of bisimulation. 

Syntax The following list introduces the syntactic sets and typical variables to be 

used in the sequel. 

�9 (c , . . .  6)C: channelnames 

�9 ( u , . . .  E)N: variables, where the set of finite subsets of 7 is ranged over by 
U, . . .  ; ( x , . . .  E)Vp: process variables with V~ C V; ( f , . . .  C)VF: function 

variables with Y~ C_ 'g 

�9 ( p , . . .  E)1P~ process expressions, possibly containing free variables or channel 
names; ]?u: process expressions whose free variables are from U; 1?~': process 
expressions whose free variables are from {u} ;  IP: process expressions without 
free variables; elements in F will be referred to as processes. 

We require C, Vp, and V~ to be countably infinite. Note that processes may contain 
free channel names, but no free variables. Process expressions are generated by the 

following grammar: 

P ::= x [ ( fP)  I(NieIprei.Pi) [ ( P i P )  l(uc'P) pre ::= c?x I c!P 

where I ranges over finite index sets. The empty sum represents the process that can- 
not do anything and is denoted by 0. As in [15, 2], our calculus does not contain any 
data. Note, however, that they could easily be added. We use ),-abstraction, which we 
denote by P[u] rather than Au.P. Input prefixing, ),-abstraction and restriction bind 

the respective variable or channel name as follows: 

operator c?x [u] vc 
bound name x u c 
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The corresponding definition of a-conversion of bound variables and channel names 
is standard and omitted. Throughout this paper, we will not distinguish between c~- 
convertible expressions. Then, given that P[u] does not contain any free variable, P[u] 
is a function if u = z and a functional if u = f .  Whenever we want to refer to pro- 
cesses, functions and functionals at the same time, we write P(u). In other words, 
P(u)  has to be thought of as either P or as P[u], depending on whether the statement 
is to be instantiated to processes, functions, or functionals. 

Second-order Substitution Communication will be modeled by the substitution of 
expressions for free variables. More precisely, the communication rule (? !) below em- 
ploys second-order substitution, where first the free function variable f in P.~ is re- 
placed by a function P~ [z] and then the argument is replaced for z. The underlying 
definition of first-order substitution for free variables, denoted by P[Q/z], is standard 
and omitted. Note that in each of these substitutions c~-conversion of bound variables 
and channel names will avoid unwanted capture of free variables or names. 

Operational Semantics The operational semantics is given by three (families of) la- 

beledtransition relations: For all c, z, f ,  wehave c?~> C P x P  ~ (input), c!f~ C_ p x p f  
(output) and ~ > _C P x P (silent move). Note that only processes, that is, closed pro- 
cesses expressions, can perform transitions. Each of the transition relations is defined 
as the smallest relation satisfying the following axioms and rules where # ranges over 
labels. 

(?) pre.P ~ P, for pre : c?x,~- (!) c!P1.P2 e!y> (fP1 I/2'2) 

(P') Pk f* > Ps for some k E f implies 2ieIPi ~ +  Ps 

(I) P1 _E+ p~ implies/:'1 [P2 u> p~ [P'2; and symmetrically 

(?!) P1 57~> P~ and P2 c!y> p~ implies Pa ] P'2 __5_+ P.~[P~[x]/f]; and symmetrically 

(u) P _.e_+ p,  implies uc.P u > ue.P' provided that # r e?u, c!u 

The communication rule (?!) deserves some explanation. Consider the following 
typical scenario. Process P1 wants to transmit P~ along channel c and then behave like 
P~'. Process Be on the other hand is waiting for input along c and then turns into P.~. 
More precisely, 

P1 - c!.P~.P~' ~ (fP~ [p~') and P2 - c?x.P,~ c?~> p,~. 

Informally, rule (? !) models communication by placing the receiving process inside the 
sending process. Second-order substitution then yields the expected result. 

P: 1 (fP  I P2')f 2fx]/fl : (P, AfP;/x] I 

Note how this rule elegantly deals with two difficulties in the definition of higher-order 
operational semantics: The communication neither causes free channel names to be- 
come bound nor bound channel names to become unbound. In particular, the scope of 
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a channel name c that is privately shared between a transmitted process and the con- 
tinuation of the sender before the communication, is unaffected by the communication. 
That is, c will still be privately shared between the same Processes. We have, therefore, 
what is called static scoping of channel names. 

Weak Transitions The above transition relation is very low-level because it renders 
all transitions, including silent "r-transitions, observable. The following definition of 

weak transitions ~ remedies this. For all c, x, f ,  we have ~ _C I? x 1?x (input), 

C_ ~ x 1?f (output) and ~ C_ 17 x 17 (silent move). Each of these relations is 

defined as the smallest relation satisfying P ~ P '  if P ~- > * P '  and P ~ P~ if 

p ~ t~> p , .  Furthermore, let fi _-- # i f #  = c?x,c!f, a n d S =  e i f #  = T. 

Open Extension Let ~ be a binary relation on 17. 7~ can be extended to a binary 
relation on 1?u: For all x, f ,  binary relations 7~ x, ~ f  on 1?x, 1?y are given by P T~ x Q 
if P[R/x] 7~ Q[R/x] for all R c 1? and P ~ f  Q if P[R[yl/f] 7~ Q[R[yl/f] for 
all y, R E 1?v. The open extension 7~ ~ of 7Z then is defined by 7~ ~ - U~ 7u'.  
Note that 7d ~ does not consider any expression with more than one free variable. Our 
definition of open extension is, therefore, not the usual one. It is, however, sufficient 

for our purposes. 

Context Bisimulation We now define the notion of bisimulation we will strive to 

characterize by logical means in Section 4. 

Definition 2.1. A binary relation ~ on 17 is a (weak late context) bisimulation if P T~ 

Q implies: Whenever P u > p ,  then, for some Q~, Q ~=~ Q, and P' 7~ ~ Qt, and 
symmetrically. We d_enote by ~ the union of all bisimulations. 

This notion differs from the one used in [2] only in that the matching transition by 
Q may be weak. Moreover, this transition must not contain any trailing T-move, so 
is what is called a delay bisimulation [6]. Also, considering the derivation of a com- 
munication transition, note that the receiver does not know the identity of the process 
transmitted until the (?!)-rule is applied. Such a communication scheme is called late 
which makes ~ is a late bisimulation. For a conceptual discussion and practical ap- 
plication of this combination, see [13, 5]. We do not know whether the results of this 
paper could be obtained for classically weak and/or non-late, that is, early forms of 

bisimulation. 

3 Existential Bisimulation 

We now introduce a new notion of bisimulation on higher-order processes called exis- 
tential bisimulation. It bridges the gap between bisimulation and logical equivalence, 
that is, our characterization proof falls into two parts: 1) Two processes are bisimilar if 
and only if they axe existentially bisimilar. 2) Two processes are existentially bisimilar 

if and only if they satisfy the same modal formulas. 



289 

The intuition behind existential bisimulation is given by the following simple idea: 
AI~ operational semantics is assigned to function(al)s by regarding function(at)-argu- 
merit-result triples of the form (P[u], Q(x), P[Q(x)/u]) as labeled transitions. For ex- 
ample, the first three steps of the overall operational semantics of the process c?x.d!x.O 
are 

g~f 
/~1 d!/~l.0 ~-fR1 [0[f] 

c?x ~ d! f 
c?x.d!x.O > d!x.O[x] d!R2.0 ~-fR2 I O[f] 

Re 

Each process has a transition for each action it can perform. Each function(N) has a 
transition for each of its potential arguments. (In the diagram this aspect is indicated by 
dot notation.) To obtain a notion of observational equivalence we now need to define 
how a transition of a process can be matched by another transition of another process. 

For process transitions we adopt the standard definition: A transition of the form P "> 

P '  has to be matched by a transition of the form Q ==~ Q'. For function(al) transitions, 

however, we now have a choice: A transition of the form P[u] R(~ P[R(x)/u] could 
be matched by either 

�9 a transition Q[u] R(~) Q[R(x)/u], where the argumentis the same, or 

�9 a transition Q[u] s(~t Q[S(x)/u], where R(x) must be bisimilar to S(x) and 
P[R(x)/u} must be bisimilar to Of S(x)/u 1. More precisely, P[u] and QIul are 
bisimilar if, for every R(x), there exists a S(x) so that R(x) is bisimilar to S(x) 
and P[R(x)/u] is bisimilar to Q[S(x)/u], and conversely. 

Adopting the first option leads us to bisimulation, adopting the second to existential 
bisimulation. The latter notion forms the basis of our modal characterization of ~. 

In the study of higher-order functional languages such as the typed A-calculus it 
proved extremely useful to compare functions by means of logical relations [11]. In 
this setting, two functions are related if whenever they are applied to related arguments 
they yield related results. From this perspective, existential bisimulation appears to be 
a hybrid between the standard notion of bisimulation on the one hand and the concept 
of logical relations on the other. Given the apparent mix of functional and concurrent 
concepts in our process calculus this is not surprising. 

Before we introduce existential bisimulation formally, we would like to point out 
that an entirely different route to modal logic for higher-order process may be possible 
by using S angiorgi's results about the fully abstract translation of higher-order into ~-- 
calculus processes [12]. Satisfaction of modal formulas in Such a framework would be 
defined wrt. zr--calculus processes and their transitions. Note, however, that any char- 
acter/zation resnlt obtained using this approach would, therefore, be significantly less 
direct than ours. 
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Existential Extension The formal definition of existential bisimulation is based on 
the notion of existential extension. This construction is similar to the open extension of 
a binary relation on 11'. Lemma 3.2 states the central property of existential extension, 
which is appropriately called existential property. 

Definition 3.1. Let ~ be a binary relation on 17. 

1. For all U, V, a relation 7~g, v _C 1?u x 1?v is given by ~ g , v  -= 7~ if U = V = 0 

and, otherwise, P ~ u,v Q if, for W = U u V: 

I.a. V x E W ,  R E  

I.b. V f E W ,  x, R E  

II.a. Vx E W, R E  

lI.b. V f  E W,x, R E  

3 Sa E ]P R 7-4 ~ S~ A P[R/z] �9 " G r  

nu-~,v-~ O.[R/~] 
�9 �9 0,~ 

R A P[&[xJ/f] ~ u - y , y - f  Q[n[x]/f] ~ .  ~ S~ E ~ .  S~ 74{~},{~ t 

2. A binary relation 7Z ~ on 1?o is given by ~ -= Uv, v ~ v,v. We call ~ the exis- 
tential extension of T4. 

Lemma 3.2. P ~ Q implies: 

i.a. Vx ,  RE1?  . S S ~  EI? . R ~ Sa A P[R/x] T~ ~ Q[S~/x] 

Lb. V f ,  x , R  E ~x. 3 S ,  E 1?x. R 7-4 ~ S, A P[R[x]/f] ~ Q[SI[x]/f] 

ii.a. Vx ,  R E 1 ?  . 3 S 2 E 1 7  .$2 7-4 ~ R A P[S2/x] 7-4 ~ Q[R/x] 

ii.b. V f ,  x , R  E 1?*. 3S2 E 17". $2 7-4 ~ R A P[S2[x]/f] ~ Q[R[x]/f] 

Plvof  Straightforward by induction on the generation of 7~ ~. [] 

Existential Bisimulation 

Definition 3.3. A binary relation 7-4 on 17 is an existential (weak late context,) bisimu- 

lation if P 7~ Q implies: Whenever P ~ P '  then, for some Q t  Q ~ Q, and 
P~ ~ Q', and symmetrically. We denote by ~3 the union of all existential bisimula- 

tions. 

Lemma 3.4. Existential bisimilarity is an equivalence and, at the same time, P ,.~3 Q 

if and only if" Whenever P g-~ P' then, for some Q', Q ~=~ Q' and P' , ~  Q', and 
symmetrically. As a consequence, ~3 is the largest existential bisimulation. 

Theorem3.5.  ~3 = ~. 

Proof "D_": By the fact that ~ itself is a bisimulation together with the easily proved 

property 7~ ~ C 7-4 ~. 
"C": (Outline) This direction requires far more extensive reasoning. The idea behind 

the proof is as follows: Consider Lemma 3.4: P ~3 Q iff whenever P ~ P '  then, for 
some Q~, Q g==~ Q~ and P '  ~ Q', and symmetrically. Assume, also, congruence of 
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~ and, for simplicity's sake, pt ,  Q~ E 1?x for some x. Then: P~ ~ Q~ implies VR 
]P. 3S  ~ I?. R ~ S A P'[R/x] ~ Q'[S/x]. Further, R ~?  S plus congruence 
of ~?  implies Q'[R/x] , ~  Q'[S/x], so symmetry and transitivity of ~?  imply VR 
17. Q'[R/x], so P'  ~?  Q~, so ~ is a bisimulation, so ~ C_ ,~. The 
problem is that proving congruence of weak bisimulation on higher-order processes is 
inherently difficult [12, 5, 4], and even more so in the case of existential bisimulation. 

To solve this problem we use a variation of a method that was originally developed 
by Howe to prove congruence of applicative bisimulation in functional computational 
frameworks [8]. Howe's method has already been adapted to prove congruence of stan- 
dard forms of weak bisimulation on co-order processes [5, 4]. We need to give the fol- 
lowing definition: A constructor co has the form f ,  c?x, c!, Z, I or uc. Constructors 

may be applied to families of expressions, co (P),  where the result is defined according 
to the grammar. The size of P must of course coincide with the arity of co and, in the 
case of 57,, every element of P must be of the form pre.P. 

f(P) =-fP I(P ,P2) 
e?x(P) =_ c?x.P Z(prei.Pi)iei =- Ei~iprei.P~ uc(P) =- ue.P 

The centerpiece of the whole proof then consists of the existential Howe closure , ~  of 
~3. This relation is defined to be the smallest binary relation on t? ~ for which 

x ~ Q and ~ ~ ~) co(O.) , ~  Q 
x O co( ) Q ' 

where P and Q) must be of the same size,/5 ~ ~) is understood component-wise and 

co(P) and co((2) must be well-formed. For the Howe closure ~', of ~3, one would 
use the same definition with ~o_, instead of ~ .  A number of standard general properties 
can be shown for Howe closures provided that the underlying relation is an equivalence 
and preserved by the renaming of unbound variables, names and the like. Analogous 
properties can be shown in mostly identical or similar ways for ~ :  1) ~ is reflexive, 
2) ~ C_ ~ ,  3) ~3~3~"~ _c ~ ,  where ~3~3~'~ is the relational composition of ~ and 
~3,~ 4) ..~ is a congruence, 5) ~ * is symmetric. 

Next, we show that, for all P, Q ~ 2, p ~ Q implies: Whenever P "> P '  then, 

for some Q', Q ~ Q' and P '  ~ Q'. This proof can be done by transition induction 
on P --f-+ P', using (1)-(4). Further, let ~ ~3~ - ~ n 17x1?. We can prove ( ~,.~ ~ ~* 

3 ~J to be a simulation, using the preceding property in combination with induction 
on the length of sequences of the form Po ~ ~ 3 "~3 P~. Then, by (5), ~ * "'" (~3c)  is a 
b/simulation. At the same time, an easily proved lemma is is ~ C ( ~  c)*, so we 
have indeed ~3 _C ~.  [] 

The full proof of Theorem 3.5 is presented in our technical report [3]. 

Approximating Existential Bisimulation For the proof of the characterization the- 
orem in [2], Amadio and Darn show that strong bisimulation ..~ can be obtained as the 
limit of a descending chain of equivalence relations ~ where k is a natural number. 
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We will transfer this idea to our setting and also generalize the approximation from 
natural numbers to ordinals. Let ORD denote the class of ordinals ranged over by 
and )~. A basic result of set theory says that ORD is a proper class, that is, not a set. 

Definition 3.6. A ORD-indexed family of binary relations ~'~ "~3 on ]P is given as fol- 
lows: 

i. P ~o  Q always. 

ii. P ~ + 1  Q if: Whenever P ~ P '  then, for some Q', Q ~ Q' and P '  ~ a 
Q~, and symmetrically. 

iii. For every limit ordinal )~, P ~3 x Q if P ~ Q for every ~ < )~. 

Finally, P ~ORD Q if P ~ Q for every ~ �9 ORD. " 3  

Proposition 3.7. ~ORD = ~3. 

Proof Similar to the proof of the corresponding approximation result for weak bisim- 
ulation on CCS in [9]. For details see [3]. [] 

Note that, by the proof of Theorem 3.5, ~?  is a congruence because ~ is one [4]. 
However, it is still an open question whether ~ is a congruence for every t~. 

4 M o d a l  C h a r a c t e r i z a t i o n  o f  B i s i m i l a r i t y  

Modal Formulas Properties of process expressions are expressed using modal for- 
mulae generated by the grammar below. An important syntactic feature of modal for- 
mulae is that, just like process expressions, they have one of three orders. Formulae of 
order 0, 1, or 2 describe processes, functions or functionals respectively. Let r ~,i Xi 
range over modal formulas of order i, where i �9 {0, 1,2}. We omit these superscripts 
when the ranges of possible orders are determined by the context. 

r ::= Ajcz ej ] -'r for i e {0,1,2} 
r ::~___ (C?X>r 1 i i 

::= for i  �9 {1,2} 

where I is a countable index set, that is, conjunctions maybe infinite but countable. We 
use the standard abbreviations: T = A (~ and _L = ~ T  and r V r = -,(~r A -'r 

In contrast to [2], the logic features the dualities familiar from Hennessy-Milner 

logic, we define -= and [r162 - 

Realization The logic allows two kinds of modal judgments. The meaning of P 
(~}r is familiar from Hennessy-Milner logic: P can make a weak transition labeled 
with ~ and then behave as specified by qS. The intuition behind P[u] ~ (4))r is that 
there is an argument satisfying r so that the application of the function(al) P[u] to it 
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results in a process satisfying r  More precisely, (r162 describes a functional P[f] 
for which there is a function Q[x] satisfying r so that P[Q[x]/f] satisfies r (r162 
on the other hand, specifies a function P[x] for which there is a process Q satisfying r 
so that P[Q/x] satisfies ~o. Formally, 

P(~) ~ A~e~ r 

PM ~ (r162 

if, for every i ~ [, P(u) ~ r 
if not P(u) ~ r 
if, for some P ' ,  P ~ P '  and P'(u) ~ r 
where u is the variable that possibly occurs in # 
if, for some Q(x), Q(x) ~ r and P[Q(x)/u] ~ r 

Note that [r162 is equivalent to Amadio and Dam's implication operator r =~ r in [2]. 

Example 4.1. Consider the following process expressions. 

P~ _= (x I P~)[x] where P~ = c!O.OId?y.O and 
P,~ = ue.(c?z.e!z.d!z.O l e?w.P,~) where P,~ E 

P~ can be thought of as a client which when given a server P2 first provides input to the 
server along c and then expects the result on d. In this particular case, P1 just outputs 
the 0 process and P2 just passes its input along after having copied it to the parallel sub- 
process P,J. In the overall system 1"1 [P2/x] = P'2 I P[ both processes can communicate 
as expected and then halt. More precisely, they are allowed to engage in an arbitrary 
but finite number of internal actions and then reach a state from which no further action 
is possible: P~ ] P~ ~ @)r where Chlt ~--- [e]Z A Ac,x,f[C?X]Z A [c!f]• 

Modal Depth [r denotes the modal depth of a formula and is defined as follows: 

I A ~ r  -= ~ p ( l r  b r  - Ir I(~)r - ~ + Ir I(r162 -- ~ ( 1 r  Ir 
Definition 4.2. For every ~, we define an equivalence ~ on processes, functions and 
functionals by 

P(u) ~ Q(u) if, for all Cwith [r _< ~, P(u) ~ r  ~ Q(u) ~ r 
P(u) ~,L Q(u) if, for every ~, P(u) , ~  Q(u). 

Characteristic Formulas For all processes, functions or functionals P(u), Q(u) and 
every t~: 

�9 We choose some r with P(u) ~ r and Q(u) ~ r 
provided that P(u) r Q(u). 

�9 r ~ fr if P(u)r Q(u) 
[ T if P(~) ~ Q(u) 

Lemma 4.3. Q(u) ~ r if andonly if Q(u) , ~  P(u). 

Proof. "~": Immediate since ]r < ~ and P(u) b r "=~"" By contraposi- 
tion. [] - " 
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The Characterization Theorem For the proof of the characterization of ~ in terms 
of ~L, we need to extend ~ to function(aDs: P[u] ~ Q[u] if P ~ ~ Q. 

Proposition 4.4. ~ ,  = ~'~ 

Proof. By transfinite induction on a, following the lines of the proof of Proposition 
10.6 in [9]. Only the cases where a funcfion(al) meets some formula of the form (r162 
are new. We restrict ourselves accordingly. 

base case: Immediate since P(u) ,~o~ Q(u) for all P(u), Q(u). 

successor case: "D"; Using structural induction on r where [r < t~ + 1, we show that 
P(u) ~,~+1 ~3 Q(u) implies: P(u) ~ r  ~ r 

In the non-standard case we consider the sub-case where P(u) = P[f] ,  Q(u) = 
Q[f] and r = (r proving that P[fJ ~ r implies Q[f] ~ r The desired equivalence 
follows by symmetry. [ By P[f] ~ (~b)x: There exists a R[x] so that R[x] ~ r and 
P[R[xJ/f] > X. ] By P[f] ~ + t  Q[f]: There exists a &[x] so that R[x] ~,~+1 SI[x] 
and P[R[x]/f] ~ + 1  Q[& [x]/f]. [ By structural induction, taking into account that 

I(V,>r -< ,~ + 1 implies Ir < '~ + 1: &[x] ~ r and Q[&[x]/f] ~ x. l BY 
definition: Q[fl ~ (r 

"C';_ By contraposition, assuming P(u) r Q(u). In the non-standard case we 
again consider the sub-case where P(u) = P[f] and Q(u) = Q[f]. I By assumption: 

(a) or (b), where: 

a. 3Nix]. VSI[x]. R[x] r S, [x] V P[R[x]/I] r O[Sl [x]/f] 

b. ~/~[X].VS2[X]-S2[X] r  ]~[x] V P[S2[x]/I] r O[R[xl/f] 

Because (a) and (b) are practically the same, we consider only (b). I In this case, by 
icn+l)r where the argument Nix] is as in (b). I Sup- Lemma 4.3: Q[f] ~ \ nD] o[R[x]/]] 

pose now P[f] ~ (r162 I By definition: There exists a S2[x] so that 

S,2[x] ~ r and P[&[x]/f] ~ r ] By Lemma 4.3 and induction on the 
n[*l 

order: S,2[x] ~,~+1 R[x] and P[&[x]/f] ,.~,~+1 Q[R[x]/f], contradiction. I Thus, 
g-bl ~q-1 Note /~n+ l  \A~q-1 __ p[f] @N,I)r x~,ni~F,eO[nD]/y]l < ~ + 1. 

limit case: By induction on the order. The non-standard cases are once again those 
situations where a function(al) meets some formula of the form (r162 They can be 
dealt with in practically the same way as we have done it in the successor case. [] 

The proof of the corresponding result in [2] for the strong case hinges on ,-, and ~,,k 
being congruences. It is important to note that our proof does not rely on this kind of 

requirement. 
Finally, we can state and prove the actual characterization. To this end, we need to 

extend ~ to function(al)s, similarly as we did it with ~ :  P[u] ,~ Q[u] if P ~~ Q. 

Theorem 4.5. '~----'L -~ ~'~" 

Plvof We give the proof for the restriction of ,-~'L tO processes. The proof of the full re- 
sult would require us to elaborate somewhat on the third and fifth steps. This additional 

reasoning, however, is straightforward. 
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~ L  : N~ " ~  ~ L  

_ , ~ . , O R D  

= "~3 

; def. 
; Proposition 4.4 

; def. 
; Proposition 3.7 
; Theorem 3.5 [] 

5 Compositional Verification 

We will now demonstrate how both the process calculus and the modal logic support 
compositional reasoning. Compositionality will be achieved by means of a well-known 
technique called assumption-commitment reasoning. In this approach, proofs are split 
into two parts: First we prove that a component of the overall system satisfies a cer- 
tain property under the assumption that the environment behaves in a certain way. In a 
second step, we show that the environment does indeed behave as assumed. We will il- 
lustrate the application of this idea by means of the example of Section 4. The client P1 
makes certain assumptions about the server it will work with. If the server does meet 
those assumptions, then the overall system will behave as desired. More precisely, 

P1 ~ [Osrv](@)r where r  -=- (c?z)([T]((d[ f)T)). 

qSs~ is the environment assumption the client wants a server to satisfy. It specifies that 
the server should first be able to receive input along c and then, for all of those inputs, 
it should be able to offer output along d. If  the input to P1 satisfies Os~v then P1 can 
engage in an arbitrary but finite number of internal actions and then stop. We see that 
process P2 does meet the requirement expected of the server: P2 P qSs~. The logic 
now allows us to conclude that the overall system/:'1 P2 = P2 I P~ will work correctly: 
P2 I P~ ~ (e)r In sum, instead of reasoning about the entire system as in Section 
4, we can reason about each of its constituents separately and thus reap the benefits of 
compositionality. Note that both P1 P2 and P'2 exhibit invisible transitions and that this 
example consequently could not have been expressed in the strong setting used in [2]. 

6 Conclusion and Further work 

We have given what constitutes, to our knowledge, the first logical characterization of a 
weak variant of context bisimulation on second-order processes. The characterization 
hinges on a novel notion of observable equivalence on higher-order processes called 
existential bisimulation. This notion, apart form its proof technical importance, also 
seems to be of conceptual value as it matches the combination of functional and con- 
current features of the process calculus. The modal logic comprises negation and all 
dualities known from Hennessy-Milner logic. We have demonstrated that the process 
calculus on the one hand and the modal logic on the other hand mesh very well and 
open up a way towards modular verification of higher-order processes. 

So far, we clearly lack a syntactic framework which permits the formal derivation of 
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statements like P ~ q~. Unfortunately, our attempts to equip the presented combination 
of process calculus and logic with a proof system have failed. The fact that a # - m o v e  
by a parallel composition P1 [/:'2 may hide arbitrarily many communications between 
the two processes poses a substantial problem. Additionally, the rules for parallel com- 
position seem to require a congruenceproperty our setting does not offer. Alternatively, 
we tried to find a complete axiomatization along the lines of  [14]. However, a straight- 
forward adaption of  the results in [14] is encumbered by the more complex modalities. 

The results of  this paper rest on the notion of  existential bisimulation. There is 
some hope that this new notion may also be fruitfully applied to other higher-order 
calculi. The most promising candidates seem to be oa-order calculi like Sangiorgi's 
HOTr [12]. In this setting, context bisimulation also serves as the notion of  observa- 

tional equivalence. 
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