
Formats of Ordered SOS Rules
wi th Silent Act ions

Irek Ulidowski I and Iain Phillips 2

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
School of Computing, Imperial College, London, England

Abs t rac t . We present a general and uniform method for defining struc-
tural operational semantics (SOS) of process algebra operators by tra-
ditional Plotkin-style rules equipped with an ordering, the new feature
which states the order of application of rules when deriving transitions
of process terms. Our method allows to represent negative premises and
copying in the presence of silent actions. We identify a number of gen-
era] formats of unordered and ordered rules with silent actions and show
that divergence sensitive branching and weak bisimulation relations are
preserved by all operators in the relevant formats. A comparison with
the existing formats for branching and weak bisimulations shows that
our formats are more general.

1 I n t r o d u c t i o n

Structured Operational Semantics (SOS) is considered to be the s tandard method
for defining the operational meaning of process operators in an arbi t rary process
language. I t was originated by Milner for CCS [Mil89] and formalised by Plotkin
[PloS1]. The meaning of each operator on processes is given by a set of transition
rules. Each rule describes how the behaviour of a process (constructed with the
operator and some subprocesses) depends on the behaviour of these subprocesses.
For example, the rule below is one of the rules for a parallel composition operator.
It allows to infer that a.O II a.b.O can perform action a since both a.O and a.b.O
can perform a.

X -% X I y -% y t

X [] Y -% X ' [[Y' .

Process operators can be classified according to the form of rules defining
their operational meaning. A format of rules is a collection of forms of rules. We
say that an operator is in a certain format if its rules belong to that format, and
a process language is in a format if all its operators are in that format.

Most of the popular process operators are in the De Simone format [dS85].
However, De Simone rules do not make use of either the negative behaviour of
subprocesses (negative premises: the inability to perform actions) or the branch-
ing behaviour of processes (copying: multiple use of identical process variables).
Not surprisingly, there are process operators which cannot be adequately defined
by De Simone rules alone. These include, for example, sequential composition,

298

priority, replication and checkpoint operators [Mi189, BW90]. In order to provide
for such operators Bloom, Istrail and Meyer proposed the GSOS format [BIM95]I,~
which extends the De Simone format with negative premises and copying. This
paper provides an alternative method for defining such operators.

An important problem concerning formats of rules is how to use silent actions
in rules. Original De Simone and GSOS formats treat both silent and visible ac-
tions in the same way, namely as visible. This is unsatisfactory when one wishes
to work with weak equivalences (where actions may be hidden) since many op-
erators (definable in these formats) do not preserve the considered equivalences.
Formats of rules with silent actions were studied by Bloom [Blo90, Blo95], Vaan-
drager [Vaa91] and the first author [Uli92, Uli94]. A common feature of these
approaches is to represent the traditional character of silent actions via r-rules,
proposed in [Blo90]. The motivation is as follows: if f is n-ary operator and the
behaviour of f (X) depends on the behaviour of its component Xi then when Xi
evolves silently f (X) can do nothing else but to evolve silently along with Xi.
This can be expressed by insisting that the set of rules for] contains for each
such Xi a r-rule of the following form.

x~ :~ x~

f(X1,... ,xi,. . . , xn) -~ f (X l , . . . , X ~ , . . . , X n)
T/

A notion intimately related to the unobservable character of silent actions is
divergence. Results in [Uli94, Blo95] show that in a setting with r-rules if one
chooses to equate divergence (infinite sequence of silent actions) and deadlock
then rules with negative premises are unacceptable since they can distinguish
between the two notions. But, treating divergence as different from deadlock
allows one to use rules with negative premises safely [Uli92, Uli94].

In this paper we present a general method for defining process operators by
Plotkin-style rules (with no negative premises) which are equipped with an or-
dering. Our method was informally described in [PU96]. The ordering indicates
the order in which rules are applied when deriving transitions of process terms.
The behaviour of a process f(p) can be determined by examining the rules for f
starting with rules highest in the ordering and, if those are not applicable, then
considering the lower rules. More generally, our method is similar to the idea of
ordering sentences in the field of logic programming to avoid the use of negative
information and to ordering rewrite rules in the field of term rewriting. In order
to illustrate our method we give an alternative definition of the sequential com-
position operator ; [BIM95] by the following rule schemas and r-rules, where a
and c are any visible actions.

X -% X' X -5 X'

X ; Y -% X ' ; Y
ra,

X ; Y Z.~ X ' ; Y
T1

y -5 Y' Y s Y'

X ; Y Z+ X;Y ' r2 X ; Y .2+ y '
r,c

299

The ordering > on the above rules is such that for all actions a and c we have
ra, > r.c, r2, and rl > r .~ , r> Hence, p; q can perform an initial action of q (by

T

rule T2 or r,~) if neither r~, nor rl are applicable, that is i f p + and p -% for all
actions a. When p is a totally divergent process, for example defined by a rule

T
p --+ p, then q will never start since rl is always applicable.

We argue that any GSOS language can be equivalently formulated in terms
of a positive GSOS language equipped with an ordering. This result offers a new
approach to developing simple but expressive formats of rules where positive,
negative, silent and branching behaviour of processes can be treated consistently.

The contents of our paper are as follows. We start with positive GSOS rules.
In order to differentiate between visible and silent actions in rules we insist that
silent actions are unobservable and independent of the environment. These two
properties are formulated as conditions on positive GSOS rules. We propose
another property (and the resulting condition) concerning the use of process
resources. Thus, we define two pairs of formats of unordered and ordered positive
GSOS rules which satisfy (some of) these conditions. We show that the relevant
formats preserve divergence sensitive branching and weak bisimulation preorders.
Finally, we argue that our formats are more expressive than the existing formats
for these preorders.

The full version of this work [UP96] contains the proofs of our results and
more examples illustrating their application.

A c k n o w l e d g e m e n t s . We wish to thank the referees for their comments and
suggestions. Thanks are also due to Paul Taylor for his IaTEXmaeros.

2 P r e l i m i n a r i e s

Let Vis be a finite set of visible actions, ranged over by a, b and c, and r ~ Vis
be the silent action. Vis U {r} is ranged over by a and/3. Let Var be a countable
set of variables ranged by X, Y, A signature Z is a set of operators, namely
pairs (f , n) where f is an operator symbol and n E N is the arity. When the
arity of (f , n) is clear from the context the operator is abbreviated as f . The
set of open terms over Z with variables in V C_ Var, denoted by ~ (X ,V) , is
ranged over by t, t' The set of closed terms, written as T (~) , is ranged over
by p, q, ~ context with n holes C [X 1 , . . . , Xn], often written as C[X], is a
member of]i'(~U, { X I , . . . , X~}). If t l , . . . , tn are ~ terms then C [t l , . . . , tn] is
the term obtained by substituting each X, by t,. An operator (f , n) preserves a
preorder ___ if for all vectors of n closed terms t and t ' we have t t- t ' implies
f (t) K_ f (t ') . A substitution p is a mapping from Var to T (Z) , it e~tends to a

c~ mapping T (E) ~ T (Z) in the standard way. Expressions t 2+ t' and t --,% where
t, t ' E ~ (Z , V), are called transitions and negative transitions respectively. They
are varied over by T, T%. . . and nT, n T ' , . . , respectively.

2.1 G S O S P r o c e s s L a n g u a g e s

We recall the definitions of the GSOS format, GSOS process languages and other
related notions from [BIM95].

300

Def in i t i on 1. A GSOS rule is an expression of the form

{ x~ ~ Y~j)i~i,j~J, { zk ~ }kc~,l~L~
f (X~, . . . , X~) --% C[X, Y],

where all variables Xi and Yij are distinct, I , K C_ {1, . . . ,n} and all Ji and Lk
are finite subsets of N. C[X, Y] is a context with variables among X and Y.

Let r be a GSOS rule for f as in Definition 1. Then, f is the operator of r and
rules(f) is the set of all rules for f . Transitions and negative transitions above
the horizontal bar in r are called premises, written as pre(r). The transition
below the bar in r is called the conclusion, written as con(r). Action a in the
conclusion of r is the action of r. C[X, Y] is the target. The set of all ai i in

a

r is denoted by actions(r). A rule is negative if it contains any X -~ premise,
otherwise it is positive. The ith argument Xi is active in some rule, written
as i E active(r) if it appears in its premises. An argument is active in a set
S C_ rules(f) if it is active in some rule in S. Overloading the notation denote
the set of such i's by active(S), and write active(f) instead of active(rules(f)).
Consequently, the i th argument of f (X) is active if it is active in some rule for
f . Rules which are not ~--rules are hereafter called action rules.

De f in i t i on 2. A GSOS process language is a triple (Z, Act, R), where Z is a
finite set of operators, Act C Vis U {~-} and R is a finite set of GSOS rules for
operators in Z .

Given a GSOS process language, a labelled transition system can be defined
for the language in the standard way as, for example, in [BIM95, GV92, Gro93]. A
labelled transition system for (Z, Act, R) is the structure (T(Z) , Act, --+), where
T (Z) is a set of process terms or processes and --+C_ T (Z) x Act x T (Z) is the
unique transition relation generated by the language.

2.2 B r a n c h i n g a n d W e a k B i s i m u l a t i o n P r e o r d e r s

We will use some standard abbreviations. We write p -% q for (p, c~, q) E--+ and
read it as "process p performs a and in doing so becomes q'. We write p -% when
there is q such that p -% q, and p -% when for no q we have p -% q. Expression
p ~ q denotes p(_L~)*q and p~, read as "p is divergent", means p(-~)~. We say p

is convergent, written as p~, if p is not divergent. Finally, if a = ~" then p -~ pr
means p -~ p' or p -- if , else it is simply p -% ft.

D e f i n i t i o n 3 . Assume a labelled transition system (T(Z) , Act, --*). A binary
relation R over T (Z) is a branching bisimulation if pRq implies

(a) Va. p -% p' implies (3q', q ' . q ~ q' • q" A pRq' A p'Rq")

(b) p~ implies q~ and
Va. q -% q' implies (3p',p'. p ~ ff A p" A p'Rq A p"Rq')

301

P~BBq if there exists a branching bisimulation R such that pRq.
A binary relation R over T (Z) is a weak bisimulation if R is defined as

branching bisimulation but without conditions pRq' and p'Rq. p~wBq if there
exists a weak bisimulation R such that pRq.

Example 1. Consider CCS-like processes p - b.0+T.a.0, q -- p+a.O and r - p +~ ,
where ~ is defined by ~ ~ ft. By Definition 3, we have ~ . C_ ~wB- Moreover,
P~wBq, but P~BBq as q ~ , P ~ P' -% and clearly q~Bp' . Also, p~wBr but
r~wBp.

It is clear that EBB and EwB are preorders. Our branching bisimulation is a
possible generalisation of the standard notion as, for example, in [vG90, BW90].
We make the relation sensitive to divergence in the same way as was done with
weak bisimulation in [MilS1, Abr87]. Preorder ~wB is a version of weak bisimula-
tion relation studied in [Mil81, Abr87, Wal90, Uli94], where testing, modal logic
and axiomatic characterisations were proposed and a congruence result with re-
spect to the ISOS format was proved. For processes with no divergence ~w~
coincides with delay bisimulation [BW90, vG90]. We have chosen this finer ver-
sion of weak bisimulation in preference to the standard [Mil89] because there are
process operators, like the action refinement in Section 5, which do not preserve
the standard version (the problem is not due to the initial silent actions).

3 O r d e r e d P o s i t i v e G S O S R u l e s

The premises of GSOS rules may contain both positive and negative transitions.
We propose ordered positive GSOS rules as an alternative, and possibly more
concise, method for expressing full GSOS rules. Our method was informally
introduced in the workshop paper [PU96]. Here, we repeat the definition of an
ordering on rules and state expressiveness results, which did not appear in the
original reference.

De f in i t i on 4. Let < f be a transitive relation on rules(f), r < f r ' is interpreted
as r having a lower priority than r ' (and r ' having a higher priority than r)
when deriving the transitions of terms with f as the outermost operator. The
ordering < f specifies that a rule can only be applied when no rules with higher
priority can be applied. Given a positive GSOS language with a signature Z, the
ordering < x , or simply <, is defined as I-J feE </" An ordered process language
is a tuple (Z, Act, R, <), where (Z, Act, R) is a positive GSOS process language
and < is the ordering on its rules.

In the next subsection we will argue that for each ordered process language
there is an equivalent (full) GSOS language and vice versa, where two process
languages are equivalent if they give rise to isomorphic transition systems. Thus,
a transition system for an ordered process language is the transition system
for the equivalent GSOS language. The transition relation associated with an
ordered process language can also be defined directly [PU96, UP96].

3 0 2

3.1 E x p r e s s i v e n e s s

We show that (full) GSOS languages can be alternatively formulated as equiva-
lent ordered positive GSOS languages and vice versa.

Firstly, we describe a translation of a GSOS language G = (~ , A, R) to an
ordered positive GSOS language H = (Z I, A', R r, <). We set Z ' = ~ and A' = A.
Let (f , n) C Z be defined by the set of rules Rf . Also, let Rf = R] U R f , where

R~ and R}- are sets of positive and negative rules for f respectively. Assume
that r is one of the negative rules for f with the form as in Definition 1. Then,

+ '
r is translated into the set of positive GSOS rules R] (r) which consists of the
rule r ~ and the rules r ' Zk~, one for each/3kl in r, defined below.

{Xi ~ Xij}ieI,jeJ~ Xk ~ Xkl rl r l
f (X) -% u f (X) ~-~ t

The term t above is an arbitrary fixed term which does not appear in the target
of the conclusion of any rule in R f , otherwise it might be a valid rule in R~-. Note

that if any other rule in R has a premise Xj ~ then the set of corresponding
r I rules for f in H will contain the rule ~z" The ordering on rules satisfies r ~ z > r ' ,

for all appropriate/3k~. This guarantees that r ' is applicable if X~ ~-2 X~/ and

f~z r I Xk -~, for all suitable o~iy and/~kt- Moreover, we require that r'z~z > f~kz, for all
f~kl- The last condition rules out the possibility of ever using any of r ' Zk~ to derive

new transitions. Hence, the set of rules for f in H, written as R~, is defined as

t : -F ~ R+ U{R+ (r) lr rT}UR
It is easily checked that G and H generate the same transition system.

If G has any negative rules then clearly its ordered version H has more rules.
However, as far as the amount of computation required (measured in the total
number of transitions and negative transitions which need to be checked) in
order to derive a transition it is easy to see that it is the same in G and H.

A translation from ordered positive GSOS languages to GSOS languages is
also straightforward. As before the sets of operators and actions of H and G are
the same. This time we denote the set of rules of H as R and the corresponding
set in G as R r. Let r E R be one of the rules for f . We show how to define the set
R'f(r) of ordinary GSOS rules for f which correspond to r. If higher(r) = 0 then
R~(r) = {r}, where higher(r) = {r" I r " > r}. Otherwise, assume higher(r) =
{r~ I x < i < m} and for each i pre(ri) = {T~j I 0 < j <_ mi}. According to
Definition 4 r can be applied if pre(r) is valid and each pre(ri) is not valid.
Assume that none of r / i s an axiom rule. Thus,

R~(r) = { r ' l eon(r ') = con(r) ^ pre(r ') = pre(r)U {nT, j I Vi 3j. nT~j = -~T~j}}

where nTij's denote negative premises and -~(X -% Y) means X -~. As before,
the languages G and H produce isomorphic transition systems.

303

We easily calculate that R~f(r) has I-L~I mi rules. Thus, when m and some
mi are greater than 1 it is clear that the fragment of the definition of f consisting
of r and higher(r) is more concise than the corresponding fragment R~(r).

4 S i lent A c t i o n s a n d F o r m a t s o f R u l e s

In this section we show how silent actions can be safely introduced in formats of
ordered rules. We propose several conditions on the structure of rules and on the
orderings which guarantee that silent actions keep their traditional meaning. We
identify several formats of rules and prove that weak and branching bisimulation
preorders are preserved by the operators definable in the relevant formats.

N o t a t i o n . In order to shorten the presentation of the forthcoming conditions we
leave out the outermost universal quantifiers binding f E ~ and r, r I E rules(f),
where appropriate.

4.1 Branching and Weak Bis imulat ion Formats

We think that T-rules embody the independent of the environment character of T
actions [Uli92]: "if the ith argument Xi can contribute to the behaviour of f (X)
then the silent behaviour of Xi becomes the silent behaviour of f (X) " . In our
framework, only active arguments are contributing arguments. This principle
can be expressed as

i f / E active(f) then Ti E rules(f) (1)

Operators which do not satisfy (1), for example the CCS choice and the left-
merge of ACP, are not well behaved: they do not preserve weak bisimulation.

Insisting that all operators have their required T-rules does not represent the
full character of silent actions yet. We additionally require that silent actions are
unobservable which, after [Uli92] 3, can be interpreted as "silent, unobservable
behaviour of the components of a process cannot produce a visible behaviour of
the process or a change of its structure". This principle can be formulated as

if T E actions(r) then r is a T-rule (2)

meaning that no rules except T-rules can have T actions in the premises.
We claim that all operators defined by positive GSOS rules which satisfy

the above two conditions preserve branching bisimulation. In other words, all
operators which can be defined by positive GSOS action rules with no T'S in the
premises together with the required T-rules preserve branching bisimulation.

However, the described class of operators is strictly larger than the class
of positive ISOS operators [Uli92, Uli94], thus there is no guarantee that its
members preserve weak bisimulation. The operators which do not preserve weak

3 Action rules with X --~ X' in the premises are allowed in [Vaa91] but must be
accompanied by exactly the same rules except with X -% X r instead of X --~ X J.

304

bisimulation are those which make the full use of copying. Consider operators
a-and-b, a-then-b and then-b from [Uli92]:

x A x ' x A x " x s x A x '

a-and-b(X) A~ 0 a-then-b(X) -~ then-b(X) then-b(X) A~ 0

The first two rules have multiple occurrences of X in the premises together with
the target, in other words they have copies of X. Consider a positive GSOS rule
r as in Definition 1, i.e. with K = 0. Multiple occurrences of process variables in
r can be divided into explicit and implicit copies. Explicit copies are the multiple
occurrences of Yij's and Xi's, for i ~ I, in the target of r. Implicit copies are
the multiple occurrences of Xi's in the premises and (not necessarily multiple)
occurrences of X~'s, when i E I , in the target of r. We notice that the first and
second of the above rules have implicit copies of X. Consider processes p and

q in Example 1. One can easily check that a-and-b(p) =r but a-and-b(q) ~ .
Also, a-then-b(p) ~ but a-then-b(q) ~ . Thus, operators defined by rules with
implicit copies can distinguish between weak bisimilar processes but not, we
claim, between branching bisimilar processes.

The above discussion concerns the use of process resources in general and
the use of process variables in rules in particular. Results in [Uli94] show that
operators with linear use of process resources preserve weak bisimulation. In the
setting of SOS rules, an argument Xi is used linearly in a rule r if and only if
whenever it appears in the premises of r then (a) it appears there at most once
and (b) it does not appear in the target of the conclusion of r. In other words,
linear use of process variables means no implicit copies. This suggests the third
condition. Given a positive GSOS rule r, let implicit-copies(r) stand for the set
of all variables which have implicit copies in r. The condition is as follows:

implicit-copies(r) = 0 (3)

D e f i n i t i o n 5. A set of positive GSOS rules is called bb (branching bisimulation)
if its rules satisfy conditions (1) and (2). A set of positive GSOS rules is called wb
(weak bisimulation) if its rules satisfy conditions (1), (2) and (3). An operator
is bb (wb) if it is defined by bb (wb) rules. A format of rules is bb (wb) if it
consists of bb (wb) rules. A process language is bb (wb) if it only contains bb

(wb) process operators.

Note that bb rules allow both explicit and implicit copies but wb rules allow only
explicit copies. In order to compare the wb and bb formats (and the formats in
the next subsection) with the ISOS format we recall the definition of the ISOS
format. A set of rules is in the ISOS format if it consists of ISOS rules defined
below, their associated ~--rules and no other rules. An ISOS rule has the form

, _ ~ { X~ -% X~ }~eI { Xk }kcK,I~L~
/ (x , , . . . , x,~) -~ c[f],

305

where all Xi and X~ are different variables, I , K C_ { 1 , . . . , n } and all Lk are
finite subsets of natural numbers. C[Y] contains at most the variables Y1, �9 �9 �9 Yn,
where Yi = X~ if i E I and Yi = Xi otherwise. Negative transitions are called
refusal transitions. It is easy to check that the wb format coincides with the
positive ISOS format and the bb format is an extension of the positive ISOS
format with implicit copying.

Finally, we are ready to state the main result of this subsection.

T h e o r e m 6. All bb (wb) operators preserve branching (weak) bisimulation.

4.2 B r a n c h i n g a n d W e a k B i s i m u l a t i o n O r d e r e d F o r m a t s

In this subsection we consider ordered bb and wb rules. Careless orderings on such
rules can change the unobservable and independent of the environment character
of silent actions. For example, when an action rule r for f is above its i th
T-rule then, for a given f(p) such that r is applicable, it may happen that
f (p) may not be able to perform T even though Pi can do 7-. We present two
examples illustrating this problem and derive two conditions which guarantee
the traditional character of silent actions.

Consider a parallel composition operator II defined by the following rule
schemas together with T-rules 71 and T2 which are not presented.

X 2~ X l y ._% y1
r a ,

x II Y -~ X ' II Y x II Y ~ X II Y ' r.a

If the ordering is r~, > 72, for all r~,, then trace equivalent a.b.O and a.~-:b.0 can

be distinguished by][. For c.0 H a.b.O ~ but c.0 II a.T.b.O ~ since after a action
c has a preference over T. Thus, the first condition might be: if r is a T-rule then
higher(r) = 0. The intuition is that T-rules should not have lower priority. But,
although the condition is natural it is also quite restrictive. Consider:a,binary
operator f such that the behaviour of f(p, q) initially depends on the behaviour
of the first subprocess (like in the case of sequential composition). This may
result in some rules associated with the first argument being above 72. We can
allow such orderings provided that all the rules, which are above 72, are also
above all the rules with active second argument. The resulting condition is

if i C active(f) n active(r') and r > Ti then r > r ' (4)

However, there are operators definable by bb rules satisfying condition (4)
which are not well behaved. Consider the priority operator 8 (cf [BW90]) which
gives d priority over b. It is defined by the rule schema r~ below, for a E {b, d},
with the T-rule T1 and the ordering rd > rb.

X -% X '
rc~

e(x) ~ e(x')

306

Let p = b.0 II ~-.d.0 and q = b.0 II d.0, where [I is the usual interleaved parallel
b

operator. Clearly p and q are trace equivalent but we have O(p) ~ and O(q) =~.
To repair this problem it is enough to require ~-1 > rb. Thus, we arrive at

if r > r' and i E active(r) then ~-~ > r ' (5)

The intuition here is that in order to apply the rule r we need to make sure that
no other rule with a higher priority (and thus their T-rules) can be applied.

Conditions (4) and (5) are sufficient to ensure that operators which are de-
fined by bb (or wb) rules, with an ordering satisfying these conditions preserve
branching (weak) bisimulation. Before we state this result we propose a small
generalisation of the ordered wb rules. We remind that condition (3) forbids im-
plicit copies in wb rules. However, when wb rules are used with an ordering the
condition can be considerably relaxed. We propose to allow implicit copies in wb
rules provided that they are below their associated T-rules:

if i C implicit-copies(r) then Ti > r (6)

Consider the a-and-b operator defined in the previous subsection with its rules
(one action rule and two T-rules) satisfying the last condition. Then process
a-and-b(p), for any p, can perform c if the T-rule for a-and-b cannot be applied,

�9 T b in other words l fp -~, p a and p --*. Hence, for processes p and q in Example 1 we

have a-and-b(p) =# , a-and-b(q) =# and a-and-b(p)~w,a-and-b(q) as expected.

D e f in i t i on 7. A set of bb rules with an ordering is called bbo (branching bisim-
ulation ordered) if the ordering satisfies conditions (4) and (5). A set of wb rules
with an ordering is called who (weak bisimulation ordered) if the ordering sat-
isfies conditions (4)-(6). bbo (or wbo) operators, formats of rules and process
languages are defined as the corresponding notions in Definition 5.

T h e o r e m 8. All bbo (who) operators preserve branching (weak) bisimulation.

5 Applications

An alternative definition of the sequential composition operator appears in the In-
troduction. Priorities and broadcast parallel operators as well as the copy-t-refusal
testing system are defined by ordered SOS rules in [PU96, UP96].

Action refinement is an operation which replaces all occurrences of an action
by some process. It is known that for sequential processes action refinement
preserves branching bisimulation but not the standard weak bisimulation [vG90].
Below, we define a wbo version of action refinement operator refa such that
refa(p , q) refines all a in p by q. The rules and rule schemas for refa are given
below, where b E Vis \ {a} and the required T-rules are not shown.

X % X' X -% X'
r b t

re/~(X,Y) ~ re /~(X' ,Y) ref~(X,Y) Z_~ aux(X , Y , Y) ra

307

y -% y '
qa,

aM(X, Y, z) reya(x, z) aux(X, y, z) 2+ a x(X, Y', Z)
The ordering satisfies q~. < q.~ together with the conditions for wbo rules.

The last example concerns process languages with discrete time. The maximal

progress property [Wan91, HR95] can be expressed as p ~ implies p -~, where
X -% X ' denotes the passage of one time unit. It means that the process will
block the passage of time when it is not stable. Consider a discrete time process
language L which satisfies maximal progress and extend it with the CCS parallel
I- Let ran denote the synchronisation rule for I. Then, the rule below specifies
the passage of time for I and the ordering r~ < raa guarantees that the maximal
progress property holds for the extended language L.

X - % X ' Y - ~ Y '
T o-

Xl X'l Y'

6 Comparison W i t h Related Formats

Firstly, we compare formats for our version of weak bisimulation and the stan-
dard weak bisimulation.

- The wb format coincides with the positive ISOS format. Also, the simply
WB cool format [Blo95] for the standard weak bisimulation is like the wb
format except that it also requires other 7-rules apart from those requested
by condition (1).

- The who format extends the wb format with stable implicit copying and
refusal transitions in the premises of action and ~--rules.

Although the wbo and ISOS formats do not allow arbitrary implicit copying, it
is argued in [Uli92] that the branching behaviour captured by rules with implicit
copying can also be captured by ISOS rules, and thus by wbo rules. The idea is
that instead of using implicit copies of process resources we produce their copies
first (by applying rules with explicit copying) and only then we use them. The
fully WB cool format [Blo95] allows rules with implicit copying but only when
several kinds of auxiliary rules are present. The effect of these auxiliary rules
amounts to what we have informally described above: firstly making copies of
process resources and then using them independently.

Finally, we consider formats for branching bisimulation.

- The bb format extends the positive ISOS format with implicit copying. It is
very similar to fully BB cool format [Blo95].

- The bbo format extends the bb format with refusal transitions in the premises
of rules. It extends the fully BB cool format with negative premises.

Thus, our formats of ordered rules for weak and branching bisimulation preorders
are more general than the previously proposed formats for these preorders.

308

References

[Abr87] S. Abramsky. Observation equivalence as a testing equivalence. Theoretical
Computer Science, 53:225-241, 1987.

[BIM95] B . Bloom, S. Istrail, and A.R. Meyer. Bisimulatiou can't be traced. Journal
of A CM, 42(1), 1995. Also appeared as Technical Report TR 90-1150, Cornell,
1990.

[Blo90] B. Bloom. Strong process equivalence in the presence of hidden moves. Pre-
l iminary report, MIT, 1990.

[Blo95] B. Bloom. Structural operational semantics for weak bisimulations. Theoret-
ical Computer Science, 146:27-68, 1995.

[BW90]:J.C.M Baeten and W.P Weijland. Process Algebra. Cambridge Tracts in
Theoretical Computer Science, 1990.

[dS85] R. de Simone. Higher-level synchronising devices in MEIJE-SCCS. Theoreti-
cal Computer Science, 37:245-267, 1985.

[Gro93] J:F. Groote. Transition system specifications with negative premises. Theo-
retical Computer Science, 118, 1993.

[GV92] J.F. Groote and F. Vaandrager. Structured operational semantics and bisim-
ulation as a congruence. Information and Computation, 100:202-260, 1992.

[H1~95] M. Hennessy and T. Regan. A process algebra for timed systems. Information
and Computation, 117, 1995.

[Mil81] R . Milner. A modal characterisation of observable machine behaviours. In
G. Astesiano and C. BShm, editors, CAAP 81, pages 25-34, Berlin, 1981.
Springer-Verlag. LNCS 112.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[Plo81] G. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN-19, Aarhus University, 1981.
[PU96] I.C.C. Phillips and I. Ulidowski. Ordered SOS rules and weak bisimulation. In

A. Adalat, S. Jourdan, and G. McCusker, editors, Theory and Formal Methods
1996, London, 1996. Imperial College Press.

[Uli92] I. Ulidowski. Equivalences on observable processes. In Proceedings of the
7th Annual IEEE Symposium on Logic in Computer Science, Santa Cruz,

California, 1992.
[Uli94] . I. Ulidowski. Local Testing and Implementable Concurrent Processes. PhD

thesis, Imperial College, University of London, 1994.
[UP96] I. Ulidowski and I.C.C. Phillips. Formats of ordered SOS rules with silent

actions. Technical report, RIMS, Kyoto University, 1996. Available at
http://www, ku rims. kyoto- u. ac.j p /~ i rek/.

[Vaa91] F.W. Vaandrager. On the relationship between process algebra and in-
put /output automata. In Proceedings of the 6th Annual IEEE Symposium
on Logic in Computer Science, Amsterdam, 1991.

[vG90] R.J. van Glabbeek. Comparative Concurrency Semantics and Refinement of
Actions. PhD thesis, CWI, 1990.

[Wal90] D. Walker. Bisimulation and divergence. Information and Computation,

85(2), 1990.
[Wan91] Y. Wang. A Calculus of Real Time Systems. PhD thesis, Chalmers University

~of Technology, GSteborg, Sweden, 1991.

