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A b s t r a c t .  We are given a line of n identical processors (finite automata)  
that  work synchronously. Each processor can transmit just one bit of 
information to the neighbour processors (if any) on the left and on the 
right. The computation starts at time 1 with the leftmost processor in 
a start ing state and all other processors in a quiescent state. Given the 
time f(n), the problem is to set (synchronize) all the processors in a 
particular state for the first time, at the very same instant f(n). 
This problem is also known as the Firing Squad Synchronization Problem 
and was introduced by Moore in 1964. Mazoyer has given a minimal time 
solution with the least number of different states (six) and very recently 
he has given a minimal time solution for the constrained problem in 
which adjacent processors can exchange only one bit. 
In this paper we present solutions that  synchronize the line at a given 
time expressed as a function of n. In particular we give solutions that  
synchronize at the times n log n, nv/~, n 2 and 2 '~. Moreover we also show 
how to compose solutions in such a way to obtain synchronizing solutions 
for all times expressed by polynomials with normegative coefficients. 
Clearly all such solutions work also in the general case when the 1-bit 
constraint is relaxed. 

1 I n t r o d u c t i o n  

We are given a line of n ident ica l  processors (finite a u t o m a t a )  t ha t  work syn-  
chronous ly  wi th  discrete  steps.  Each processor  can t r a n s m i t  j u s t  one bi t  of  in- 
f o r m a t i o n  to the  ne ighbour  processor  (if any) on the left and  to  the  ne ighbour  
processor  (if any) on the r ight .  The  c o m p u t a t i o n  s t a r t s  a t  t ime  1 wi th  the  left- 
mos t  processor  in a given s t a r t i ng  s t a t e  and  all  o ther  processors  in a quiescent  
s ta te .  Given the t ime  f(n), the  p rob lem is to p r o g r a m  the processors  so t ha t  
they  all  enter  for the  first t ime  a pa r t i cu l a r  s t a t e  a t  the  very same  in s t an t  f(n).  

This  p rob l em is also known as the  Firing Squad Synchronization Problem 
(shor t ly  F S S P )  as the  processors can be seen like soldiers t ha t  have to fire si- 
mul taneous ly .  The  p rob l em was in t roduced  by Moore  in 1964. However,  in t h a t  
version at  each s tep each processor  in the  line can t r a n s m i t  i ts cur rent  s t a t e  to 
the  ne ighbour  processors.  Since then m a n y  solut ions  to the  p rob l e m and  to i ts  
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variations (see for example [3]) have been given. Minsky in [9] showed that a 
solution to the FSSP requires at least 2n - 1 time units. Waksman in [10] gave 
the first minimal time solution and Mazoyer in [5] has given a minimal time 
solution with the least number of states: six. 

Recently Mazoyer in [7] has given a minimal time solution for the problem 
where only one bit can be transmited. Here we present solutions that synchro- 
nize the line of processors in a given time, not necessarily minimal, expressed as 
a function of n. Such problem was posed in [6], while facing the problem of the 
composition of different Cellular Automata.  There the composition was reduced 
to space-time constructibility of Cellular Automata  in the following sense: a pair 
of functions (g(n), f (n ) )  is space-time constructible if there exists a cellular au- 
tomaton that  synchronizes g(n) cells at time f (n ) ,  for all n. 

In this paper we consider g(n) = n and give algorithms for synchronizing in 
the times f ( n )  of the following types: n log n, n v ~ ,  n 2 and 2 n. Moreover we also 
show how to compose solutions in such a way to obtain synchronizing solutions 
for all linear times an + b, for any feasible a and b, and for all times expressed 
as polynomial with nonnegative coefficients. Clearly all these solutions are also 
solutions for the general case, where the 1-bit constraint is relaxed. 

To achieve the above results we introduce the concept of signal that,  infor- 
mally speaking, is a particular set of cells that at a given time either receive the 
bit 1 from or send the bit 1 to the adjacent cells. Starting from basic signals 
we combine different signals to obtain others that  allow to describe in a more 
natural way the synchronizing algorithms, (also [8] and [2] use signals, however 
there the settings are completely different from here). 

The rest of the paper is organized as follows: in the next section, we give the 
definitions and introduce the concept of signal. In section 3 we give some basic 
results on how to compose signals and in section 4 we present the elementary 
signals that will allow us to easily describe the particular solutions presented 
in section 5 with time n 2, 2 ~, n logn  and nx/-n. In section 6, we show how to 
obtain all linear time solutions and all solutions expressed by polynomials with 
nonnegative integer coefficients. Finally we give some conclusions in section 7. 
Due to lack of space some proofs (and some figures) are omitted, for a full version 

of the paper see [11]. 

2 P r e l i m i n a r i e s  

In this section we give the definitions and introduce the concept of signal, along 
with some examples. The line of processors is formally seen as a Cellular Au- 

tomaton.  
A one-bit cellular automaton (shortly 1-CA) is an array of n identical finite- 

state machines (cells) and is denoted by a tuple (Q, 6, 5 L, 5 R) where Q is a finite 
set of states, 5:  {0, 1} x Q x {0, 1} --+ {0,1} x Q  x {0,1} is the transition function 
for cells from 2 to n - l ,  5L : Q x {0, 1} -+ Q x {0, 1} and 6 R : {0, 1} x Q -+ {0, 1} x 
Q are the transition functions for the first and last cell, respectively. In a I-CA, 
the i-th cell is connected to the ( i -1 ) - th  and ( i+ l ) - th  cells, for all i = 2 , . . . ,  n - 1 .  
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The first and the last cells have only one connection, respectively to the second 
and the (n - 1)-th cell. Informally each cell exchanges one bit of information with 
its adjacent cells and modifies its state depending on its current state and the 
bit received from the adjacent cells. In particular 5(a, p, b) = (c, q, d) means that 
a cell in the state p when receives the bit a from the left neighbour and the bit 
b from the right neighbour enters, at the next time step, the state q and sends 
the bit c and d to the left and right neighbours, respectively. In the following, 
Q, 6, 5 I" and d R always refer to the set of states and to the transition functions 
of a given 1-CA. Moreover, if Ai is a 1-CA then Qi is the set of states of Ai and 
5i, 5~ and d~ are the transition functions. 

We consider the time-unrolling of the 1-CA, that  is we will speak of a space- 
time two dimensional array. A pair (k,t) of this array, with 1 < k < n and t > 1, 
is called a site, the state of the cell k at time t is denoted state(k, t) and the bit 
sent to the neighbours are denoted left(k,t) and right(k, t). So, we have that  
(left(k, t), state(k, t), right(k, t)) = d(right(k - 1,4 - 1), state(k, t - 1), left(k + 
1, t - 1 ) ) .  A configurationofAisamappingC: {1, 2, . . . , n }  ~ {0, 1} xQ•  1}. 
A configuration at time t gives, for each cell k, the state entered and the two bit 
sent at this time. A starting configuration is a configuration at time 1. In the 
following we often write "(A, C)" to denote a 1-CA A starting on a configuration 
C. To avoid ambiguities, sometimes we use subscripts in state, left and right to 
refer to a given 1-CA and a given starting configuration. A site (k, t) is said 
active if at least one of the following conditions holds: Ieft(k + 1,4 - 1) = 1 or 
right(k-  1, t -  1) = 1 or left(k, t) = 1 or right(k, t) = 1 or 5(0, state(k, t), O) r 
(0, state(k, t), 0). Let Spectrum(A, C) denote the set of all the active sites of the 
1-CA A with the starting configuration C. We let Cell(A, C) denote the set of 
ceils k such that  the site (k, t) is active for some t. 

Let A be a 1-CA and C be a configuration, (A, C) is tailed if there exists a 
subset of Q, called tail(A, C), such that  for all k E {1 , . . . ,  n} 

state(k, t) E tail(A, C) if and only if t = max{t'l(k , t') E Spectrum(A, C)}. 
A simple signal of (A, C) is a subset S of Spectrum(A, C) such that if (i, t) and 
(j, t + 1) are in S then j E {i - 1, i, i + 1} and, if (A, C) is tailed, (k, 4k) belongs 
to S, where tk is the maximum t such that (k, t) is active. The union of a finite 
number of simple signals of a given (tailed) (A, C) is called signal of (A, C). 

A grafical representation of a simple signal S of a (tailed) (A, C) is obtained 
by drawing a line between: 
(i) every pair of sites (k, t) E S and (k, t + 1) E S and 
(ii) every pair of sites (k,t) E S  and ( k +  1, t +  t) E S (resp. ( k -  1, t +  1) E S) 
if right(k, t) = 1 (resp. left(k, 4) = 1). 

A grafical representation of a signal is obtained by the grafical representation of 
its simple signals. 

The duration of a signal S is t - t '  + 1 where t = max{s](i, s) E S} and 
t '  = min{si(i ' s) E S}.In the following we sometimes will speak of a signal 
without specifying the 1-CA and the configuration. 

The next examples introduce two signals: COUNT and M A X  (see Fig. 1). The 
COUNT signal can be used to check whether the time elapsed between two 
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events (i.e. two signals crossing a given cell) is less than  or equal  to a given 
constant .  The  MAX signal is the " m a x i m u m  rate" signal, which can be used to 
t r an smi t  the bit  1 f rom a cell to another  as fast  as possible. 
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Fig.  1. Example of a MAX and a COUNT signal on a line of 10 cells. 

Example 1. The  set COUNT(i, h) containing the  sites ( i , l ) ,  1 < l <_ h, is a 
s imple  signal of  dura t ion  k. The  cell i can be seen as a counter  f rom t ime  1 to k. 
Th is  set is a signal of  a tai led 1-CA whose s ta r t ing  configurat ion m a y  be in such 
a way tha t  the s ta te  of the cell i is different f rom the s ta tes  of the other  cells. 

Example2. Let i # j and let MAX(i , j )  be the set containing the sites (i + 
h,h + 1) if i < j ,  or the sites ( i -  h ,h+ 1) otherwise,  for O _< h _< li - Jl + 1. 
This  set is a s imple signal, with dura t ion  li - J l  + 1, of a tai led 1-CA tha t  s ta r t s  
f rom a configurat ion having the s ta tes  of  cells i and j different f rom all others.  

A t(n)-firing signal is a signal whose dura t ion  is t(n) and contains  the sites (1, 1) 

and (i,t(n)) for i =  1 , . . . , n .  
Let  us now introduce the not ion of i -b i t  solut ion to the FSSP. 

D e f i n i t i o n l .  Let A = (Q,5, sL,5 R) be a 1-CA such tha t  Q contains  three 
par t icu lar  states,  G, L and F ,  and L has the p roper ty  t ha t  5(0, L, 0) = (0, L, 0), 
5R(0, L) = (0, L) and 5L(L, 0) = (L, 0). Let C be such t ha t  C(1) = (0, G, 1) and 
C(i) = (0, L, 0), for i = 2 , . . . ,  n. The  I - C A  A is a one-bi t  solut ion (or shor t ly  
solution) to the FSSP in t ime  t(n) if (A, C) is tailed, wi th  tai l(A, C) = {F} ,  and 

there  exists a t (n)-f ir ing signal of (A, C).  

The  s ta r t ing  configurat ion for a solution to the FSSP is called in wha t  follows 
a standard configuration.  Somet imes  we will refer to the s ta tes  G, L and F as the 
General, Latent and Firing states.  Note  tha t  in the definit ion above the le f tmost  
cell is in the General  state:  clearly a s y m m e t r i c  solution can be ob ta ined  by 
le t t ing the  cell n ins tead be in the  Genera l  s ta te .  

Minsky in [9] has shown tha t  2n - 1 is the min ima l  t ime  for the solut ion to 
the FSSP. In [7] Mazoyer  has presented a solution in t ime  2n - 1. 
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3 Composit ions of signals 

In this section we show how to obtain a single signal as a composition of more 
signals under three different conditions. 

From the first lemma it is possible to obtain a new signal from two signals 
with disjoint sets of active cells. 

L e m m a 2 .  Given a 1-CA A, let $1 and $2 be two signals of A respectively on the 
configurations C1 and C2. If  there existsi <_ j, such that Cell(A, C~) C_ {1 , . . . ,  i} 
and Cell(A, C2) C_ { j , . . . ,  n}, then there exist a 1-CA A' and a configuration C' 
such that $1 U $2 is a signal of (A', C'). Moreover, if (A, C1) and (A, C~) are 
tailed then also (A I, C ~) is tailed. 

Given two signals $1 and $2, we denote with 5:1 U~ $2 the set 
$1 U{(k,t+s- 1)[(k,t) ~ $2} 

and we say that it is the s-union of $1 and $2. 
A 1-CA A2 on C2 is said that can follow a tailed 1-CA A1 on C1 if the 

following conditions hold: 
i) {kl(k, 1) G Spectrum(A2, C2)} _C Cell(A1, Cj) and 
ii) if stateA~,c~ (k, t) = stateA,,Cl (k ~, t') C tail(A1, C1) then C2(k) = C2(kl). 

Clearly when A2 can follow A~, then the function foll(q) = (a, p, b), where q = 
state(k, t) E tail(A1, C1) and C~(k) = (a,p, b), exists. Thus the set tail(A1, C1) 
can be split into two disjoint sets: active(A1, C1) and non_active(A1, C~), such 
that (k, 1) E Spectrum(A2, C2) if and only if there exists a state q E active(A1, CI) 
such that  loll(q) = C2(k). 

The next lemma establishes when it is possible to design a 1-CA for the 
s-union of two signals. 

L e m m a 3 .  Let A2 be a 1-CA on C2 that can follow a tailed 1-CA A1 on C1. Let 
$1 and $2 be signals of (Ax, Ct) and (A2, C2) and s = min{t I stateAl,C1 (k, t) E 
active(A1, C1)}. If  t' < t" + s for all t' and t" such that (k,t ') E Spectrum(A1, C1) 
and (k,t") E Spectrurn(A2,C~) then for all integers r > s there exists a 1-CA 
A and a configuration C, such that $1 Ur S~ is a signal of A on C. Moreover if  
(A2, C2) is tailed and Cell(A1, C1) C_ Cell(A2, C~), then (A, C) is tailed too. 

P r o o f  : First let us note that  given the condition t '  < t"  + s and the definition 
of S, then all the cells k of (A1, C1) such that (k, 1) E Spectrum(A~, C2), enter 
a state belonging to tail(A1, C1) at the same time s. Assume now, without loss 
of generality, that the sets Q1 and Q2 are disjoint. Define C(k) equal to Cl(k) 
if k E Cell(A1, C1) and equal to C2(k) otherwise. 

Given an integer r, the behaviour of a 1-CA A for the signal S1 U~ $2 on C 
can be split in three phases: A initially behaves as A1, then at time s, if the site 
(k, 1) of (A~,C~) is active, the site (k,s) enters stateAl,c,(k,s) E tail(A1, C1) 
and at time r the site (k, r) enters statea2,c= (k, 1) and from now on A behaves 
as A2. Note that  on the cells k such that stateA1,c,(k, s) ~ active(A1, C1) the 1- 
CA A immediately switches from Az to A2 at the time t where stateA~,C~ (k, t) E 
non_active(Az, C1). We omit the formal definition of A. 
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In Lemma  3 we have defined a 1-CA A that  performs initially as A1 and 
then as A2. Anyway, while switching from the first to the second 1-CA, some 
t ime t > 0 is elapsed: now we show that  if two additional conditions hold then 
a similar construction is possible also for t = 0. The following Lemma  gives the 
third approach to compose two signals. 

L e m m a 4 .  Let A2 be a 1-CA on C2 that can follow a tailed 1-CA A1 on C1. Let 
$1 andS2 be signals of (A1,C1) and ( A 2 , C 2 ) a n d s =  min{t[ stateA1,cl(k,t) E 
active(A1, C1)}. If  t' < t" + s for all t t and t" such that ( k, f )  E Spectrum(A1, C1) 
and (k, t") e @ectrum(A2, C2) and for all sites (k, t) the following holds: 
(k, s + t - 1) �9 Spectrum(A1, C1) and (k, t) �9 Spectrum(A2, C2) implies t = 1, 
then there exists a l-CA A and a configuration C such that $1 Us $2 is a signal 
of A on C. Moreover, if (A2, C2) is tailed and Cell(A1, C1) C_ Cell(A2, C2), then 
(A, C) is tailed too. 

P r o o f  : The arguments are similar to those of Lemma  3. The behaviour of A 
can informally be described in two phases (with respect to the proof of Lemma  3, 
the second phase is skipped): A initially behaves as A1, then at t ime s, if the 
site (k, 1) of (A2, C2) is active, the site (k, s) enters stateA~,c~(k, 1) and from 
now on it behaves as A2. As in the preceding Lemma  it may  be the case that  
the sites (k', t ') of A1 and (k', t '  - s + 1) of A2 and the sites (k", t") of Az and 
( k " , t " - s  + 1) of A2, are all active. Here the additional constraint ensures that  

in such a case t ~ = t" = s. 

4 Some Elementary Signals 

In this section we describe the elementary signals that  will be used to obtain 
some solutions to the FSSP. In the following, we often refer to a (tailed) 1-CA 
without specifying the starting configuration and we call tail a state in tail(A, C), 

for given A and C. 
Given a signal S, to refer to the set of sites {(k , t  + r -  1)](k,t) E S} for 

some r > 0 we insert the parameter  r in the descriptor of S, that  is, for exam- 
ple, with COUNT(i ,h ,r)  we denote the set of the sites {(i , t  + r -  1)](i,t) E 
COUNT(i,  h)}. Obviously, COUNT(i,  h) = COUNT(i,  h, 1). 

Note that  the 1-CA for the COUNT(i,  h) signal can be easily modified in 
order to halt  the computat ion in the successive step if a bit 1 is received by the 
cell i at some t ime less than h. From now on, whenever we use a COUNT signal, 
the corresponding I -CA has this additional feature. 
T h e  s igna l  W A V E .  Let i 7~ j ,  the signal WAVE(i ,  j) consists of the union of 
the sets of sites M A X  (i, j, 1) and MAX( j ,  i, [ i -  j I +  1). Note that  M A X  (i, j) 
and M A X ( j ,  i) are both signals of a tailed 1-CA starting from a configuration in 
which cells i and j can be distinguished from each other. Thus WAVE( i ,  j) = 
MAX( i ,  j) Ur MAX( j ,  i), where r = li - Jl + 1, is a signal of a tailed 1 - c a  
start ing from the same configuration (Lemma 4) and its duration is 21i - Jl + 1. 
T h e  s igna l  M A R K .  Let i _< j - k  and k > 0, the signal MARK( i ,  j -  k) is the 
union of the sets of sites M A X ( i , j ,  1), MAX( j ,  k , j  - i + 1) and COUNT(i  + 
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Fig. 2. The signals: a) SQUARE(1,n-1) and the whole first phase of the solution to 
the FSSP in time n 2, b) EXPI(1,5) with the signals of the whole first phase of the 
solution to the FSSP in time 2 r~ and c) EXP2(1,5). 

h,2k + 1, h + 1) for 0 _< h < j - i. By L e m m a 4  M A R K  is a signal of a tailed 
1-CA. Finally, the signal of COUNT( j  - k, 2k + 1, j - k - i + 1) ends on the site 
( j - k ,  j - i - k )  tha t  is in MAX( j ,  k, j - i + 1 )  and C O U N T ( j - k ,  2 k + l ,  j - k - i + 1 )  
is the unique COUNT signal ending on this M A X  signal. Thus,  the signal 
M A R K  can be used to mark  the cell j - k, for a fixed k. It is easy to verify 
that the durat ion of the signal M A R K  is li - Jl + k + 1, see Fig. 2 (the signals 
C O U N T  have been omited) .  
T h e  s i g n a l  S Q U A R E .  Let i < j (resp. i > j) ,  the signal SQUARE(i ,  j) 
is the union of the sets of sites COUNT(i,  2, 1), WAVE(i ,  i + h, h 2 + 1) (resp. 
WAVE( i ,  i -  h, h 2 + 1)) for all 1 < h < l i - j [  and M A X  (j, i, ( j -  i) 2 + IJ - i l + 2). 
SQUARE(i,  j) is a signal of a 1-CA A which can be described as follows (suppose 
for simplicity that i < j ) :  

- first the cell i counts one time unit and sends a bit 1 to the right; then, if it 
receives a bit 1 from the right, it sends with a delay of  one step, a bit 1 back 
to the right; finally, the celt i halts when it receives two consecutive bit 1; 

- for 1 _< h < l i - J l ,  the cell i + h sends a bit 1 to the left when it receives for 
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the first t ime  a bi t  1 f rom the left; after,  if  the celt i + h receives again  a bi t  
1 f rom an adjacent  cell, it sends a bit  1 to to the other  neighbour;  

- the cell j sends two consecutive bit  1 to the left when it receives a bit  1 f rom 
the left. 

T h e  tai led 1-CA for SQUARE(i ,  j) can be easily ob ta ined  f rom the previous  
one by the following observation:  the cells f rom i to j can enter  a tail s ta te  
when they  receive two consecutive bit 1. The  dura t ion  of the SQUARE signal 
is (li - Jl + 1) 2 + 1, (see Fig. 2). 
T h e  s i g n a l s  E X P 1  a n d  E X P 2 .  For the signals EXPI ( i ,  j -  1) and EXP2(i ,  j) 
we only consider the case i < j ,  the case i > j is symmet r i c .  First  let us in t roduce 
the set of  sites Exp(i, j, t) t ha t  is recursively defined as: 

WAVE( i , j , t )  i f j - i + l  
Exp( i ,  j ,  t) = A U B U C - D otherwise.  

where the sets A, B,  C and D are so defined: A = Exp(i, j - 1, t), B = Exp(i, j - 
1,t + 2J- i -2) ,  C = W A V E ( i , j , t  + 2 J - i + l - 2 ( j - i ) - 2 )  and D = W A V E ( i , j -  
1, t + 2 j-i+1 - 2(j  - i) - 2)). 

Thus,  E X P I ( i , j  - 1) is the union of: 

COUNT(i,  2, 1), 
Exp(i, j, 2) - WAVE(i ,  j, 2 j - i+1  - 2( j  - i)), 

h (2~_i_l+~ _ M A X ( j - h , j - h - l , 3 +  ~z=l 2 ) - ( j - i - h ) ) ,  1 < h < j - i - l ,  
and M A X ( l ,  2, 2 j - i + l  - 2( j  - i)) 

(see Fig. 2). 

The  signal EXP2(i ,  j) is the union of: 
COUNT(i ,  2, 1), Exp(i,j ,  2), MAX( j ,  i, 2 j - i+1  - j + i )  and M A X ( l ,  2, 2 j-~+~) 

(see Fig. 2). 
In the following descript ion an ending cell is a cell which nei ther  changes 

its s ta te  nor sends a bit  1 unless it receives a bit  1. At the beginning the only 
ending cell is the cell j - 1. T h e  E X P I ( i , j  - 1) is a signal of a 1-CA which can 
be described as follows: 

- first the cell i counts one t ime  unit  and sends a bi t  1 to the right;  then,  
whenever  the  cell i receives the  bit  1 f rom the right,  immed ia t e ly  it replies 
sending back a bit  1; finally, if the cell i receives two consecutive bit  1 f rom 
the r ight  then  it changes into an ending cell; 

- for 1 < h < (j - i - 1), if the cell i + h receives a bit  1 f rom the left, then  it 
a l ternates  the following two behaviours:  

it sends a bi t  1 back to the left, 
it sends a bit  1 to the right; 

- for 1 < h < ( j - i -  1), the cell i+h sends a bit  1 to the left when it receives a 
bi t  1 f rom the right and if, immedia t e ly  after,  the cell i + h receives another  
bi t  1 f rom its r ight neighbour,  then it changes into an ending cell; 

- an ending cell sends two consecutive bits  1 to the left when it receives a bit  
1 for the first t ime.  
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Note that  a tail state can be entered by an ending cell, so obtaining a tailed 
1-CA. 

The tailed 1-CA for E X P 2 ( i ,  j )  is very similar to the previous one and we 
omit  the description. 

By induction on j > (i + 1) one can show that  the duration of the signal 
Exp(i ,  j )  is 21i-Jl+l_ 1. From the definition of E X P I ( i ,  j -  1) and the duration of 
C O U N T ,  M A X  and W A V E  signals, we have that  the duration of E X P I ( i ,  j -  
1) is 1 +  (2hi-Jl+l _ 1) - ( 21 i - j l  + 1) + 1 + 1 = 2 li-jL+l - 2] i -  Jl + 1. Analogously, 
the duration of E X P 2 ( i ,  j )  is 2 Ii-jl+l + 1. 

5 S o m e  P a r t i c u l a r  S o l u t i o n s  

In this section we show the existence of solutions to the FSSP in t ime n 2, 2 ~, 
n[log n] and n [x /~ ] .  The first two solutions are obtained quite easily by using 
the elementary signals and the given results that  allow us to combine signals. 
The other two solutions are more difficult. 

T h e o r e m  5. There is a solution to the FSSP in time n 2. 

P r o o f  : The solution is divided into two phases: Initialization and Synchro- 
nization. The Initialization phase has duration (n - 1) 2 + 1 and consists of 
M A R K ( l ,  n - 1) U1 S Q U A R E ( l ,  n - 1), see Fig. 2. By Lemma 4, this phase 
is a signal of a tailed 1-CA starting from a standard configuration. 

The Synchronization phase consists of a minimal t ime solution to the FSSP. 
By Lemma  4, there is a 1-CA A such that  the r-union of the two phases, for 
r = (n - 1) 2 + 1, is a n 2- firing signal of A starting from a standard configuration. 
Thus A is a solution to the FSSP in t ime n ~. 

T h e o r e m  6. There is a solution to the FSSP in time 2 n. 

P r o o f  : As in the proof above,the solution is divided into two phases: Initializa- 
tion and Synchronization. The first phase consists of the signals M A R K  (1, n - 1 )  
and E X P I ( 1 ,  n - 1), see Fig. 2. By Lemma 4, Initialization is a signal of a tailed 
1-CA start ing from a standard configuration and has duration 2 '~ - 2n + 3. 

The Synchronization phase can be seen as a minimal t ime solution to the 
FSSP without the first configuration and thus its duration is 2 n -  2. It  is easy to 
see that  Synchronization is a signal that  can followthe Initialization phase. By 
Lemma  3 there is a 1-CA A that  initially performs the Initialization and then 
the Synchronization phases. Thus A is a solution to the FSSP in t ime 2 ~. 

T h e o r e m T .  There is a solution to the FSSP in time n[ logn] .  

P r o o f  : The proof is quite involved, here it is only sketched. The solution has 
two different behaviours depending on whether n _ < 4 or n > 4. We can let 
the l -CA behave in these two different manners as each cell i can determine at 
a t ime t < 2n whether n _< 4 and, in positive case, determine also the values 
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i, n and t. This way all the cells can move in the firing state exactly at t ime 
2n. Here for simplicity let us assume n > 4 and log(n - 1) not integer. The 
solution is then divided into three phases: the Initialization, the Iterative and 
the Synchronization phases. The Iterative phase is executed only if n > 8. Let 
us very briefly describe the whole solution. In the Initialization phase some cells 
are marked: the cells number 3,[n/2] ,  [n/2J + 1 and n - 2. Moreover the test 
n < 8 is performed in such a way that at the end of the phase all the cells 
are aware of the result. If n > 8 this phase takes time 2n, otherwise it takes 
max{2n + 1, 2n - 2[log n] + In/2] + 3}. In the Iterative phase the following two 
steps are iterated (log n - 2) times: during the i-th iteration, in the first step the 
test whether i + 3 < [log n] is performed, then in the second step the output  
of this test is spread to all the cells in the line. The time taken by this phase is 
n( logn - 2). The third and last phase is actually a minimal time solution on a 
line of In/2] processors. 

In each phase of the preceding solution the signal E X P 2  is intensively used. 
The solution in time nx/-n can be obtained through exactly the same schema by 
merely substituting the S Q U A R E  signals for the E X P 2  signals. 

T h e o r e m 8 .  There is a solution to the FSSP in time n[v /n ] .  

6 Polynomial Time Solutions 

In this section we show how to obtain solutions to the FSSP by composing other 
solutions. We also prove the existence of solutions in linear time and solutions 
whose time is expressed by polynomials with nonnegative integer coefficients. 

In the following, if Ai is a solution to the FSSP, then G~, Li and F/ are the 
General, Latent and Firing states of Ai, respectively. 

L e m m a  9. If  Ai for i = 1, 2 are two solutions to the FSSP in time ti (n) and 
d >_ 0, then there is a solution to the FSSP in time t~(n) +te(n)  + d. 

P r o o f  : Suppose that Si is the ti(n)-firing signal of (Ai,C0), where Co is a 
standard configuration. From Lemma 3, if r = t l (n)  + d + 1, then there exists 
A such that  S1 Ur $2 is a signal of (A, Co). Moreover, S1 I-Jr $2 is a t(n)-firing 

signal with t(n) = tl( ) + + d. 

L e m m a l 0 .  [f Ai for i = 1,2 are two solutions to the FSSP in time ti(n), then 
there is a solution to the FSSP in time t~ (n)t~.(n). 

P r o o f  : We define a solution A consisting of an Iterative phase with duration 
t l (n)  which is executed t2(n) times. The set of states of A is Q1 x Q2 x {O, 1} ~, 
the General state is (G1, G2, O, 1), the Latent state is (L1, L2, 0, O) and the Fir- 
ing state is (F1, F2,0,O). In the Iterative phase, the 1-CA A modifies the first 
component of its state according to the transition functions of A1, until this 
component is F1. At the end Of this phase A executes a transition step modify- 
ing the second component of the state according -to the transition functions of 
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A2. The bit given as output  by the transition functions of A2 are saved in the 
third and fourth component.  Moreover, in this same step, A replaces F1 with 
either G1 or Lt  ( depending on whether the cell is the first in the line or not) in 
the first component.  So the Iterative phase can start  again, until the firing state 
is entered by all the cells. As consequence, the solution A1 is i terated exactly 
t2(n) times. 

Let A be a solution to the FSSP in t ime t(n) and X _C { 1 , . . . ,  n}, we say that  
A is X-detectable  if for-every k E X the set of states containing state(k, t (n)  - 1) 
is disjoint from the set of states containing s ta te ( j , t (n )  - 1), for j r k. Further, 
we say that  A has the parity property if the following conditions hold: 

- the set of states containing s ta te(1 , t (n)  - 1) in the case that  n is even is 
disjoint from the set containing s tate(1 , t (n)  - 1) in the case that  n is odd; 

- the set of states containing s ta te (n , t (n )  - 1) in the case that  n is even is 
disjoint from the set containing s ta te (n , t (n )  - 1) in the case that  n is odd. 

L e m m a l l .  Let d > 0 and n > d. Let A be a solution to the F S S P  in t ime t (n)  
with the parity property and X-detectable  for  a set X = {1 , . . . ,  d} LJ {n -- d + 
1 , . . . , n } U { n / 2 ,  n / 2 +  l} ,  i f n  is even, and X = { 1 , . . . , d } U { n - d +  l , . . . , n } U  
{[n/2]} ,  i f n  is odd. Then there exists a solution to the F S S P  in t ime t ( n ) + n - d .  

L e m m a  12. Let A be a solution to the F S S P  in t ime t (n)  with the parity property 
and X-detectable  for  a set X = {n /2 ,  n / 2 +  1}, i f n  is even and X = { [n /2 ] }  i f  
n is odd. Then there is a solution to the F S S P  in t ime n t ( n ) .  

From [7] the following remark holds: 
R e m a r k .  There exists a minimal t ime solution to the FSSP with the pari ty 
property and X-detectable for a set X = {1, 2, n - 1, n} U {n /2 ,  n / 2  + 1}, if n is 
even and X = {1,2, n -  1, n}U { [n / 2 ] }  i f .  is odd. 

T h e o r e m l 3 .  Let  a and b be two integer numbers. I f  a n + b  >_ 2n - 1 then there 
is a solution to the F S S P  in t ime an + b. 

P r o o f  : From the above Remark and the Lemma 11 (for d = 2) the existence 
of solutions to the FSSP in t ime 2n - 1 + k (n  - 2) follows, for every k > 0. The 
condition a n + b  > 2 n -  1 implies that  a > 2 and b > 3 -  2a, so a one bit solution 
in t ime an + b can be obtained by adding b - 3 + 2a t ime units to a solution in 
t ime 2n - 1 + (a - 2 ) ( n -  2). 

Theorem 5 shows the existence of a solution to the F S S P  in t ime n 2 which 
includes a minimal t ime solution, so, from [7], the following remark follows: 
R e m a r k .  There exists a solution to the FSSP in tinrm n ~ with the parity property 
and X-detectable for a set X = {n/2, n /2  + 1}, if n is even and X = {[n/2]}  if 
n is odd. 

T h e o r e m 1 4 .  Let  m > 2 be an integer number and a o , . . . ,  am natural numbers 
with am >_ 1. Then there is a l-bit  solution to the F S S P  in t ime amn m + . . .  + 
a~n 1 + ao. 

P r o o f  : From the last Remark and the Lemma 12, a solution in t ime n b can be 
obtained, for every b _> 2 and then, from the Lemma 9 the theorem follows. 
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7 Conclusions 

In this paper  we have presented new techniques to synchronize a line of n identi- 
cal processors at a given t ime expressed as a function of n. In part icular  we have 
given solutions in t ime n 2, 2 n, n[ logu] ,  n[v/-~], in all feasible linear times and 
in times expressed as polynomials with nonnegative coefficients. This problem 
was also discussed in [6] but here we have used a completely new approach. The 
novelty of our approach consists in the description of solutions by means of sig- 
nals and signal compositions. As future research direction we think tha t  many  
other solutions can be derived by introducing new signals of the type we have 
used here. In particular, solutions can be obtained in times expressed as polyno- 
mials with integer coefficients. Moreover, the technique used for the solutions in 
t ime n[log n] and nrv/-~] can be extended to obtain solutions in t ime n f  -1 (n), 
if a solution in t ime f (n )  is known. 
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