
Set Operations for 
Recurrent Term Schematizations 

Ali Amaniss, Miki Hermann,  Denis Lugiez 

CRIN-INRIA & LEIBNIZ-IMAG * 

Abs t r ac t .  Reasoning on programs and automated deduction often re- 
quire the manipulation of infinite sets of objects. Many formalisms have 
been proposed to handle such sets. Here we deal with the formalism of 
recurrent terms proposed by Chen and Hsiang and subsequently refined 
by several authors. These terms contains iterated parts and counter vari- 
ables to control the iteration, providing an important gain in expressive 
power. However, little work has been devoted to the study of these terms 
as a mechanism to represent sets of terms equipped with the correspond- 
ing operations union, intersection, inclusion, membership. In this paper, 
we focus on the set operations relevant for this schematization formalism 
and we discuss several possible definitions of these operations. We show 
how intersection, membership and inclusion can be solved by previously 
known algorithms and we prove the decidability of the generalisation of 
two iterated terms, which is the analogy of set union. Moreover, we re- 
fine this procedure for computing the generalisation of usual first-order 
terms using iterated terms, therefore improving Plotkin's algorithm. 

1 I n t r o d u c t i o n  

The representat ion and manipulat ion of infinite sets of objects constitutes a key 
problem in automated  deduction and logic programming.  In fact, theoretical re- 
sults often imply the existence of an infinite s tructure (usually a set) but  the 
existing tools, e.g. in programming languages, require the manipulated structures 
to be finite. Several solutions have been proposed to overcome this problem. One 
of the simplest solutions consists of using terms with variables tha t  range over 
the Herbrand universe generated by a given signature. Unfortunately, very often 
this representation is not expressive enough or does not meet other s tructural  
requirements inherent to the schematised set. Other formalisms, like regular tree 
languages, are easy to manipulate, e.g. using a corresponding tree automaton, 
since the set operations are easy to realize, but once more they often lack ex- 
pressive power, since the sets to model are usually not regular. For this purpose, 
several authors [CH95,HG97,Sa192,Com95] introduced the recurrent schemati- 
sations of infinite sets of terms with structural similarities. In these schemati- 
sations, the structural similarities are materialised through iterated contexts, 
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where the iteration in a term is controlled by the position and the level of the 
context. The iteration level is usually expressed by integer variables. 

Schematisation formalisms are useful in several branches of logic and auto- 
mated deduction. They can represent infinite complete sets of unifiers for an 
equational theory, successive approximations of an infinite or rational tree, an 
infinite set of answers as a result of an unsafe Datalog query, etc. Such recurrent 
formalisms can be extremely helpful when we need to reason on program be- 
haviour since we must reason on an infinite set of states bearing some similarity. 
If each program state is represented by a term then the program development 
between two states is characterised through the unfolding of a context. Hence- 
forth, the properties usually expressed in temporal  logic can be converted to and 
proved in the formalism of a recurrent schematisation. Another possible appli- 
cation of recurrent schematisations in logic is model construction as explained 
in [CP96]. Yet another application is the recently developed theory of set con- 
straints [AKW95]. Recurrent schematisations itself can be viewed as a new type 
of set constraints, where the constraints on terms are expressed by iterations of 
contexts. 

Many of the previously evoked applications of recurrent schematisations re- 
quire the existence of the set operations, like membership, intersection, inclusion, 
union, and complement. It is surprising to see that  most of the work done on 
recurrent schematisations deals mainly with matching i.e., membership, and uni- 
fication i.e., intersection, but there is almost no work done concerning other set 
operations, apart  from the general result on equational problems in the first- 
order theory of a schematisation called i terated terms [Pel96]. In this work we 
study the positive set operations on the infinite sets schematised by iterated 
terms. These operations are membership, intersection, inclusion, and generalisa- 
tion which is, in some sense, the analogy to union. We discuss several possible 
definitions for set operations and exhibit examples of properties tha t  are true 
for first-order terms but false for i terated terms. Another contribution of this 
paper is a generalisation algorithm which computes an i terated term subsuming 
two given i terated terms. This specialised algorithm provides a more subtle gen- 
eralisation of first-order terms which can be especially valuable for applications 
to model construction. The underlying idea is that  two incomparable terms are 
generalised not to a variable but  to a schematised set including the two terms. 

2 D e f i n i t i o n s  

For the sake of simplicity, we have chosen Comon's formalism for i terated terms 
instead of the more general formalism due to Salzer. Our results could be easily 
extended to the later framework but  the extra complexity of proofs would make 
the main ideas less clear. Our definitions for i terated terms and their semantics 
are slightly different from the definitions of [Com95], but  the basic idea is the 
same. Let  E be a finite set of function symbols where each symbol has a given 
arity, X be a denumerable set of first-order variables, H a denumerable set of 
integer variables. The set of usual first-order terms is denoted by T$(X) ,  and 
the set of ground first-order terms is denoted by T~. 
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D e f i n i t i o n  1. The class T ~ ( X ,  Af) of iterated terms is the smallest set such 
that  

- if x E X then x e T~ (X, H )  

- if sl . . . .  ,sn E T ~ ( X , X ) ,  f E Z and arity of f is n then 
e 

- if s , t  �9 TE(X,A/ ') ,p �9 I P o s ( t ) , p  ~ e then t~Np.s �9 T~(X,A/') 

where IPo s ( t )  is the set of iteration positions of t defined by the equalities 

- •  = {e}, 

- I P o s ( f ( s , . . . ,  s , ) )  = {e} Ul<i<n i . IPos(s i )  

- IPos ( t~N .u )  = 0 

Example 2. s = f ( ( f ( %  x ) ) ~ . y ,  ( f ( x ,  o))~g.z)  is an i terated term. 

In the following, the notation tip +-- u] denotes the replacement of the subterm 
of t at position p by the term u, the symbol of t at position p is denoted by t(p), 
P II q means that  neither p is a prefix of q nor the converse. In a term t[]~.u, 
the subterm at position p doesn't  really mat ter  and can be safely replaced by a 
new constant o representing the context hole. From now on, we assume that  this 
replacement is done in each iteration. Iterated terms contains integer variables 
and first-order variables. 

D e f i n i t i o n  3. The set X - V a t ( u )  of first-order variables of u is defined by the 
equalities. 

- X - V a t ( x )  = { x } ,  

- X - V a t ( I ( , 1  . . . .  = ul<i<nX-yar(  ), 

- X - Y a r ( t ~ N . s )  = X - V a t ( s )  U {x  ] 3q r Pos( t )  p I] q, t(q) = x}  
The set X - V a t ( u )  of integer variables of u is defined by the equalities. 
- .hf-Var(x) = 0 

- . . . .  = 

- ]V'-Var(t[]~.s) = {N} U ]~f-Var(t) U Af-Var(s) .  

A term t s.t. Af -Var ( t )=X-Var ( t )=O is called a ground term. Substitutions 
instantiate variables. Since we have two kinds of variables, we have two kinds 
of substitutions. X-substitutions replace first-order variables by iterated terms 
and H-subst i tut ions replace integer variables by linear forms. 

D e f i n i t i o n  4. A X-substitution a is a finite set of pairs {xl +-- t ~ , . . . ,  xp +- t2, ) 
where the xi 's  belong to X and the ti's to T ~ ( X , A f ) .  The domain of er, denoted 
by Dora(a) is the set {xz , . . .  ,xp}. The application of a to a term t is defined 
by the equalities. 

- x a  = ti if x is some xi, otherwise x a  = x, 

- f( l . . . .  
- = 
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The substitution is ground if the t~'s are ground. The substitution such that  
D o m ( a )  = 0 is denoted by i d x .  

We define now the unfolding of integer exponents that  we need for defining 
the substitution of integer variables. 

D e f i n i t i o n  5. The unfolding of a term t[]g.u is defined by the equalities. 
- t [ ]~ .u  = t [ . . .  t [ u ] p . . . ] . ,  

- t H ~ . M . u  = ( t [ . . .  r io  ]....].)[]~....p.~ 
n n 

- t ~ + M . u  = t~M.(t[]M.u) 

D e f i n i t i o n  6. A N-subst i tut ion 0" is a finite set of pairs {N1 +- a s , . . . ,  Np +- 
ap} where ai  is a linear form a ~ + Z j=l  ..... k, aJ .Mj  with a~ > 0 and the M j  are 
integer variables. The domain of 0" is D o m ( a )  = { N 1 , . . . ,  Np}.The application 
of a to a term is defined by the following equalities. 

- -  X 0 "  : X ~  

-- f ( S l , . . . , 8 , , )  = f ( S 1 0 " , - . . , S , ~ 0 " ) ,  
- (t~pg.s)a = t0"[]~' .so" if N is some Ni, otherwise (t[lN.s)0" = t0"~ N . sa  

The substitution is ground when all ai are positive integers. The substitution 

such that Dora(0") = 0 is denoted by idAr. 

A Af, X-substi tution a (in short substitution) is a pair (0"1,0"2) with 0"1 being 
a N-subst i tu t ion and ~2 being a X-substitntion. Substitutions are used to define 
the semantics of an iterated term, i.e. the set of first-order terms represented via 
unfolding. Indeed two semantics are possible: 

Def in i t i on  7. (Semantics of iterated terms) 
- U(s) = {sa [ a = (o l , idx )  with 01 ground H-subst i tut ions such that 

Af-Var(s)  C Dora(a)} (free semantics) 
- UG(s) = {ta I t E U(s), a = (id~r, 02) with a2 ground X-substi tut ion such that 

2~-Var(t) C Dora(a)} (ground semantics) 

Example 8. Let  s = f ( o ,  x)~N.x ' t h e n  U(s) = {f(x',  x), f ( f (x ' ,  x), x) , . . . )  a n d  

UC(s) = ](T~, T~). 

The main difference with previous approaches is t h a t  i n t e g e r  va r i ab l e s  
c a n ' t  b e  a s s igne d  t h e  ze ro  value .  Tha t  means that  each unfolding of a te rm 
(t~Np.s) contains at least one occurrence of the pat tern t N, therefore all unfold- 
ings have the same root symbol. This is particularly helpful when we consider 
generalisations since it prevents the association between unrelated terms. 
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3 D e f i n i t i o n  i s s u e s  

When dealing with sets of first-order terms represented by i terated terms, two 
approaches are possible. The first one deals with the syntactical representations 
only, for instance unification and matching are typically related to this approach.  
The  second one relies more on the semantics of terms, as for the inclusion oper- 
ation. In this section we discuss the implications of each aspect. 

3.1 Intersection and membership 

Intersection and membership can be solved with unification and matching algo- 
r i thms already developed for i terated terms (for instance see ([Com95] for the 
description of an unification algorithm). Let s and t be two i terated terms, and 
let U l , . . .  ,u~ be the most general unifiers of s and t, computed by some unifi- 
cation algorithm. The intersection problem is settled by the next proposition. 

Proposition 9. The statement v C U(s) A U(t) holds iff v E U(u~) holds for 
some i. The statement v E UG(s) AUG(t)  holds iff v C UG(ui) holds for some i. 

Therefore the most  general unifiers U l , . . . ,  Un can be used to represent the 
intersection of the terms s and t. Membership is also straightforward. 

Proposition 10. The statement s C U(t) holds iff s = ta holds for some 0. 
The statement s E UG(t) holds iff s = ta holds for some 0. 

The other operations raise more interesting questions. 

3.2 M a t c h i n g  a n d  inclusion 

Until the end of the section, s and t are two terms which do not share variables. 
The classical definition for matching is the following. 

Definition 11. (Matching) s matches t i f f  there exists a substitution o such 
tha t  s = to  holds. 

An immediate  corollary is tha t  the inclusions U(s) C_ U(t) and UG(s) C_ 
UG(t) hold. For first-order terms the converse is true, i.e., U(s) C_ U( t ) resp .  
UG(s) C UG(t) implies tha t  s = ta .  Therefore one can ask whether this still 
holds for i terated terms. The answer is no in both cases. 

Example 12. Let us consider the two semantics. 
- For the free semantics, let us consider s = f ( f ( f ( a ) ) )  and t = f ( f ( a ) ) .  Then 

the terms s = (f(o))[  ]lN.f(a) and the te rm t = f ( ( f ( o ) ) [  ]M.a) are two 
i terated terms such that  U(s) = U(t) holds but there is no substi tution a 
with s = ta or t = sa.  

- For the ground semantics, s = f (o ,x ) [  ]lN.x ' and t = f (y ,o ) [  ]M.y,. Then 
UG(s) and UG(t) are both equal to f (TE ,  T~) and there is no o such tha t  
s -- ta nor the converse hold. 
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These examples give the grounds for introducing the inclusion predicate: 

D e f i n i t i o n  13. (Inclusion) We say tha t  s is included in t, writ ten s C_ t, iff 
UG(s)  C_ UG(t) holds. 

Inclusion and matching coincide for first-order terms, and it is worthwhile to 
see if it holds in other cases. Let us ask the following question: if s is a first-order 
term, t is an i terated te rm such tha t  UG(s) C UG(t) holds, does s match  t (i.e., 
s = ta for some a)? The next example gives the answer. 

Example 13. Let Z = {a, J}  with a constant a and a function symbol S of ari ty 
2. Let t = f(S(a, a), ~)N.s(J(S(zl, z2), a), z3) and s = f ( f (a ,  a), f ( f ( x ,  a), 
f (S ( f (a ,  a), a), a))). We have tha t  s{x +- a} = t {N +-- 2, zl +-- a, z2 +- a, z3 +-- 
a} and s{x +-- S(a,  fl)} = t { g  +-- 1,zl +-- a ,  z2 +-- ~,z3 +-- S(S(S(a,a),a),a)}, 
therefore UG(s) C_ UG(t) holds. On the other hand, s ~ ta for any a since a 
must  instantiate the variable N by 1 which is impossible since x clashes with a 
or by 2 which is forbidden because x clashes with f (z l ,  z2). 

S 

/ 
/\ 

a a 

x 

S 

/ \ a  
a a 

t = 

i t e ra ted  
par t  

f 

/ \  o 

a a /<~z~3 

Zl Z2 

Fig. 1. Two terms such that UG(s) C UG(t) holds but s doesn't match t 

3.3 Generalisation 

The same problem occurs for the generalision of i terated terms. Using the same 
definition as in the first-order case would result in the following one. 

Definition 15. Let s and t be two terms, a generalisation of s and t is a te rm g 
such tha t  there exist two substitutions a l ,  a2 where g~h = s and go2 ---- t. 
A generalisation g is minimal if there is no other generalisation g~ such tha t  

gl = ga. 

Since a variable is a generalisation of any pair of terms, the most  relevant 
concept is tha t  of a minimal generalisation. The above definition is not really 

satisfactory, as shown by the following example. 
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Example 16. Let s = f( f( f(a)))  and t -- f(f(a)), then g = f (  f (o)[  ]N.a ) and 
g' - ( f(o))[  ]N.f(a)  are two generalisations of s and t. It is easy to see that  they 
are minimal but  there is no substitution a such that  g~ = ga nor g = g~a. On 
the other hand, U(g) = U(g') and UG(g) = UG(g'). 

Therefore using the same notion of generalisation for i terated terms as for 
first-order terms leads to counter-intuitive results, since we distinguish between 
two terms which have the same semantics and that  should be therefore identified. 
This suggests a new definition, where generalisations are compared with respect 
to the ground semantics: 

Definition 17. (ground generalisation) A term g generalises the terms s and t 
iff there exists two substitutions a l ,  ~2 such that  s -- gal and t = ga2. The 
generalisation g is minimal iff there is no other generalisation g~ such that  
UG(g') C_ UG(g) where the inclusion is strict. 

Another possible definition refers to the meanings of the terms: 

Definition 18. (inductive generalisation) A term g generalises the terms s and 
t i f f  UG(s) C UG(g) and UG(t) C_ UG(g) hold. The generalisation g is minimal 
if[ there is no other generalisation g' such that  UG(g') C_ UG(g) holds where the 
inclusion is strict. 

It is straightforward to see that  if g generalises s and t according to the ground 
semantics, it generalises s and t according to inductive generalisation. Therefore 
the last definition computes more generalisations. This is why we shall use the 
former definition (ground generalisation) instead of the latter one. However the 
decidability result that  we give holds for both definitions. 

4 I n c l u s i o n  of  i t era ted  t e r m s  

In this section we indicate how to solve the inclusion problem, i.e. given s, t 
decide whether UG(s) C UG(t) holds. 

T h e o r e m  19. The inclusion problem is decidable. 

Proof. Use the general procedure of [Pe196] or [HS96]. 

However the inclusion problem is a special case of equational formulae and 
its solution doesn't  require the full power of the decision procedure. A simple 
algorithm has been given by the first author in his thesis lAma96] when there 
are no first-order variables in the quantification part,  i.e., problems of the form 
V N 3M s = t with N = Af-Var(s) and M = A/iVar(t). The rules are similar to 
the rules used in the unification algorithm described in [Corn95]. Two unfolding 
rules are used for elimination of quantified variables. Universally quantified vari- 
ables lead to a conjunction of the base case (N = 1) and of the inductive case 
(N = 1 + N~), whereas existential variables lead to disjunction of these cases. 
Together with the other unification rules, we eventually eliminate the quantifiers 
through reasoning on unfolding paths in both terms s and t. 
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5 A b r u t e - f o r c e  s o l u t i o n  f o r  t h e  g e n e r a l i s a t i o n  p r o b l e m  

First we give some definitions needed by the non-uniqueness of generaiisations. 

De f in i t i on  20. A set of generalisations S for two terms s and t is complete 
iff for each generalisation g of s and t there exists some g~ E S such that  the 
inclusion UG(g') C UG(g) holds. A set of generalisations is a complete minimal 
set iff it is complete and contains only minimal generalisations. 

The following proposition is a straightforward consequence of the definition. 

P r o p o s i t i o n  21. A complete minimal set o] generalisations is unique modulo 
the equivalence s =_ t i f f  UG(s) = UG(t) holds. 

Now we show that  the set #G(s, t) of minimal generalisations is finite and 
algorithmically computable for any terms s and t. The algorithm first computes 
the finite set of all possible generalisations and eliminates the redundant ones 
in the second pass using the inclusion decision procedure. The idea behind the 
algorithm is that  instantiation cannot decrease the height of a term. Therefore, a 
generalisation has a height smaller than or equal to the generalised terms. Since 
there is only a finite number of terms with a height smaller than a fixed bound, 
subsequently there are only finitely many generalisations. We are going to state 
this proof more formally. 

De f in i t i on  22. The height of a term is defined by: 
- H ( x )  = 1, H ( o )  = 1 

- H ( f ( t l , . . .  ,tn) = 1 + M a x { H ( t l ) , . . .  ,H(tn)}  for n >_ 1, 

- H(t[ ]pg.u) = Max{g( t~v  +- o], tPl + H(u)}. where IPl is the length ofp.  

Example 23. g ( f ( f ( a , a ) , o ) [  ]2N.a) = 3, H(f (a , f (a ,o ) ) [  ]N2.g(a)) = 4 

P r o p o s i t i o n  24. There are only finitely many terms (up to variable renaming) 
of height smaller than a given bound n. 

P r o p o s i t i o n  25. Let t be an iterated term and a a substitution, then the in- 
equality H(ta)  > H(t)  holds. 

Proof. The proof is by structural induction on t. 

P r o p o s i t i o n  26. The set of generalisations o] two terms s and t is finite. 

Proo]. Let g be a generalisation of s and t, then H(g) ~_ H(ga), therefore 
H(g) < min(H(s) ,  H(t)). There are only finitely many distinct (up to renaming) 
iterated terms of height smaller than some fixed bound (here min(H(s) ,  H(t)) ,  
therefore there is only a finite number of possibilities for g. 

T h e o r e m  27. There exists an algorithm to compute a set of minimal generali- 

sations of s and t. 
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Proof. Enumera te  terms of height smaller than  min(H(s), H(t)) and check if 
they generalise s and t. Then use the inclusion algorithm to find minimal ones. 

Remark 28. The same proper ty  holds for inductive generalisation since the height 
of any generalisation of s is bounded by H(sa) where a instantiates the integer 
variables of s by 1 and the first-order variables of s by a constant.  

6 General isat ion of first-order terms using iterated terms 

In model construction, a main problem is to describe sets of first-order terms 
representing a model under construction in a compact  way. Several authors have 
suggested to use i terated terms for such purposes. A weakness of this approach 
is the generation of i terated terms. The procedure starts  with a set of first- 
order terms and at some point infers a representation of a model containing 
these terms. The representation must be faithful i.e., must  contain the given 
terms, compact ,  and not too general. First-order generalisation usually pro- 
vides us with a result which is too general, for example the generalisation of 
](a), f(f(a)), f(f(f(a))),  ... is f(x) whereas i terated terms can provide us with 
a be t ter  approximation (f(o))[  ]N.a. Ad-hoc solutions exist, but there is no sys- 
temat ic  t rea tment  of the problem relying on a generalisation algorithm. In this 
section we provide a generalisation algorithm for first-order te rms using i terated 
terms. For simplicity, we consider only a generalisation of two terms but  the 
algorithm can be easily extended to work on a finite set of terms. 

6.1 I s  the generalisation of first-order terms unique? 

The generalisation of classical terms is unique (up to renaming) and the set of 
first-order terms equipped with the unification and generalisation operations has 
a lattice structure. On the other hand unification of i terated te rms  is finitary 
and it is likely that  generalisation is finitary too. However the unification algo- 
r i thm for i terated terms applied to first-order terms computes a unique most  
general unifier. Therefore a natural  question is to ask if the same holds for the 
generalisation of first order terms using iterated terms. The following example 
shows tha t  this is false whatever definition of generalisation is used. 

Example 29. Let the signature be ~ = {f,  h, a, b} with f and h of ari ty 1 and 
a, b two constants. Let s = f(h(f(h(h(a))))) and t = f(h(h(f(b)))). 

Proposit ion 30. All definitions of generalisation are equivalent for s and t. 

Since s and t are ground terms U(s) = UG(s) = {s} and U(t) = UG(t) = {t}. 
Moreover g generalises s and t according to inductive generalisation iff UG(s) C 
UG(g) and UG(t) C_ UG(g) which yields s = ga l  for some a l  and t = g~2 for 
some c~2. Therefore g generalises s and t according to ground generalisation. 
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Proposit ion 31. The iterated terms ~)1 : (f(h(o)) []N.h(x) and 

i t e ra t ed  p a r t  

r = f (  h(o) [ ]N.f(x))  are two minimal generalisations of s and t. 

i terated p a r t  

Proof. we  have f(g(g(a))) E UG(r  but  f(g(g(a))) r UG(r and f(g(f(a))) C 
UG(r bu t  f(g(f(a))) • UG(r  One can check that  r and r generalize s 
and t and t h a t  they are minimal. 

6.2 Differences from first-order generalisation 

The main difficulty of first-order generalisation is illustrated by the following 
example. Let s = f(a, a) and t = f(b, b) be two terms. A naive algorithm that  
generalises arguments when the roots are identical and generates new variables 
for distinct roots would result in f (x,  y) when the actual generalisation is f (x,  x). 
The problemis  solved by using a bijection between pairs of terms and variables. 
For i terated te rms  the problem is more complex. 

Example 32.: Let s = f(a) and t = f ( f (a))  be two terms then their first-order 
generalisation is f(x).  Indeed, both terms contain an iteration of f (o)  at position 
1 with the same term a after the iteration. Therefore a bet ter  proposition is 

N a f (o) [  ]1 ( ) ,  where N is a new variable. 

Following the  previous example, our generalisation algorithm contains a rule 
tha t  detects iterations of a common context in the terms s and t to be generalised. 
In fact, it looks for a path p such that  p . . . p  (n times) occurs in s and p . . . p  
(m times) occurs in t. The power but  also the additional complexity of our 
generalisation algorithm resides in this rule. However, a careless generalisation 
of integer variables causes the same problem as for first-order variables. 

Example 33. Let s = h(f(a), f(b)) and t = h(f(f(a)),  f(f(b))) be two terms. 
First we can decompose upon h (no possible iteration occurs) and compute the 
generalisation, of f(a) and f ( f (a))  and the generalisation of f(b) and f(f(b)).  As 
seen previously the first one results in f(o)~.a with N a new variable and the 
second one in f (o)~.b with M a new variable, yielding h(f(o)~.a, f(o)~.b). But 
the minimal generalisation is h(f(o)~.a, f(c)~.b) (N and M must be identified). 

6.3 A genL~ralisation algorithm 

The generalisation algorithm described here is intended to be as simple as pos- 
sible and will be refined later on. The following transformation rules compute a 
generalisation G(s, t) of two terms s and t, i.e., a term g such that  ga: = s and 
ga2 = t. Since the variables of s and t are not instantiated, we assume that  s 
and t are ground. The rules are non-deterministic and using all possible choices, 
we get a set of:generalisations that  is denoted by Gen(s, t). Non-minimal gener- 
atisations can appear in this set and we use a cleaning rule to get rid of useless 
generafisation. In the following, ~x is a bijection between pairs of terms and X, 



343 

and ~x is a bijection between pairs of integers and Af. For any pair of terms, 
ttG(s, t) denotes the set of minimal generalisation of s and t. 

Rules for generalisation of first-order terms 

(Clash)  
G ( g ( s l , . . . , S m ) , f ( t l , . . . , t n ) )  -4 ~ x ( g ( S l , . . . , S m ) , f ( t l , . . . , t n )  ) m , n  > 0 

(Decomposition) 
G ( f ( s l , . . . ,  s~), f ( t l , . . . ,  t~)) -+ f ( g l , . . . ,  g~) if gi E #G(si, ti) 1 < i < n 

(Iteration) G(s, t) -+ U[ ]~pZ(n'm).w 
if there is some position p, two distinct integers n, m greater than 1 such 
that  the following conditions hold: 

- for each prefix q of p, the symbols s(q) and t(q) are the same, 
- s = S[ ]~.w a~d t = T[ ]p.U where S = s~v +- of and T = t~v ~ o], 
- w e ~ G ( u ,  v), 
- U = gen(p, s~p +- of,tiP +- o]) where gen is defined by: 

�9 gen(e, o, o) = o, 
�9 gen(i.q, f (Ul , . . . ,  ?~/~), f ( V l , . . . ,  Vn) ) ~-- f ( g l , ' . . ,  gi--1,9en(q, Hi, vi), 

g i+ l , . - - ,  g,0 where gj E #G(ui, vi). 

Let Gen(s, t) be the set of all terms G(s, t) computable using the three pre- 
vious rules~ This set can contain non-minimal generalisations, as proved by the 
next example. 

Example 34. Applying the last rule to the terms s = f (a,  f (a,  g(a))) and 
t = f(b, g(c)) at position p = 2 and then the decomposition and clash rules, we 
get G(s, t) = f ( x ,  o)N.g(y) where x -- ~x(a, b) and y - ~x(c~ a). On the other 
hand, applying decomposition first, we find G(s, t) = f ( x ,  z) with 
z = ~x(f(b,  g(a)),g(c)). The second result is not minimal since the inclusion 
UG(f (x ,  o)N.g(y)) C_ UG(f (x ,  z)) holds, but the first result is. 

Therefore we introduce the cleaning rule: 

(C lean ing)  Gen(s, t) -+ Gen(s, t) - {g} if there is some g~/~ Gen(s, t) such 
that  UG(g') C_ UG(g) holds. 

When the cleaning rule is no longer applicable we set #G(s, t) = Gen(s, t). 

6.4 Termination, correction and completeness of the algorithm 

In this section we set the main properties of the algorithm. 

Proposition 35. The application of the rules Clash ,  Decomposition, Iter- 
ation, C l e a n i n g  terminates. 

Proof. Computing #G(s, t) needs to compute #G(u, v) for smaller terms only 
and only a finite number of paths must be considered by the iteration rule. 

Proposition 36. pG(s, t) is a complete set of minimal generalisations. 
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7 C o n c l u s i o n  

We have described the set operations inclusion and union for the recurrent 
schematization by iterated terms. We showed that  together with the member- 
ship and intersection, solved by matching and unification respectively, these set 
operations can be algorithmically solved within the considered formalism. The 
inclusion is presented as an extension of matching to infinite schematized sets 
with its proper semantics. The union operation is based on the generalisation 
problem, where we applied the new idea that  two incomparable terms are gen- 
eralised by an infinite schematized set containing the given two terms. This 
improves the usual notion of generalisation due to Plotkin, where incomparable 
terms were generalised by a variable. We gave a new generalisation algorithm, 
based on this new idea, that  can be applied to several interesting problems in 
logic programming, knowledge representation, and automated deduction. 

Several interesting questions concerning set operations for recurrent schema- 
tisations remain to be studied. In particular, it would be interesting to know 
how can these notions be developed for other existing recurrent formalisms. On 
the other hand, almost nothing is known concerning the complexity of the deci- 
sion problem involving the considered set operations, nor about the asymptotic 
complexity of the existing algorithms. These questions are interesting also in the 
scope of set constraints by recurrent schematisations, since already the decision 
problem in the usual set constraint formalism has a high complexity [BGW93]. 
This complexity classification would allow us to decide upon the practical appli- 
cability of the existing formalism. 
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