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Abst rac t .  Coinductiw characterizations of various observational con- 
gruences which arise in the semantics of A-calculus, when )~-terms are 
evaluated according to various reduction strategies, are discussed. We 
analyze and extend to non-lazy strategies, both deterministic and non- 
deterministic, Howe's congruence candidate method for proving the coin- 
cidence of the applicative (bisimulation) and the contextual equivalences. 
This purely syntactical method is based itself on a coinductive argument. 

Introduct ion  

This paper is part  of a general project aiming at finding elementary proof prin- 
ciples for reasoning rigorously on infinite computational objects, see [4, 9] ~or 
the case of higher order functions, and [8] for the case of higher order processes . 
In this paper, as in [4, 9], we focus on the behaviour of A-terms when these ~re 
evaluated according to various reduction strategies. We address the problem of 
showing the coincidence of the applicative (bisimulation) equivalence with the C~b_ 
servational (operational, contextual) equivalence for various reduction strategies , 
thus deriving a coinduction principle for establishing obsevational equivalences . 
In particular, in this paper we analyze and generalize to non-lazy strategies the 
purely syntactical method originally introduced by Howe ([6, 7]) for lazy fur m_ 
tional languages. We call this method congruence candidate method. 

A reduction strategy is a procedure for determining, for each A-term, a specifi c 
/3-redex in it, to contract. Let A(C) (A~ denote the set of (closed) A-ternm, 
where C is a set of base constants. When C = 0, we write A (A~ A (possil~ly 
non-deterministic) strategy can be formalized as a relation -~C_ A(C) x A(~) 
(A~ • A~ such that ,  if ( M , N )  C--+~ (also written infix as M -+~ AT), 
then N is a possible result of applying - %  to M. The set of terms which flo 
not belong to the domain of --+~ are parti t ioned into two disjoint sets: the set of 
a-values, denoted by Valz, and the set of a-deadlocks. Given --~,  we can define 
the evaluation relation ~ q  A(C) • A(C) (A~ x A~ such that  M ~ N 
holds if and only if there exists a (possible empty) reduction path from M ta a 
a-value N.  If there exists N such that  M ~ N,  then --+~ halts successfully bn 
M and M converges (M ~ ) ,  otherwise -+~ does not terminate on M or reaches 
a deadlock from M, and M diverges (M ~ ) .  Each reduction strategy induces ~n 
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operational semantics, in that  we can imagine a machine which evaluates terms 
by implementing the given strategy. The observational equivalence arises if we 
consider programs as black boxes and only observe their "halting properties". 

De f in i t i on  1 ( a -obse rva t iona l  Equiva lence) .  Let - ~  be a reduction strat- 
egy and let M, N E A~ The observational equivalence , ~  is defined by 
M ~ N iff VC[ ].(C[M], C[N] e A~ ~ (C[M] ~ r  C[N] ~ ) ) .  

Showing a-equivalences by induction on computation steps is difficult. Pow- 
erful proof-principles, allowing to factorize this difficult task, are precious. Coin- 
duction principles for establishing ~ follow from the fact that  ~ = ~ a p p ,  where 
~app denotes the applicative equivalence induced by -+~ (see Definition 2). It is 
interesting to notice that  these two equivalences do not coincide for all strategies, 
see [9] for: counterexamples. 

The proof of ~r can be factorized into two steps: 
1. ~app is a congruence w.r.t, application; 
2. ~app is  a congruence w.r.t. A-abstraction. 
In many cases step 2 is not difficult to prove, while step 1 is in general prob- 
lematic to show, and requires a specific technique. In this paper, we discuss the 
congruence candidate method for proving step 1. This method was originally 
introduced for the lazy call-by-name reduction strategy in [6], and later gener- 
alized to a class of lazy strategies by-name and by-value in [7]. Here we extend 
the method so as to deal with non-lazy strategies, both deterministic and non- 
deterministic, whose evaluation relation needs to be defined on the whole set of 
A-terms and hence it has to deal also with reduction of open terms. The con- 
gruence candidate method is based on the definition of a "candidate relation", 
which is a congruence w.r.t, application, and which extends ~app Reasoning 
by coinduction, one shows that  this relation coincides with ~PP;  hence ~.~app is 
itself a congruence w.r.t, application. This method can be applied successfully to 
various reduction strategies in the literature, thus providing alternative proofs 
to those in [9], to the conjectures in [4]. 

In this paper we use ),-calculus concepts and notation as defined in [2, 4]. 
The paper is organized as follows. In Section 1 we introduce the problem of 
characterizing coinductively contextual equivalences via applicative equivalences. 
In Section 2 we present a list of strategies. In Section 3 we present in general 

~ - ~  the congruence candidate method, and we derive a proof of ~ _~app for all the 
strategies of Section 2. Final remarks appear in section 4. 

The author is grateful to F. Honsell and A. Pitts for useful discussions. 

1 C o i n d u c t i v e  C h a r a c t e r i z a t i o n s  v i a  A p p l i c a t i v e  

Equivalences 

Given a reduction strategy -+~, the a-applicative equivalence, ~app iS defined 
by testing programs only on applicative (closed) contexts. It is reminiscent of 

bisimilarity in concurrent languages ([1]). 
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D e f i n i t i o n  2. Let ~PPC_ A~ • A~ be the applicative equivalence: 
M ~app N r VP1,. . .  ,Pn E A~ n > O. ( M P I . . . P n  ~ r NP1.. .P,~ ~ ) .  

The equivalence ,..~app has a coinductive characterization: 

L e m m a  1. The applicative equivalence ~app can be viewed as the greatest fixed 
point of the monotone operator ~ : 7:)(A~ • A~ -4 "P(A~ • A~ 
q ~ ( R ) = { ( M , N ) I ( M ~  A N ~  A V P c A ~  (MP, NP)  c R) V 

(M ~ A N ~ A VP E A~ (MR, NP)  e R)}. 

An immediate consequence is the validity of the coinduction principle: 

(M, N) E R R is a ~P~-bisimulation 
M ~app N (1) 

where a ~-bisimulation is a relation R C A~ x A~ s.t. R C_ ko~ (R). 
If ,'.~c~:~, app, then the coinduction principle above can be used to establish 

directly the observational equivalence. Hence the natural question arises: for 
which strategies a 's do the two equivalences coincide? Notice that  there are a 's  
such that  .~Tt..~ app, see [9] for counterexamples. However, for many interesting 
strategies in the literature, one can show that  ~.~'~ -,~-'~app, see e.g. [1, 3, 4, 7, 12, 10]. 
In general, proofs of the coincidence of the two equivalences are rather  difficult 
and apply only to specific strategies. The technique discussed in Section 3 is 
rather  general and it can be used for establishing the coincidence for all the 
strategies of Section 2. 

2 A List of Strategies 

In this section we present a list of reduction strategies, together with the corre- 
sponding evaluation relations. 

---~l s t r a t e g y .  The lazy call-by-name strategy --+tC_ A ~ x A ~ reduces the leflmost 
fl-redex not appearing in a A-abstraction. V a l l =  {~x.M ] M E A} M A ~ The 
evaluation ~l is the least binary relation over A ~ • Vall  satisfying the rules: 

M ~t Ax.P P[N/x] ~l Q 
Ax.M ~l Ax.M M N ~l Q 

Classical fl-reduction is correct w.r.t. ~l 2 (see [1]). 

--+v s t r a t e g y .  Plotkin's lazy call-by-value strategy -+v_C A ~ x A ~ reduces the 
leflmost fl-redex, not appearing within a A-abstraction, whose argument is a A- 
abstraction. Valv = {Ax.M [ M E A}MA ~ The evaluation ~v is the least binary 
relation over A ~ • Valv satisfying the following rules: 

M ~ v A x . P  N ~ v Q  P[Q/x ]~vU 
~x.M ~ Ax.M M N  ~ U 

2 The fl-reduction -+~. is correct w.r.t. ~ if M =Z. N ~ M ~ N, where :Z .  is 
the fl~-conversion. 
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The notion of fl-reduction which is correct w.r.t. ~ is the --+~v C_ A • A, i.e.: 
(Ax.M)N --+~ M[N/x], if N is a variable or an abstraction. 

--+o strategy. Let /2 be a new constant. The non-deterministic s t ra tegy --+o C - 
A~ • A~ ([5]) rewrites A-terms which contain occurrences of the con- 
s tant  /2 by reducing any fl-redex. Valo = A ~ Normal  forms which are not in 
Valo are the --+o-deadlock terms. The evaluation relation ~o is the least binary 
relation over A~ • Valo satisfying the following rules: 

M e Yalo C[(Ax.M)N] r Valo C[M[N/x]] ~o P 
M ~o M C[(Ax.M)N] ~o P 

fl-reduction is trivially correct w.r.t. ~o- 

--+h strategy. The head call-by-name strategy ---+h C -- A x A reduces the leftmost 
fl-redex, if the t e rm is not in head normal form. Valh is the set of A-terms in 
head normal form. The evaluation J~h is the least binary relation over A x VaIh 
satisfying the following rules, for n >_ 0: 

M ~h g M[N/x]M1...  M~ ~h P 
xM1 ... Mn ~h xM1.. .  Mn Ax.M "~h Ax.N (Ax.M)NM1 ... Mn "~h P 

fl-reduction is correct w.r.t. ~h  (see e.g. [2]). 

-~n strategy. The normalizing strategy -~nC A x A reduces the leftmost t3- 
redex. Val,~ is the set of A-terms in normal form. The evaluation ~ is the least 
binary relation over A x Valn satisfying the following rules, for n >_ 0: 

M1 ~n M~ ... Mn ~n M~ M ~n N M[N/x]MI. . .  M~ ~n P 
xM1. . .  Mn ~n xM~.. .  M" Ax.M ~,~ Ax.b/ (Ax.M)NM1...  M,~ ~n P 

fl-reduction is correct w.r.t. ~n .  

--}p s t r a t e g y .  Barendregt 's  perpetual strategy -+pC A x A reduces the leftmost 
fl-redex not in the operator  of a redex, which is either an Ifl-redex, or a Kfl-  
redex whose argument  is a normal form. Valp is the set of A-terms in normal  
form. One can easily show tha t  the evaluation Up is the least binary relation over 

A x Valp satisfying the following rules, for n > 0: 

MI ~I, M~ ... M,~ ~r M" M ~p N g ~ M[N/x]M1...Mn ~p V 
xM1.. .  Mr, ,D,p xM~ ... M~ ~x.M ,~p Ax . .N  ('~x.M)NMI ... Mr, ~p Y 

The reduction --+~KN, defined as follows, is correct w.r.t. ~p: 
(Ax.M)N --+~N M[g/x], if (Ax.M)N is either an Ifl-redex or a Kfl-redex 

whose argument  is a closed normal form. 

2.1 General Formats 
The above strategies can be grouped under three general formats: 
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L a z y  S t r a t e g i e s .  --+z, --+v can be viewed as special cases of the general format of 
lazy strategy on a A-calculus with variables by name and by values (see [6, 7]). 

E a g e r  L e f t m o s t  S t r a t e g i e s .  --+h, --+n, and - - - + p  a r e  eager in the sense that  
they reduce under the scope of a A-abstraction. They can be viewed as special 
instances of the following general format: 

Mi~ J),~ M" Mi.  J),~ M '  M ~,~ N 
" "'" '" il ,  ' E{1,  k } , n > 0  x M 1 . . .  Mk . ~  x M ~ . . .  M~ . . . ,  zn . . . ,  - )~x.M J)~ )~x.N 

M [ N / x ] M 1 . . . M n  "U', Y ( N . ~ , )  
(Ax .M)NMa . . .  M s  1).~ V n > 0, where (N ~ )  can be omitted. 

N o n - d e t e r m i n i s t i c  S t r a t eg i e s .  -% can be viewed as a special case of the fol- 
lowing general format: let 0 C Val C A({C}) be closed under fl-reduction, 

M e Val C[()~x.M)N] (_ Yal  C[M[N/x]] . ~  P 
M ~ M C[(Ax.M)N] ~ P 

Notice that  there are many ways to extend -+o on open terms in order to get 
a s trategy of the above format; we will take the natural one. 

3 S h o w i n g  r,.aapp__,..,.a r ' ~  O . - -  r ' ~  Or 

In this section, we present in detail the congruence candidate method for estab- 
lishing ,,~app~-~r. A special instance of this method was first used by Howe in 
the case of the lazy call-by-name strategy --+t ([6]), and later generalized to a 
class of lazy strategies by-name and by-value, including -+v ([7]). Here we ex- 
tend Howe's original method so as to deal with more complex strategies, like the 
eager leftmost strategies, whose evaluation relations cannot be axiomatized only 
on closed A-terms, and non-deterministic strategies, such as --+o. The congruence 
candidate method is used to show that  ,~app is a congruence w.r.t, application. 
In fact, in order to prove that  ~PPC_,~,  it is sufficient to show (Theorem 4): 
1. ,.~PP is a congruence w.r.t, application, i.e. for all M, N, P, Q E A~ ( C), 

M ,~app N A P ,-,.~ao.PP Q ~ M P  ~app NQ; 
2. ~PP  is a congruence w.r.t. A-abstraction, i.e., VM, N C A(C) such that  
F V ( M , N )  C { x l , . . .  ,xn},  VP1, . . .  ,Pn e A~ M[Pi/xi] ,-~PP N[Pi/xi] 

,~Xl . . . .  x n . M  ~app )kXl . . . .  x n . N .  
(In case the strategy is by-value, i.e. for a = v,p, P1, . . .  ,Pn are chosen to be 
convergent terms.) 

The congruence of ~app w.r.t. A-abstraction is immediate to show, once one 
has proved the Extensionality of ,~PP (see Theorem 2). This is really problematic 
only for cr ---- n; in this case one needs to exploit extensively the separability 
technique. For lack of space, we omit this proofi 

T h e o r e m  2 ( E x t e n s i o n a l i t y  o f  ~app). i) Let a = l, v. Let M, N C A ~ be such 
that M ~ ,  N ~ . If, for all P E A ~ M P  ~PP N P ,  then M ~app N .  
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ii) Let a = o ,h ,p ,n .  Let M , N  C A~ If, for all P C A~ M P  ..~PP N P ,  
then M ~app N .  

Using Theorem 2,;one can easily show the following theorem: 

T h e o r e m  3. ~ P P  is  a congruence w.r.t. A-abstraction, for a E {l, v, o, h, n ,p}.  

Proof. We show that, for M,N  E A s.t. F V ( M , N )  C_ {x}, 
VP e A~ convergent). M[P/x] ~app N[P/x] ~ )~x.M ~PP )~x.N. 
For a -- l, v this is immediate. For a -- o, h, n the proof follows from the Extensionality 
Theorem, using the fact,~that ()~x.M)P ~PP M[P/x], which in turn follows from the 
correctness of the ~-reduction w.r.t. ~PP. For a -- p, the proof follows from the fact 
that, for all M E A, (3~ E A ~ M[P/x] ~p) ~ M ~p. 
The implication (=v) in this latter fact follows since --~p is perpetual. The other impli- 
cation is proved by computation induction, choosing as P a suitable permutator. [] 

T h e o r e m 4 .  Suppose "that ~app is a congruence w.r.t. )~-abstraction and appli- 
cation. Then ~ ~aPpc~'J_ ~ �9 

Proof. We prove by indndtion on the context C[ ] that: 
M ~PP N ==~ VC[ ]~(C[M], C[N] E A(C) A FV(C[M], C[N]) _C {x l , . . . ,  x~} =~ 

VPI. . .  Pn C J~ C[l~I][Pi/x,] ~-.~PP C[N][P~/x~]). 
(In case the strategy i~:4~y.value, i.e. a = v,p, P1, . . . ,  P,~ must be convergent terms.) 

[] 

3.1 The  Congruence  Candldate  M e t h o d  

The aim of the congruence candidate method is to show that  ~app is a congru- 
ence w.r.t, applicationi~The main difference between dealing with lazy strategies 
(whose evaluation relation is axiomatized only on closed A-terms) and dealing 
with eager strategies, like -+h, -+n, --~p, lies in the fact that ,  for eager strategies, 
in order to show that  ~,.~app is a congruence w.r.t, application, we need to assume 
that  ~app is a congruence w.r.t. A-abstraction. This hypothesis is not needed 
for the lazy strategies considered in [7]. A further special generalization of the 
proof is required for non deterministic strategies, like -%.  In fact, the proof of 
the main proposition in Howe's method proceeds by induction on the length of 
the derivation of a suitable evaluation judgement, just as we do in the proof of 
the main proposition for the deterministic strategies in this paper (Propositions 
8 and 9). The same result for non deterministic strategies, on the other hand, 
has to be obtained by induction on the minimal length of a converging path  

(Proposition 12). 
The congruence candidate method is a syntactical method which nonetheless 

is quite uniform and modular. It makes essential use of the coinduction principle 
(1) of Section 1, and it is based on the definition of a candidate relation, which 
is a congruence w.r.t, application, and which extends ~PP.  The aim is to show 
that  the candidate relation is a ~-bis imulat ion;  hence the coinduction principle 
(1) guarantees that  ~app itself is a congruence w.r.t, application. For the reader's 

convenience, we outline the: 
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G e n e r a l  p a t t e r n  o f  t h e  c o n g r u e n c e  c a n d i d a t e  m e t h o d :  
�9 Build a candidate relation ~app C A(C) • A(C) s.t. 

~ a p p  
1. ~ ~ ~_~PP; 
2. ~ a p p  is a congruence w.r.t, application; 

/ ~ app\  o ~-bis imulat ion.  3. I ,~  o. )IAO(C)• (C) is a 
�9 Use the coinduction principle (1) to deduce that  "~PP is a congruence w.r.t. 

application. 

More in detail, the congruence candidate method proceeds as follows. First 
of all, we have to explain how to build the candidate relation ~cr~aPP" Candidate 
relations are defined in terms of the extensions to open terms of O~-bisimulations: 

D e f i n i t i o n  3. Let ~ C_ A~ • A~ be a q~a-bisimulation. Define ~a C_ A(C) • 
A(C) as follows: let M, Y e A(C) be s.t. FV(M,  N) C_ { x l , . . . ,  xn}, 

M~aN ~ VP1.. .P~ E A~ M[PJxi]~N[PJxi]. 
(In case the strategy is by-value, i.e. for a = v,p, P1,.. .  ,Pn are chosen to be 
convergent terms.) 

D e f i n i t i o n 4  ( C a n d i d a t e  R e l a t i o n ) .  Let 7/ c_ A~ • A~ be a reflexive 
and transitive O~-bisimulation. Define the candidate relation ~ c_ A(C) x A(C) 
by induction on M as follows: 

x qa N MI ~ M~ M2 ~ M6 M~ M6 Ua N M ~ M' s u~ N 
x ~ N  M1M2 ~ N  ~x.M ~ N  

Notice that  the candidate relation is not simply the contextual closure of ~; 
this subtle definition of ~ is necessary to guarantee the crucial Substitutivity 
Lemma 6. The following lemma is an easy consequence of the definition of ~. 

L e m m a  5. Let ~ C A~ • A o (C) be a reflexive and transitive ~-bisimulation. 
Then: i) ~ is reflexive, ii) U a C ~. iii) ~ is a congruence w.r.t, application. 
iv) M~M'  A M'~aN ~ M~N. 

L e m m a 6  ( S u b s t i t u t i v i t y ) .  M~M' A N~N'  ~ M[N/x]~M'[N'/x]. 
(In case the strategy is by-value, i.e. for ~ = v,p, N , N  ~ must be convergent 
terms.) 

Proof. By induction on the structure of M. 
�9 M - - x :  x ~  ~ M' 

x ~M'  

X~] a M I  ~ N ' y a M ' [ N ~ / x ] ,  from the  definition of ~a. 
N~N' A N'~M'[N'/x] ~ N~M'[N'/x], from item iv of Lemma 5. 

�9 M ~ M 1 M 2 :  3M1,' M2' s .t .  M1 ~ M  1' M2 ~M~ M~M~' ' ~ M' 
M1M2 ~?" M' 

By induction hypothesis, MI[N/x]~M~[N'/x] and M2[N/x]~M~[N'/x]. Moreover, by 
definition of ~ ,  M~M~[N'/x]~aM'[N'/x]. Hence: 



316 

MI[N/x] ~ M~[N'/x] M2[N/x] ~ M~[N'Ix] M~M~[N'/x] ~ M'[N'/x] 
M1M2[N/x] ~ M'[N'/x] 

M1 ~ M~ Ay.M~ ~ M' �9 M - ) w . M 1  : 3M~ s.t. 
)~y.M1 ~ M' 

By induction hypothesis, M~[N/x]~M~[N'/x]. By definition of y~, 
( )~y.M~)[N' /x]~a M'[N' /x]. Hence: 

MI[N/x] ~ M~[N'/x] ()W.M~)[N'/x] ~ M'[Y'/x] [] 
()~y.M1)[N/x] ~ M'[N'/x] 

Thus, if we take ~ to be the equivalence ~app, we get a relation ~aPP, which, 
by i tem ii of Lemma 5, extends ,..~app. Moreover, by i tem iii of the same lemma, it 
is a congruence w.r.t, application. In order to show tha t  ~.~app is itself a congru- 
ence w.r.t, application, we prove tha t  (~app) AO C • C =~app This is done , ( )  
using the coinduction principle (1), by proving t h a t  (~-~aPP)IAo(C)• is a k0a- 
bisimulation. Notice that  this is the only par t  of the proof tha t  depends on the 

[ ^ a p p . ~  o ~ c r -  reduction s t ra tegy -+~. We succeed in showing tha t  ~ ){Ao(C)• (C) is a 
bisimulation for all the strategies of Section 2. The proof of this fact makes an 
essential use of the Substi tutivity Lemma,  and moreover, it requires the validity 
of some further properties, depending on the s t rategy -+~. E.g. for eager leftmost 
strategies we have to assume tha t  ~app is a congruence w.r.t. A-abstraction; for 
-+v, we need the technical property appearing in Lemma 7 below. 

Congruence Candidate Technique for Lazy Strategies For the sake of 
completeness, we outline briefly the proof of the fact tha t  (~PP)IAo(c)• is 
a ~ - b i s i m u l a t i o n  for a -- l, v. The strategies -~l, -+v are special cases of Howe's 
general format  of lazy strategies, see [6, 7] for more details. 

L e m m a 7 .  For all M , N  E A ~ 
(M ,.~app N t M ~v V) ~ 3U. (N ~ U h V ~app V ) .  

( ~  )l~o• i s  a Proposition 8. ^~PP ~-bisimulation, for a E {/,v}. 

Proof. (Sketch, see [6, 7] for more details.) Let M(~PB)IAO• From items i and 
iii of Lemma 5 it follows immediately that, for all P E A ~ MP(~PB)IAOxA oNP" The 

�9 . . ^ a p p  0 difficult part of the proof consists m proving that M ( ~  )lA xA ~  A M #~ ~ N #~,. 
This can be shown by induction on the derivation of M ~ ,  using Lemmata 5, 6, and, 
for ~ = v, also Lemma 7. [] 

Congruence Candidate Technique for Eager Leftmost Strategies 

Proposition9. Let --+~ be a eager leftmost strategy s.t. ~.~app is a congruence 
w.r.t. )~-abstraction. Then (~aPP)lAO • o is a ~-bisimulation. 

Proof. The only non trivial part of the proof consists in proving that 
M(~__.~app)IAOxAON ]k M ~ ~ N #~. 

Since the evaluation relation is axiomatized on the whole A, the above fact cannot be 
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proved simply by induction on the derivation of M ~ .  However, it follows from the 
stronger result obtained by dropping the restriction on closed A-terms, i.e.: 

M ~ , a p p  lv  

To show this, we proceed by induction on the derivation of M ~ .  

�9 M = xM1 . . .  Mk: then, by hypothesis SVil , . . . ,  V~ s.t. 

Mil ~ V h . . .Mi~ ~ ~ ,  
x M 1 . . . M k . ~ x V 1 . . . V k  i l , . . . , i , ~  E { 1 , . . . , k } ,  n>_O 

and SN1 , . . .  , N k , N ~  , N  k-1 s.t. 

x~___.~'t'N v MI~..~apPN1 N ~  1 

xM1 ~ ' ~ ' N  1 

x M ~ . . .  M k _ ~ : P ' N  k-1 Mk~:PPNk N k - I N k ( ~ P P ) ~ N  
xM1 . . .  Mk~,t 'P N 

Hence 
x ( ~ "P ) ~ N ~ ==~ x NI (,,~ "~' ) a N~  N1 
xNI(-,~,PP)aN~ A N ~  1 ==~ xNI(~app)aN 1 

x N 1 . . . N k ( , ~ P V ) ' ~ N k - I N ~  A Nk-IN~(, -~PV)~N ~ x N 1 . . . N k ( ~ a p p ) a N ,  
By induction hypothesis, from M,~P. .~ ,~r - . . . ,  M.~=~PP2V.,~, it follows that Ni~ ~ 
, . . . ,  Ni= 4~. Thus x N ~ . . . N e  ~.~. Hence, from x N ~ . . .  N ~ ( ~ v P ) ~ N ,  using the fact 
that ~ v ~  is a congruence w.r.t. A-abstraction, it follows that N ~ .  

M ~  V1 
�9 M - -  Ax.M~: then, by hypothesis 3V1 s.t. Ax.M~ ~o Ax.V~ 

and SN1 s.t. MI~aPPN1 Ax'NI('~apP)aN 
Ax.MI ~ P P  N 

By induction hypothesis N~ ~ .  Hence Ax.N~ . ~ .  Thus, from Ax.N~ (~P~)~N,  using 
the fact that ~ is a congruence w.r.t. A-abstraction, N ~ .  

�9 M = (Ax.M~)M2 . . .  M~: then, by hypothesis 2V s.t. 

M I [ M 2 / x ] M s . . . M ~  ~ V ( M 2 ~ )  k > 2  
( A x . M ~ ) M u . . . M a  , ~  V 

and SN1,. . .  , N ~ , N Z , . . .  , N  ~-~ s.t. 

A x . M I ~ . , N ~  ~ .~,app r.r n, rl nr (,...app'~a l~,r2 
-- Ivi2~ Iu 2 i~ Iu J i~ 

( A x . M 1 ) M 2 ~ : " ~  N "z 

( Ax.M~ ) M~ . . . M~_ ~ ~aPP Nt~- I 

Hence 

j ~  Aapp nr 
k '~a  iu k N k-  1Nk  " ( ~ a p p ) a  N 
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N~-2N~-~(~vP)~N~:-~ A N~-ZNa(,~)~'N 
N~-2 Na_I N~c(~a~P)~ N 

N k - 3 N ,  [ a p p \ a N k - 2  k _ ~ ,  ) A Na-~Nk_~N~(~,~P)~N 
Nk- 3 Nk_2N}_I N}(~PP)a N 

N1 ar [~app\a ~i"2 ~ 2 ~  ) ~, A N2N3...Nk(~aPp)~N ~ NIN~.. .Nk(~PP)~N 
Ax.N~(~Pp)aN~ A NIN2...N~(~apP)~N ~ (Ax.N~)N2...N~(~avp)~N. 
To show that N ~ ,  it is sufficient to prove that (Ax.N~)N2... N~ ~ .  Then, from the 
definition of ( . ~p )a  since ~PP is a congruence w.r.t. A-abstraction, we get the thesis�9 
To show that (Ax.N1)N2... Nk ~ ,  it is sufficient to prove that N~[N~/x]N3... Na J)~, 
and possibly also that N: #: .  This latter fact follows by induction hyp.. To show 
NI [N2/x]N3... N~ ~ ,  we proceeds as follows. From M~a~PN1, M ^ ~  ~ �9 � 9  k ~ , r  ~ ~ k ,  u s i n g  

the Substitutivity Lemma, we get M~ [Me/x]Ma�9149 M~:PPN~ [Ne/x]Nz... Na. Hence, 
since M~ [M~/x]M3... Mk ~ ,  by induction hypothesis, NI[N2/x]N3... Nk ~ .  [] 

C o n g r u e n c e  C a n d i d a t e  T e c h n i q u e  for N o n - d e t e r m i n i s t i c  S t r a t e g i e s  
Using the fact tha t  Val~ is closed under g-reduction, for - %  non-deterministic 
s t ra tegy of the format  of Subsection 2.1, we immediately get 

L e m m a  10. Let - ~  be a non-deterministic strategy. Then g-reduction is correct 
w.r.t. ~ ,  i�9 for M, N E A(C), M =~ N ~ M ~a N. 

L e m m a 1 1 .  Let -+~ be a non-deterministic strategy. For all contexts C[ ], if 
CI(Ax.P)Q]~aPpN, then C[P[Q/xII~aPPN. 

Proof. The proof proceeds by induction on the structure of C[ ]. 
�9 C[ ] E Var: the thesis is immediate. 
�9 C[ ] - [ ]: from the hypothesis (Ax.P)Q~PPN, SNI: 5/-2, N3 s.t. 

p A a p P  1 Ax.N1 ( ~aPp )a y 2  

(A~.P)Q~N 

Ax�9 A N2N3(~PP)~N ~ (Ax.N1)N3(~PP)~N; 
using Lemma 10, we get N1 [N3/x](~vP)'~N; moreover, by the Substitutivity Lemma, 

,',^~vv N p[Q/x]~:PVN~[Na/x]. 
Hence, from P[Q/x]~P~N1 [?/3/x] and N~ [N~/X](~-~aPP) aN, usiag item iv of Lemma 5, 

it follows that P[Q/x]~:PPN. ~app 
�9 e l f  ~- C1[ ]C~[ ]: from the hyp. CI[(Ax.P)Q]C2[(Ax.P)Q].~ N, SN1, N2 s.t. 

^~  c~[(A~. )Q]~  CI[(Xx.P)Q]~ N~ P ^aPPN' N1N2(~PP) ~N 
P ^~PPN C~[(Ax.P)Q]C2[(Ax. ) Q ] ~  

e~ app C2[P[Q/x]]~aPPN2, hence By induction hypothesis, C~ [P[Q/x]]~ N1 and 
CliP[Q~ x]] C2[P [Q / x]]~PP N1N2 . Then, from N1N2( ~PP) ~ N, using item iv ~ Lemma 

5, we get the thesis. ~app N 
�9 C[ ] -- Ay.Cl[ ]: from the hypothesis Ay.CI[(.Xzc�9162 , ~N~ s.t. 

~app C~[(Xx.p)Q].~ a N~ Ay.N~(~V)~N 
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By induction hypothesis, Ct[P[Q/x]]~PPNt, hence Ay.C~[P[Q/x]]~:PPAy.Nt. Then, 
from Ay.N~(~P~)~N, using item iv of Lemma 5, we get the thesis. [] 

As we remarked  earlier, the  proof  of the  fact t ha t  [2"app\ ~(r  )]AO• o is a k~a - 
bis imulat ion depends essentially on the strategy. The  hypotheses  of the  proposi-  
t ion  below have been tuned  to  the s t ra tegy  -%.  Different sets of hypotheses  are 
p robab ly  necessary to  deal with other  non-determinis t ic  strategies. 

P r o p o s i t i o n  12.  L e t - %  be a non-deterministic strategy s.t.: 
1. ,.~PP is a congruence w.r.t. )~-abstraction; 
2. for  alI M E A(C) ,  i) M ~ ~ : ~  )~x.M ~ and 

ii) A x . M  E Val~ - -> M E Vale;  
3. for all M1, M2 ~ A(C) ,  i) (M~ ~ A M~ ~ )  ~ M]M2 J~ 

ii) M ~ M :  ~ Val~ ~ (M~ ~ Val~ A 2r ~ Vale) ,  
then [~app.~ \~cr )IAO• o is a ~P~-bisimulation. 

and 

Proof. We prove, by induction on the minimal length k of a convergent path from 
M E A(C), that: M ~ P P N  A M ~ ~ N ~ .  
�9 Suppose k = 0. Then we proceed by induction on the structure of M: 

- M =_ x: x ~ p p N  ; from x(~Pp)aN,  using hypotheses 1 and 2i), we get 

N4~. 
- M -- )~x.M1 : 3N1 s.t. MI~PPN1 )~x'NI(~app)aN Ax.Ml~:ppN ; hence, by hypothesis 

2ii), M1 C Val~; from MI~:PPN~, using the induction hypothesis, it follows that  
N1 ~ .  Hence by hypothesis 2i) Ax.N1 ~ ,  and, by hypotheses 1 and 2i), N ~ .  

- M -- M1M2 : 3N1,N2 s.t. MI~PPN1 M2~aVPN2 N1N~(~PP)aN 
M1 M2 ~2PP N 

Since, by hypothesis 3ii), M1, Mu E Val~, by induction hypothesis, N1 ~ ,  and 
N2 g~, i.e., by hypothesis 3i), N1N2 ~ .  Hence, by hypotheses 1 and 2i), N g~. 

�9 Suppose k > O. M -- C[(Ax.P)Q] --+~ C[P[Q/x]] ~ (the length of a minimal 
convergent path from C[P[Q/x]] is k - 1). From C[(Ax.P)Q]~:VPN, by Lemma 11, it 
follows that  C[P[Q/x]]~:VPN. Hence, by induction hypothesis, N ~ .  [] 

C o r o l l a r y  13.  /~app't ~ o  )IAO• o is a ~o-bisimulation. 

Proof. We extend -% on open terms in such a way that a (possibly open) A-term 
converges if and only if there exists a/?-reduction path to a (possibly open) A-term not 
containing any occurrence of f2. Then Proposition 12 is applicable. [] 

4 F i n a l  R e m a r k s  

In this paper we introduce the purely syntactical congruence candidate method, but 
there are also other methods, both syntactical and semantical, for deriving a coinduc- 
tive characterization of the observational equivalence. We mention the following: 
1. Plain induction on computation steps of --+~.. This, purely syntactical, direct ap- 
proach, which can be traced back to the work of Berry, easily applies to --+l (see [1]). 
With suitable extensions in order to take care of open terms, it applies also to (z ---- h, n. 
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However, it is rather problematic for call-by-value strategies such as --+v, --+p, or non 
deterministic strategies like -+o. For a subtle, but complex, proof by induction on com- 
putation for -+v see [11, 10]. 
2. Method based on a Separability algorithm. This method is based on the existence of 
an effective procedure (see e.g. [2]) which, given two non ~-equiva len t  terms, M, N, 
allows to define an applicative context C[ ] such that either C[M] ~,  and C[M] ~ ,  or 
viceversa. To our knowledge, this method works only for ~h, ~n. 
3. Method based on the Domain Logic corresponding to the intersection types presen- 
tation of a suitable computationally adequate CPO-)~-model. This semantical method, 
introduced in [9], is the generalization of the technique originally used by Abramsky 
and Ong in [1] for the special case of --~z. In [9], this method is applied to all the 
strategies of Section 2. 
4. Logical Relations method based on a mixed induction-coinduction principle. This 
semantical method is introduced in [9]. It is the generalization of the technique origi- 
nally introduced by Pitts ([12]) for --+l and -+v. In [9], this method is applied to all the 
strategies of Section 2. The method in [3] for --+v can be viewed as a weaker variant. 

In general, syntactical techniques are more elementary and conceptually simpler than 
semantical ones, but they are often "ad hoc". However, the general version of the con- 
gruence candidate method in this paper, still maintaining the low conceptual complex- 
ity of syntactical methods, is much more uniform than plain induction on computation 
steps. Moreover, it seems to be at least as powerful as the semantical methods in [9]. 
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