An Algorithm for the Solution of Tree Equations

- . . Kl - . 2**
Sabrina Mantacil* and Daniele Micciancio

1 Dipartimento di Matematica ed Applicazioni, Universitd di Palermo
via Archirafi, 34 - 90123 Palermo - ITALY
(e-mail: sabrina@altair.math.unipa.it)

2 Laboratory for Computer Science, Massachusetts Institute of Technology
545 Technology Square - Cambridge, MA 02139 - USA
(e-mail: miccianc@theory.lcs.mit.edu)

Abstract. We consider the problem of solving equations over k-ary
trees. Here an equation is a pair of labeled o-ary trees, where o is a
function associating an arity to each label. A solution to an equation is
a morphism from a-ary trees to k-ary trees that maps the left and right
hand side of the equation to the same k-ary tree.

This problem is a generalization of the word unification problem posed by
A. Markov in the fifties, which corresponds to the case k=1, (in this case
also the arity function o must be identically equal to 1, and equations
are pairs of words). The word unification problem was solved in two
steps. First in 1976 Makanin proved the decidability of the existence of
a solution to a word equation, and more recently in 1990 Jaffar gave an
algorithm that finds the set of all principal solutions to a word equation
when this set is finite.

In this paper we solve the o-ary tree equation problem for all other & > 1.
We describe an efficient unification algorithm that on input an a-ary tree
equation, computes a most general (a-ary) solution to the equation if the
equation is solvable and reports failure otherwise. This also proves that
any satisfiable a-ary tree equation has a most general solution. All k-ary
solutions to the equation can be easily obtained from the a-ary solution
output by our algorithm.

1 Introduction

The theory of word equations constitutes an important chapter in combinatorics,
and appears in several fields of mathematics and theoretical computer science.
This theory was first introduced in the ffties by A. A. Markov, who posed in [5]
the problem of satisfiability of equations on the free monoid. This has been an
open problem until 1976, when G.S. Makanin proved the decidability of the
satisfiability problem for equations on words (cf. [3]). More recently, in 1990,
J. Jaffar (cf. [2]) designed an algorithm to find the set of all the principal solu-
tions to a word equation (when this set is finite).

* Partially supported by the Italian Ministry of Universities and Scientific Research
MURST 40% Efficienza di Algoritmi e Progetto di Strutture Informative.
** Partially supported by DARPA grant SDCS DABT®63-96-C-0018.

418

Starting from the notion of equation on words, and the theory of tree-codes
introduced by Nivat in [7], a notion of equation on trees was introduced in [4],
where the satisfiability problem for word equations is generalized to equations
between ordered trees.

A tree equation, as defined in [4], is a pair (71, 73) of ordered trees whose
nodes are labeled with symbols from an alphabet X. A k-ary solution to a tree
equation (71, 72) consists of:

1. a function « assigning to each symbol z in X an arity o(z);

2. a pair of a-ary trees t; and ¢, whose associated ordered trees are respectively
71 and Ty;

3. a tree morphism ¢ from the set of a-ary trees to the set of k-ary trees over
A such that p(t1) = ¢(t2).

Notice that in the case of word equations considered in [3] the first two step
are trivially solved because all symbols must have arity one. It is not known
whether the satisfiability problem for tree equations is decidable.

In the present paper, we consider the subproblem of solving equations be-
tween a-ary trees corresponding to step 3 above. In other words, we assume the
arity function o and the two a-ary trees ¢; and t3 to be known, and look for a
tree morphism ¢ such that (t1) = ¢(t2). We show that if (1,%2) is satisfiable,
then it has a most general solution. Furthermore, this solution (or that none
exists) can be efficiently determined. We give an efficient algorithm, inspired to
the Martelli-Montanari unification algorithm (cf. (6]), for the solution of (a-ary)
tree equations over k-ary trees for any £ > 1.

Notice the fundamental difference between the tree equations we consider
here and the first order unification problem: in a tree equation the label of inter-
nal nodes may be variable symbols, while in the first order unification problem
(reformulated in terms of equations between trees) only the leaves may be labeled
with variables.

The rest of the paper is organized as follows. In Section 2 we introduce some
notation and terminology. In Section 3 we formally define tree equations and the
satisfiability problem for such equations. In Section 4 we present an algorithm %o
solve sets of equations containing exclusively variable symbols. In Section 5 we
prove the correctness of the algorithm and analyze its running time. We prove
ihat the number of iterations performed by the algorithm is linear in the size
of the problem. In Section 6 we show how to extend our algorithm to solve tree
equations with both constants and variables. Finally in Section 7 we conclude
by summarizing the content of this paper and by proposing some open problem.

2 Notation

Let IV = {0,1,...} be the set of natural numbers. We will often use IV as
a numerable set of symbols. A word over IV is a finite sequence of natural
numbers. IN* denotes the set of words over IN. For any two words v,u € IN™,
the concatenation of v with u is denoted by v - u. We say that v is a prefix of u

419

if there exists a word w such that u = v - w. A set of words S is prefiz closed iff
for all words v and w, if v - w € S then also v € S.

Definition1. A graded alphabet A = (A;) is a set of letters A endowed with
an arity function a: A — IV assigning a natural number to each letter in A.

Given two graded alphabets A = (4;a) and B = (B;), we say that B
extends A, written A C B,if AC Band a = 4. If A =(A;a) and B = (B;)
are two graded alphabets and A and B are disjoint, then we denote by AUB the
graded alphabet (AUB; aVp), where (aVB)(z) = a(z)ifz € 4, (aVp)(z) = B(z)
ifx € B.

Definition 2. Let A = (A4;a) be a graded alphabet. A labeled tree over A is a
partial mapping 7: IN* — A such that the domain dom(r) is a finite and prefix
closed subset of IN* and, for all v-i € dom(7), i < a(7(v)). The elements in
dom(T) are called nodes.

The set of all trees over A is denoted by A# = (4; a)#. 2 denotes the empty
tree, that is, the tree with no nodes. The size of a tree 7 is the number of its
nodes and it is denoted by |r|. The set i () = {u-i|u € dom(r), u-i ¢ dom(7)}
is called the outer frontier of 7. For any tree 7 and word v € IN*, v~17 denotes
the subtree : w — 7(v - w).

Notice that if the arity function « is constant, i.e., a(a) = k for all a € A4,

then the definition of tree over (A; &) reduces to the traditional notion of k-ary
tree.

Ezample 1. If A = {a,b} and a(a) = 2, a(b) = 3, then the tree

is an a-ary tree over A, whose domain is the set {¢,1,3,12, 13,32} and its outer
frontier is the set frt(7) = {2,11, 31,121,122,123,131, 132,321, 322%.

Remfzrk. Let A = (A;a) be a graded alphabet. It can be easily proved by in-
duction that for all trees T over A4

et (r)| = (Z(a(a) - l)na) +1

aCA

where n, = |771(a)| denotes the number of nodes labeled with a in the tree r.

420

Notice that, for a fixed A, the value of expression (3_,(a(a;) — 1)n;) + 1 may
not range over the whole set of positive integers. Therefore the set A# might
not contain any tree with outer frontier of a given cardinality.

In particular for any k-ary tree 7 of size |7] = n the cardinality of the outer
frontier is |frt(7)] = (k — 1)n + 1. Notice how the size of the outer frontier
uniquely determines the size of the tree when &k > 1.

If # = 1 (i.e., in the case of words) the outer frontier has cardinality 1
independently from the size of the word, and in this case the size of the outer
frontier gives no information about the size of the word.

If k > 1, there are trees 7 such that |fr™ ()] = n if and only if k — 1 divides
n — 1. In particular, for binary trees we have |frt(r)] = |7| + 1 and there are
trees with |frt(7)| = n for any positive integer n.

We now define a fundamental operation over trees.

Definition3. Let 71 and 75 be two trees over a graded alphabet A and let
b € fr*(r1) be a node in the outer frontier of 7,. The concatenation of 5 to 7y at
b is the tree 71 (b) 72 with domain dom(r; (b)72) = dom(71) Ub - dom(r3) defined
by

[n1(w) if u € dom(71)
(m1 (B) m2)(w) = {7’2(’0) if bv = u andv € dom(rs)

Let 7 be a tree with outer frontier fr* (r) = {b1,b2,...,bn} and let 71,..., 7
be a sequence of n trees. We denote by 7(7y, 72, .. ., Ty) the result of concatenat-
ing the trees 71, 7s,...,7Tn to 7 at {b1,b2,...,bn}, Le,

(T, T2y, Ta) = (- A((r(b)T)(b2)72) - - - (bn)Tn)-

Definition4. Given two graded alphabets A = (4;«) and B = (B; B), a mor-
phism of A# into B# is an application p: A# — B# such that, for any a € A,
frt ((a))| = a(a) and ¢ preserves concatenation, ie., for any tree 7 with
[fr* (7)| = n and for any sequence of trees 71, 73,. .., Tn

90(7(7—1: T2y Tn)) = SO(T)<(P(T1)v (P(Tz)i EEEE) QO(TH))

Proposition5. Any function ¢ from A to B# such that [frt (p(a))| = a(a) for
alla € A, can be extended to a unique morphism ¢: A# — B#.

We write [r/z] to denote the morphism ¢ such that ¢(z) = 7 and <p(y) =y
for any other y # x. We say that a morphism <p:.A# — B#* is non erasing if
@(t) = 2 implies 7 = £2. For example if A = {a, b} where a has arity one the
morphism ¢: A — A such that o(a) = £ and ¢(b) = b is not non erasing.

Notice that for some A and B there might be no morphisms from A to B.
For example if A = (A;2) is a binary alphabet and B = (B;3) is a ternary
alphabet there are no morphisms from A# to B# because all trees in B¥ have
outer frontier of odd size.

421

3 Tree Equations

In this section we introduce the notion of equation on graded trees. We remark
that we are interested in finding solutions for such equations over the set of k-ary
trees over A for some k£ > 2 and some alphabet A. Notice that for £ > 2 the
only k-ary tree with outer frontier of size one is the empty tree. Therefore it is
not restrictive to assume that all variable symbols have arity > 2.

Moreover, under this assumption, for any fixed pair of finite graded alphabets
A and B, there exist at most a finite number of morphisms from A to B and all
morphisms are non erasing.

Let & = (X; x) and A = (4;) be two graded alphabet with arity functions
x(z),a(a) > 2 for all # € X and a € A. For notational convenience, we will
consider A and A as fixed throughout the rest of the paper. We will also assume
that X' contains infinitely many symbols for each arity. We will call X' the set of
variables and A the set of constants.

Definition6. A tree equation is a pair of trees (71, 2) in (X U A)#.

We say that a tree equation (71, 72) admits a solution in B#, where A C B,
if there exists a non erasing morphism o: (X U A)# — B# such that ¢(a) = a
for all @ € A, and o(r1) = (7). Since the arities of the graded alphabets we
are considering are greater then 2, then all our morphisms are non erasing. In
the sequel we will take the non erasing property as granted and we will refer to
solutions to tree equations simply as “morphisms”.

Ezample 2. We give here an example of a tree equation over the graded alphabet
{z, 9,2} x(2) = 4, x(y) = 4,x(2) = 3) and the set of constants ({b}; a(b) = 2).

It is easy to verify that the morphism ¢ defined on the variables as follows:

() (@)
AN o =
© ®

® ®
o(z) o(y) o(z)

is a solution in the set of binary trees over {a, b}

422

Definition7. A iree system is a finite set of tree equations
S={(num2)]i=12,..,n 71,72 (X UA¥}

A solution in B of a tree system is a morphism o: (¥ U A)# — B# that simul-
taneously solves all equations in S.

It is evident that for this kind of equations (systems) the problem of the
existence of solutions is decidable. In fact, as remarked before, there exists only
a finite number of morphisms between two sets of trees over two graded alpha-
bets, and then it is possible to test all of them. In this case we are faced to an
algorithmic problem. We have to find a fast algorithm to obtain the set of the
solutions to a tree equation (system). This will be the content of next section.

Notice that a tree system is always equivalent to a tree equation. Namely, the
system S = {(m1,m,2) | 1=1,2,...,n} is equivalent to the single tree equation

(m(lel’T1,2J e 'Tl,n)) $<TQ,17 72,25 -+ -7—2,1'1,))

where z is a new variable with arity x(z) = n.
Let V be a finite subalphabet of X and let A = (A;a), B = (B;) be two
arbitrary graded alphabets such that A C B.

Definition8. A variable assignment o is a function from V to B¥ such that
|tr* (o (2))] = x(z) for all & in V. Any assignment 0:) — B¥ can be extended
to a unique morphism &: (V U A)¥ — B¥ such that 5(a) = a for all a € A.
A solution to a system of tree equations S over V U A is a variable assignment
0.V — B# such that &(m1) = 5(r,) for all (11, 7) € S.

Definition9. Let o:V — A# and p:V — B# be two assignments. We say that
o is more general than p, written o C p, iff there exists a morphism p: A# — B#
such that cop = p.

The relation C defines a preorder on the set of solutions.

Definition10. A solution ¢ to a system of equations S is a most general solution
iff o is a solution to S, and ¢ is more general than any other solution p to S.

Theorem 11. Let S be a finite sysiem of equations over V. If S is solvable, then
it has a most general solution.

The proof of the above theorem is constructive, i.e. we will give an algorithm
that on input a system of equations outputs a most general solution, if one

exists, and reports failure otherwise. Moreover, the algorithm is efficient, i.e., 1t

is polynomial.

423

4 The Algorithm

In this section we describe an algorithm to solve systems of constant-free tree

equations, 1.e. equations between trees containing only variable symbols. We will

then show (see Section 6) that the problem of solving tree equations with both

constants and variables can be easily reduced to the constant-free problem.
First of all we will establish a few facts about tree equations.

Lemma12. Every assignment o:V — A# is a solution to the equation (2, 0).
Lemma13. If f1:+(71) # fr+(7'2) then the equation (71, 72) has no solutions.

Lemma14. Let 1 be a tree over the variables V, and = a variable not in V. The
assignment o:V U {2z} — A# is a solution to the equation (x,7) if and only if
o = [t/&]o p for some variable assignment p:V — A¥.

The above lemmas describe the set of solutions to the equations (71, 7)
where either |t (71)] # |fr"(r2)| or one of the trees is either punctual or empty.
Otherwise we start by associating to each of the trees 7; and 7 an equivalence
relation over the set {1,...,n} where n = |frt(m)| = |fr(m)].

Definition15. Let 7 be a non empty tree with (by,..., b,) the (lexicographi-
cally) ordered sequence of nodes in the outer frontier of 7. We define the equiv-
alence relation ~; by i~ j iff &; and b; begin with the same symbol. In other
words, i and j are in relation ~, iff the i*» and j** node of the outer frontier of
7 are in the same first-level subtree of .

When we consider the equivalence classes (Cy,...,C%) of a relation ~, we
will always assume that they are ordered in the obvious way: if ¢ < j then ¢ < j/
forall?’ € C; and §' € C;.

Let x and y be the labels of the roots of 71 and 79 and let X, .. o Xy(z),
Y1,...,Yy(y) be the equivalence classes of ~,, and ~r,. Notice that ~ U ~,,
is an equivalence relation if and only if, for any X; (1 << x(2)) and any Y;
(1<j<x(y), X;n Yj is either the empty set, or equals one of the two sets X;
and Y;. This corresponds to the fact that in a tree any two subtrees are either
disjoint or one a subtree of the other.

Lemmal6. If the equation (11, 7) is satisfiable then (~ry U~sy) i an equiva-
lence relation.

Now assume that ~5 U~y is an equivalence relation and let (W,.. Vi)
be its equivalence classes. Notice that for all & ¢ {1,...,m} we have V} =
XiUXip U U Xyp = Y; UY; 11U+ U Y4y for some i, ¢, 7,7 such that
either ¢ = 0 or j” = 0 (or both). Let v be a new variable of arity x(v) = m. For

allk =1,...,m we introduce a fresh variable wy of arity x(wi) = # + 4’ +1 and
define the equation ’

Be= @G . (4)T), 4G, L (G4))

where £§ (resp. t¥) is the empty tree £2if i’ = 0 (resp. j' = 0), or is the punctual
tree wy otherwise.

424

Lemmal7. Let (11, 73) be an equation such that n = |t (n)| = [t (r3)] > 2
and ~;, U ~;, is an equivalence relation. The assignment o is a solution fo
(11, 72) if and only if o = wo p where m = [v(7,...,t2)/x,v(tY,.. ., 1%)/y] and
p s a solution 1o the system w({E1,..., En}).

An algorithm for the solution of tree equations is obtained by combining
the results of previous lemmas. Let S be a finite set of equations over V. The
algorithm generates a sequence of triples (V;, S;, o;) where

— V; is a finite subalphabet of X,
— 5; is a finite system of equations over V;,
— 0; is a variable assignment from V to V,# .

The algorithm starts from (Vo,So,00) = (V,S,idv) and iteratively com-
putes (Vig1,Si+1,0i41) from (V;, S;, 0;) until either S; = @ or S; = {False}.
(Vit1,Sit1,0i41) is computed from (V;, S;, 0;) as follows. An equation (71, 72)
is selected from S; (any selection strategy is good). Then, the computation pro-
ceeds by cases corresponding to lemmas 12, 13, 14 16 and 17.

1. If both 7y and 75 are empty (7 = 7 = §2) then S;y1 = S; \ {(11,)},
Vie1 = V; and 0541 = 0;.
2. It {EH(m)| # |frT ()| then Siy1 = {False}, Viys = Vi and 0441 = 0.
3. If 7y (resp. 72) is the punctual tree z then Viy1 = V; \ {2z}, m = [r2/2] (resp.
m; = [n/x)), Sit1 = m(Si \ {(r1,72)}), and 0541 = 03 0 7.
4. Tf none of the previous cases applies, let n = [t (m)| = [fr+(m2)] > 2.
(a) If ~;, U ~,, is not an equivalence relation then S;41 = {False}, Viy1 =
V; and 0541 = 0;.
(b) Otherwise, let E1,...,Ep,z,y and 7 be as in Lemma 17 and define
Vijpp =V \ {x, y} U {’U, Wi, ves 'wm}: T =T, Siy1 = Ti(Si \ {(Tl? TQ)} U
{E1,...,En}), and oiq1 = 05 0 m;.

The algorithm terminates as soon as S; = @ or S; = {False}. Upon termi-
nation, if S; is empty the algorithm outputs oy, otherwise it reports failure.

Ezample 3. Consider the equation

where x(2) = x(y) = 3 and x(z) = 4. A more compact notation for this equation
is 2(-, (-,), 205)) = Y&), - (-, -))- Let us run the algorithm over
this equation. .

Tteration 1. Case 4 applies. Here n = 8 and the equivalence classes of ~y a,ndlfvx
are given by X} = {1}, X} = {2,3,4}, X4 = {5,6,7,8},¥1 = {1,2,3,4},; =

425

{5},Y4 = {6,7,8}. The union ~, U ~ is an equivalence relation with equiva-
lence classes Vi = {1,2,3,4},V2 = {5,6,7,8}.
So, we generate two new equations, which both happen to be equal to

Z(-, ERE]) = U)(‘, iL‘(', RS))
In conclusion we have:
Vi = ({z,v,w}x(2) = 4, x(v) = 2,x(w) = 2)
0y = [v(w(~, ‘)7)/CE, v(') w('7))/y]
Sy Z(') ERS) = w(-, 'U(w(', '),))
Tteration 2. This time case 3 applies and we have
Vo = ({v, w}; x(v) = 2, x(w) = 2)
02 =010 [w(, v(w(-, ')1))/z]
Sy . 0

At this point the algorithm terminates and output the assignment o = 73 0ms
defined by o(z) = v(w(-,-),"), o(y) = v(-, w(-,-)) and o(z) = [w(-, v(w(,-),)],
or more pictorially,

a(z) a(y) (2)

Ezample 4. We run the algorithm over a more complicated equation over the
graded alphabet ({z, y, z}; x(2) = 5, x(y) = 9, x(2) = 6) defined as follows:

The solution is given by the following variable assignment:

o(z) = v(-, w(, "),)

426

O'(y) = ’U(-, Ty w(" ”(')w(" ')7 ")))
O'(Z) = w(': ’U(-, RS w('a)))

that is

o(z) o(y) o(z)

If we are looking for a solution over the set of binary trees, then we can map
w to a punctual tree, and v to any tree with three nodes.

5 Correctness of the Algorithm

In this section we will show that the algorithm always terminates and gives the
right answer. That is, the algorithm outputs an assignment o, if and only if the
input system is satisfiable, and in this case ¢ is the most general solution to the
system.

Theorem 18. The algorithm always terminates. Moreover the number of itera-
tions performed is linear in the size of the system.

Proof. Define the weight of equation (1, 2) to be
w(r, 72) = |+ (m)| + [T ()] - 1.
Define also the weight of a system by

_Jo if S = {False}
w(s5) = {Zees w(e) otherwise '

We prove that W(S;) decreases at each iteration. Since W(S5;) is always a non
negative integer, this proves that the algorithm stops after at most W(S) it
erations. The proof of W(Siz1) < W(S;) is by cases on the branch taken by
the algorithm. In case 1 and 3, W(Siy1) = W(S;) — w(r, 72) < W(S;) (notice
that the outer frontier of the empty tree has cardinality 1). In case 2 and 4a,
W(Si+1) = 0 < W(S;). Finally, in case 4b W(Siz1) = W(Si) — w(ri,m2) +
S w(Ey) < W(S;) because S w(EBg) = w(m,72) —m+1and m > 2.

The correctness of the algorithm is based on the following lemma.

427

Lemmal9. For all i, o:V — A# is a solution to S iff 0 = oy 0 p; for some
solution p;:V; — A% 10 S;.

Proof. (Sketch) The proof is by induction on %. If ¢ = 0, then S; = S and the
lemma is obviously true. The inductive step is proved by cases on the branch
taken by the algorithm using lemmas 12, 13, 14, 16 and 17.

Using the above lemma the proof of correctness of the algorithm is immediate.

Theorem 20. The algorithm oulpuis an assignment o if and only if the system
is satlisfiable, and in such a case o is a most general solution to the system.

Proof. By Theorem 18 the algorithm always terminates. Therefore, for some
n cither S, = 0 or S, = {False}. If S, = 0, the algorithm outputs ¢,. By
Lemma 19, o, is a solution to S, so S is satisfiable. Moreover, for any solution
o'V — A# to S, there exists an assignment p:V, — A# such that ¢’ = g o p.
This proves that ¢ is a most general solution to S. Conversely, if S, = {False},
the algorithm terminates with failure. By Lemma 19 if ¢ is solution to S, then
o = op o p for some solution p to S,, but this is impossible because S, is
unsatisfiable. Therefore also S must be unsatisfiable.

Theorem 11 on the existence of most general solutions follows immediately
from Theorem 20.

6 Equations with Constants

We now consider equations containing constants. Let S be a system of equations
over variables X and constants 4 and let B be a graded alphabet such that
A C B. We introduce a new variable z, with arity x(zs) = a(a) for each
constant symbol a € A and define the constant-free system S’ over the variables
X U X' by replacing each constant a in S by the corresponding variable z,.

There is an obvious bijection between the set of solutions pr AUX — B# 1o
S and the set of solutions p: X' U X — B¥* to S’ such that P(zq) = a for all
a € A. Therefore the study of the system S can be reduced to the study of the
constant-free system .S with the additional constraint p’ (zq) = a.

By Theorem 11 the system S’ has a most general solution o: X' U X —
(X'UX)# and p': X'UX — B# solves S iff o/ = ¢or for some 7 : X' UL —» B#.
We also want p(z,) = m(0(z4)) = a, but this is possible iff o(z,) is a punctual
tree and o(z,) # o(w3) for all @ # b. Hence we have the following theorem.

Theorem 21. The system S is solvable Uf S has a most general solution o such
that for all a € A, o(z.) is punctual and for all a £ b, 0(xa) # o(zp).

428

7 Conclusion

We defined an algorithm that on input a set of equations between graded trees,
determines a most general solution fo the equations if a solution exits, and
reports failure otherwise. In particular this solves our initial problem of finding,
for y-ary tree equations, solutions over k-ary trees, as any k-ary solution p can be
expressed as the composition of the most general solution o over (X;x) with a
morphism y from (X; x) to (A4; k). Notice that an equation can have no solution
over k-ary trees for some k, even if it has a most general solution over (X; x). This
is because there could not exists any morphism from (X; x) to (A4; k). However,
if a most general solution over (X x) exists, then the system has solutions over
binary trees because it is always possible to find a morphism from (X;x) to
(4;2) when x(z) > 2 forall z € X.

The algorithm partially solves the problem proposed in [4], that is, the prob-
lem of finding a solution of equations between ordered trees. Anyway, the prob-
lem of solvability of ordered tree equations remains open, since we do not have an
efficient procedure to assign the arity function to the variables in the equations.
Actually solvability of equations of ordered trees can be reduced to a particular
case of the second order unification (that, in general, is undecidable). However
we don’t know if second order unification becomes decidable for this particular
subclass of equations. In fact, the proof of the undecidability of second order
unification (cf. [1]) cannot be extended directly to our case.

Notice also that the algorithm in Section 4 allows to find solutions in (4; a)#
also for non constant arity functions «, provided that a(a) > 1 for all a. This
problem is in some sense complementary to the word equation problem consid-
ered in [3]. In [3] it is shown how to solve equations between trees all of whose
nodes have arity one (i.e., they are words). Here we solved the problem for frees
whose node have arity greater than one.

An interesting question that we leave open, is whether these two results can
be combined to give an algorithm to solve equations over arbitrary trees.

References

1. Goldfarb, W.: The Undecidability of the Second-Order Unification Problem. Theo-
retical Computer Science 13 (1981) 225~230.

2. Jaffar, J.: Minimal and complete word unification. J. ACM 37 (1990) 47-85.

3. Makanin,G. S.: The problem of solvability of equations in a free semigroup. Math,
USSR Sbornik 32 (1977) (in AMS 1979) 129-198.

4. Mantadi, S., Restivo, A.: Equations on trees. em Proc. of 21st MFCS(1996), vol.1113
of LNCS 443-456.

5. Markov, A. A.: The Theory of Algorithm. Trudy Math. Inst. Steklov, 42, (1954).

6. Martelli, A., Montanari, U.: An efficient unification algorithm, TOPLAS 4:2 (1982),

258-282.
7. M. Nivat: Binary tree codes. Tree automata and languages, Elsevier Science Fub-

lishers B.V. (North-Holland},(1992). 1-19

