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A b s t r a c t .  We consider the problem of solving equations over k-ary 
trees. Here an equation is a pair of labeled a -a ry  trees, where a is a 
function associating an arity to each label. A solution to an equation is 
a morphism from c~-ary trees to k-ary trees that  maps the left and right 
hand side of the equation to the same k-ary tree. 
This problem is a generalization of the word unification problem posed by 
A. Markov in the fifties, which corresponds to the case k = l ,  (in this case 
also the arity function a must be identically equal to 1, and equations 
are pairs of words). The word unification problem was solved in two 
steps. First  in 1976 Makanin proved the decidability of the existence of 
a solution to ~ word equation, and more recently in 1990 Jaffar gave an 
algorithm that  finds the set of all principal solutions to a word equation 
when this set is finite. 
In this paper we solve the a -a ry  tree equation problem for all other k > 1. 
We describe an efficient unification algorithm that  on input an ~-ary tree 
equation, computes a most general (a-ary)  solution to the equation if the 
equation is solvable and reports failure otherwise. This also proves that  
any satisfiable oz-ary tree equation has a most general solution. All k-ary 
solutions to the equation can be easily obtained from the a-ary  solution 
output  by our algorithm. 

1 Introduct ion 

T h e  t h e o r y  of  word equa t ions  cons t i tu tes  an i m p o r t a n t  chapte r  in combina tor ics ,  
and  appea r s  in several  fields of  m a t h e m a t i c s  and  theore t ica l  compu te r  science. 
Th is  t heo ry  was first i n t roduced  in the  fifties by A. A. Markov,  who posed in [5] 
the  p r o b l e m  of  sa t i s f i ab i l i ty  of  equa t ions  on the free monoid .  This  has  been an 
open p r o b l e m  unt i l  1976, when G. S. Makan in  proved the  dec idab i l i ty  of  the  
sa t i s f i ab i l i ty  p r o b l e m  for equa t ions  on words (cf. [3]). More recently,  in 1990, 
J. Jaf far  (cf. [2]) designed an Mgor i thm to f ind the  set of  all the  pr inc ipa l  solu- 
t ions to a word  equa t ion  (when this  set is finite).  
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Start ing from the notion of equation on words, and the theory of tree-codes 
introduced by Nivat in [7], a notion of equation on trees was introduced in [4], 
where the satisfiability problem for word equations is generalized to equations 
between ordered trees. 

A tree equation, as defined in [4], is a pair (vl,v2) of ordered trees whose 
nodes are labeled with symbols from an alphabet X.  A k-ary solution to a tree 
equation (~-1, v2) consists of: 

1. a function a assigning to each symbol x in X an arity c~(x); 
2. a pair of a -a ry  trees t l  and t2 whose associated ordered trees are respectively 

71 and r2; 
3. a tree morphism ~ from the set of a -a ry  trees to the set of k-ary trees over 

A such that  p ( t l )  = ~(t2). 

Notice that  in the case of word equations considered in [3] the first two step 
are trivially solved because all symbols must  have arity one. It  is not known 
whether the satisfiability problem for tree equations is decidable. 

In the present paper, we consider the subproblem of solving equations be- 
tween a -a ry  trees corresponding to step 3 above. In other words, we assume the 
arity function a and the two a -a ry  trees t l  and t2 to be known, and look for a 
tree morphism T such tha t  T( t l )  = ~a(t~). We show that  if ( t l , t2)  is satisfiable, 
then it has a most  general solution. Furthermore, this solution (or that  none 
exists) can be efficiently determined. We give an efficient algorithm, inspired to 
the Martelli-Montanar~ unification algorithm (of. [6]), for the solution of (a-ary)  
tree equations over k-ary trees for any k > 1. 

Notice the fundamentM difference between the tree equations we consider 
here and the first order unification problem: in a tree equation the label of inter- 
nal nodes may  be variable symbols, while in the first order unification problem 
(reformulated in terms of equations between trees) only the leaves may  be labeled 

with variables. 
The rest of the paper  is organized as follows. In Section 2 we introduce some 

notat ion and terminology. In Section 3 we formally define tree equations and the 
satisfiability problem for such equations. In Section 4 we present an algorithm to 
solve sets of equations containing exclusively variable symbols. In Section 5 we 
prove the correctness of the Mgorithm and analyze its running time. We prove 
tha t  the number  of i terations performed by the algori thm is linear in the size 
of the problem. In Section 6 we show how to extend our algorithm to solve tree 
equations with both  constants and variables. Finally in Section 7 we conclude 
by summariz ing the content of this paper  and by proposing some open problem. 

2 Nota t ion  

Let PC = {0, 1 , . . .}  be the set of natural  numbers. We will often use gV- as 
a numerable set of symbols.  A word over PC is a finite sequence of natural  
numbers.  ~vV* denotes the set of words over PC. For any two words v, u E PC*, 
the concatenation of v with u is denoted by v .  u. We say that  v is a prefix of u 
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if  there  exists a word w such tha t  u = v �9 w. A set of words S is prefix closed iff 
for all words  v and w, if  v �9 w E S then  also v E S. 

D e f i n i t i o n  1. A graded alphabet ,4 = (A; a )  is a set of let ters A endowed with 
an ar i ty  funct ion a :  A ~ iN assigning a na tu ra l  number  to each let ter  in A. 

Given  two graded a lphabe t s  ,4 = (A; c~) and B = (B;/?),  we say tha t  B 
extends  M, wr i t t en  .4 C B, if  A _ B and a = •IA- If  M = (A; ~)  and  B = (B; 8)  
are two graded  a lphabe t s  and  A and B are disjoint, then we denote by `4UB the 
graded  a lphabe t  (AUB; aVE) ,  where ( aVZ) (x )  = a ( x )  i f x  E A, (aVj3)(x) = / 3 ( x )  
i f x E  B. 

D e f i n i t i o n 2 .  Let ,4 = (A; a )  be a graded a lphabet .  A labeled tree over A is a 
pa r t i a l  m a p p i n g  r :  IW* ~ A such tha t  the domain  dora(r) is a finite and prefix 
closed subset  of  1~r and,  for all v.  i E dora(r), i < a ( r ( v ) ) .  The  elements  in 
dora(r) are called nodes. 

T h e  set of  all trees over ,4 is denoted by ,4# = (A; a )  # .  Y2 denotes the e m p t y  
tree, t h a t  is, the  tree with no nodes. The  size of a tree r is the number  of  its 
nodes  and  it is denoted by 171. The  set f r + ( r )  = {u. i tu E Horn(r), u.i (~ dom(T)} 
is called the outer frontier of v. For any tree 7- and word v E ~V*, v-17 denotes 
the  subt ree  r':w ~-+ r ( v  �9 w). 

Notice t h a t  if the ar i ty  funct ion a is constant ,  i.e., a(a) = k for all a E A, 
then  the  definit ion of tree over (A; a )  reduces to the t radi t ional  not ion of k-ary  
tree. 

Example i. I f  A = {a, b} and c~(a) = 2, a(b)  = 3, then the tree 

is an a - a r y  tree over A, whose domain  is the set {~, 1, 3, 12, 13, 32} and its outer  
frontier  is the set f r + ( r )  = {2, 11, 31 ,121 ,122 ,123 ,131 ,132 ,321 ,322} .  

Remark. Let ,4 ----- (A; a )  be  a graded a lphabet .  I t  can be easily proved by in- 
duct ion t ha t  for all trees r over ,4 

'fr+(r)[ = (~ -~(a (a ) -  l)na) + 

where na = [ r - l ( a ) [  denotes  the n u m b e r  of  nodes labeled with a in the tree r .  
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Notice tha t ,  for a fixed `4, the value of expression ( ~ i ( a ( a i )  - 1)n~) + 1 m a y  
not  range  over the  whole set of  posi t ive integers. Therefore  the set `4ct migh t  
not  contain  any tree wi th  outer  frontier  of  a given cardinali ty.  

In pa r t i cu la r  for any  k-ary  tree r of  size 171 = n the  cardinal i ty  of  the outer  
f ront ier  is ]fr+(T)] = (k - 1)n + 1. Notice how the size of  the outer  frontier  
uniquely  de te rmines  the  size of  the tree when k > 1. 

I f  k = 1 (i.e., in the case of  words) the outer  frontier has cardinal i ty  1 
independent ly  f rom the size of  the word, and in this case the size of the outer  
front ier  gives no in fo rmat ion  abou t  the size of  the  word. 

I f  k > 1, there  are trees T such t h a t  ]fr+(r)] = n if and only if k - 1 divides 
n - 1. In par t icu lar ,  for b ina ry  trees we have ]fr+(r)] = 171 + 1 and there are 
trees wi th  ]fr+(r)]  = n for any posi t ive integer n. 

We now define a f u n d a m e n t a l  opera t ion  over trees. 

D e f i n i t i o n 3 .  Let  vl and v2 be two trees over a graded a lphabe t  ,4 and let 
b C f r+(v l )  be  a node  in the  outer  frontier  of  vl. The  concatenat ion of 7"2 to 71 at  
b is the tree vl(b) 72 with  domain  dom(rl (b)T2) = dom('rl) t.J b. dom(~'2) defined 

by  
f ~-l(u) i f u  e dom(~'l) 

(T 1 (b) v2)(u) = i..r2(v) i fbv = u a n d v e  dom(~-2) 

Let r be  a tree wi th  outer  frontier  f r + ( r )  = {bl, b 2 , . . . ,  b,~} and let r l , . . . ,  r,~ 
be a sequence of n trees. We denote by r ( r l ,  r 2 , . . . ,  rn) the result  of  concatenat -  
ing the  trees v l , v 2 , . . . , r ~  to r a t  {bl, b 2 , . - . , b n } ,  i.e., 

r , d  = ( - . .  

D e f i n i t i o n 4 .  Given  two graded  a lphabe t s  `4 = (A; a )  and 13 = (B; fl), a mor- 
phism of `4ct into B # is an appl ica t ion  ~: .4ct ---* 13# such tha t ,  for any a E A, 
[ f r+(~(a)) l  = a ( a )  and ~ preserves concatenat ion,  i.e., for any tree r with 

Ifr+(r)[  = n and  for any sequence of trees r l ,  r 2 , . . . ,  rn 

= 

P r o p o s i t i o n 5 .  Any function ~ from A to I3 # such that Ifr+( (a))l - a(a) for 
all a E A, can be extended to a unique morphism ~: ̀ 4# ---+ 13 #.  

We wri te  [ r / z ]  to  denote  the m o r p h i s m  ~ such t h a t  ~(x)  = r and ~(y)  = y 
for any  o ther  y ~ x. We say t ha t  a m o r p h i s m  ~a: A ct --* 13# is non erasing if 
~(~-) = ~2 impl ies  w = f2. For example  if A = {a, b] where a has  ar i ty  one the  
m o r p h i s m  ~: ,4 ~ ,4 such t h a t  p ( a )  = f2 and ~a(b) = b is not  non erasing. 

Notice t h a t  for some  ,4 and 13 there  migh t  be no m o r p h i s m s  f rom .4 to  13. 
For examp le  if .4 = (A; 2) is a b ina ry  Mphabe t  and B = (B; 3) is a t e rna ry  
a lphabe t  there  are no m o r p h i s m s  f rom .ACt to 13# because all trees in 13# have 

outer  f ront ier  of  odd  size. 
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3 T r e e  E q u a t i o n s  

In this section we introduce the notion of equation on graded trees. We remark 
tha t  we are interested in finding solutions for such equations over the set of k-ary 
trees over A for some k >_ 2 and some alphabet  A. Notice that  for k >_ 2 the 
only k-ary tree with outer frontier of size one is the empty  tree. Therefore it is 
not restrictive to assume that  all variable symbols have arity > 2. 

Moreover, under this assumption,  for any fixed pair of finite graded alphabets 
A and B, there exist at most  a finite number  of morphisms from .A to B and all 
morphisms are non erasing. 

Let .~' = (X; X) and .A = (A; c~) be two graded alphabet  with arity functions 
X(x), c~(a) > 2 for all x �9 X and a �9 A. For notational convenience, we will 
consider .A and X as fixed throughout  the rest of the paper. We will also assume 
that  2d contains infinitely many  symbols for each arity. We will call X the set of 
variables and .4 the set of constants. 

D e f i n i t i o n 6 .  A tree equation is a pair of trees (71, v~) in (X U A) #.  

We say that  a tree equation (71, r~) admits  a solution in B #, where ,4 C B, 
if there exists a non erasing morphism c~: (X U .4) # --~ B # such that  ~r(a) = a 
for all a E A, and c~(71) = c~(72). Since the arities of the graded alphabets we 
are considering are greater then 2, then all our morphisms are non erasing. In 
the sequel we will take the non erasing property as granted and we will refer to 
solutions to tree equations simply as "morphisms ' .  

Example 2. We give here an example of a tree equation over the graded alphabet  
({x, y, z}; X(x) = 4, X(Y) = 4, X(z) = 3) and the set of constants ({b}; ~(b) = 2). 

It  is easy to verify that  the morphism ~ defined on the variables as follows: 

is a solution in the set of binary trees over {a, b} 
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D e f i n i t i o n  7. A tree system is a finite set of tree equations 

s' = i = 1 , 2 , . . . , n ;  ( X  U..4.)#}. 

A solution in 13 of a tree system is a morphism a: (X U ,4)# --+ 13# that  simul- 
taneously solves all equations in S. 

It  is evident tha t  for this kind of equations (systems) the problem of the 
existence of solutions is decidable. In fact, as remarked before, there exists only 
a finite number  of morphisms between two sets of trees over two graded alpha- 
bets, and then it is possible to test all of them. In this case we are faced to an 
algorithmic problem. We have to find a fast algorithm to obtain the set of the 
solutions to a tree equation (system). This will be the content of next section. 

Notice that  a tree system is always equivalent to a tree equation. Namely, the 
system S = {(~'i,], ~'~,2) I i = 1 , 2 , . . . ,  n} is equivalent to the single tree equation 

where x is a new variable with arity X(x) = n. 
Let l; be a finite subalphabet  of X and let A = (A; a) ,  13 = (B;/3) be two 

arbi t rary  graded alphabets  such that  .4 C_ B. 

D e f i n i t i o n  8. A variable assignment ~r is a function from )2 t o / 3  # such that  
Ifr+(a(x))l  = )/(x) for all x in Y. Any assignment a: Y --+ B # can be extended 
to a unique morphism 5:(12 U A) # -+ B # such that  ~(a) = a for all a E A. 
A solution to a system of tree equations S over ~ U ,4 is a variable assignment 
a: Y --+ g # such tha t  ~(~-1) = ~(r2) for all (T1,7"2) C S. 

D e f i n i t i o n 9 .  Let a: )2 --+ ,4# and p: 1; -+ B # be two assignments. We say that  
cr is more general than p, written (r E p, iff there exists a morphism #: .4  # --+ B # 

such tha t  ~ o # = p. 

The relation _ defines a preorder on the set of solutions. 

D e f i n i t i o n  10. A solution a to a system of equations S is a most general solution 
iff c~ is a solution to S, and a is more general than  any other solution p to S. 

T h e o r e m  11. Let S be a finite system of equations over ~. I f  S is solvable, then 

it has a most general solution. 

The proof  of the above theorem is constructive, i.e. we will give an algorithm 
tha t  on input a system of equations outputs  a most  general solution, if one 
exists, and reports  failure otherwise. Moreover, the algorithm is efficient, i.e., it 

is polynomial .  
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4 T h e  A l g o r i t h m  

In this section we describe an algori thm to solve systems of constant-free tree 
equations, i.e. equations between trees containing only variable symbols. We will 
then show (see Section 6) that  the problem of solving tree equations with both 
constants and variables can be easily reduced to the constant-free problem. 

First of all we will establish a few facts about  tree equations. 

L e m m a  12. Every assignment or: V -+ J4 # is a solution to the equation ([2, I2). 

L a m i n a 1 3 .  I f  fr+(vl)  -fi fr+(v2) then the equation (Vl, v2) has no solutions. 

L a m i n a  14. Let v be a tree over the variables •, and x a variable not in V. The 
assignment o-: ]3 U {x} --+ ,4 # is a solution to the equation (x, r )  if and only if  
cr = [v/x] o p for some variable assignment p: ]2 --+ .4 #. 

The above laminas describe the set of solutions to the equations (vl, v2) 
where either lfr + (~-1)1 r Ifr + (r2)l or one of the trees is either punctual or empty. 
Otherwise we star t  by associating to each of the trees ~'1 and 72 an equivalence 
relation over the set { 1 , . . . ,  n} where n = Ifr+(vl)l = Ifr+(v2)l. 

D e f i n i t i o n l h .  Let r be a non empty  tree with (b l , . . . ,  b,~) the (lexicographi- 
cally) ordered sequence of nodes in the outer frontier of v. We define the equiv- 
alence relation "~r by i-~r j iff bl and bj begin with the same symbol. In other 
words, i and j are in relation ,-~ iff the i th and jth node of the outer frontier of 
v are in the same first-level subtree of 7. 

When we consider the equivalence classes (C1 , . . . ,  Ck) of a relation ,.~ we 
will always assume tha t  they are ordered in the obvious way: if i < j then i ~ < j~ 
for all i ~ E Ci and j~ E Cj. 

Let x and y be the labels of the roots of 71 and 72 and let X1 . . . .  ,Xx( , ) ,  
Y1, . . . ,  Yx(y) be the equivalence classes of "~rl and "~r2. Notice that  "~rl U "~r~ 
is an equivalence relation if and only if, for any Xi (1 < i <_ X(x)) and any Yj 
(1 < j <_ X(Y)), Xi  V1Yj is either the empty  set, or equals one of the two sets Xi 
and Yj. This corresponds to the fact that  in a tree any two subtrees are either 
disjoint or one a subtree of the other. 

L e I n m a l 6 .  I f  the equation (7"1,72) is satisfiable then ("~1 t2 "%2) is an equiva- 
lence relation. 

Now assume tha t  "~rl t2 "~r2 is an equivalence relation and let (V1, . . . ,  Vm) 
be its equivalence classes. Notice that  for all k E { 1 , . . . , m }  we have V~ = 

Xi U Xi+l (J . . .  U Xi+i, = Yj U Yj+I U . . .  U Yj+j, for some i, i ' , j , j '  such that  
either i ~ = 0 or j '  = 0 (or both).  Let v be a new variable of arity X(V) = m. For 
all k = 1 , . . . ,  m we introduce a fresh variable wk of arity X(W~) = i ~ + f  § 1 and 
define the equation 

Ek = ( t ~ ( i - l r l , . . . ,  (i + i ' ) -Zrl> , t ~ ( j - l r 2 , . . . ,  (j  + j ,)-Lv2)) 

where t~ (resp. t~) is the empty  tree (2 if i' = 0 (resp. j '  = 0), or is the punctual 
tree w~ otherwise. 
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L e m m a l T .  Let (7t, ~ )  be an equation such that n = Ifr+(~)l = Ifr+(r~)l > 2 
and ,~rl U ~r~ is an equivalence relation. The assignment a is a solution to 
(7-1, ~-~) i f  and only i f  ~r = ~r o p where ~r : [v ( t~ , . . .  , t~n)/x , v ( t Y , . . .  , t ~ ) / y ]  and 
p is a solution ~o the system r . . . ,  Era}). 

An a lgor i thm for the solut ion of  tree equat ions is obta ined by combining 
the results of previous lemmas.  Let  S be a finite set of equations over )d. The  
a lgor i thm generates a sequence of triples (1)~, Si, r where 

- l;i is a finite suba lphabet  of X,  
- Si is a finite sys tem of  equat ions over l;~', 
- cr~ is a variable ass ignment  f rom 1; to 1;~. 

The  a lgor i thm star ts  f rom (1;0, So, or0) = (1), S, idy)  and i teratively com- 
putes  (l;i+l,  Si+l,  ~ri+l) f rom (])i, Si, r until  ei ther Si = ~ or S~ = {False} .  
(1;i+1, Si+l ,  r  is computed  f rom (1;i, Si, cri) as follows. An equat ion (r l ,  v2) 
is selected f rom Si (any selection s t ra tegy is good).  Then,  the computa t ion  pro- 
ceeds by cases corresponding to  lemmas  12, 13, 14 16 and 17. 

1. If bo th  ~'1 and 72 are empty  (vl = v2 = /2) then  Si+l = Si \ {(r l ,  72)}, 
V~+I = V/ and ~i+1 = ~i. 

2. If Ifr+(rl)[  5s Ifr+(r2)l then  Si+l = {False} ,  1//+1 = ]d~ and c~i+l = c~i. 
3. If vl (resp. r2) is the punc tua l  tree x then Yi+l = l;i \ {x}, wi = [r2/x] (resp. 

= 5 +1 = \ a n d  = o 

4. If  none of the previous cases applies, let n = Ifr+(rl)[ = [fr+(v2)[ > 2. 

(a) If "~1 U ,-,~ is not  an equivalence relation then Si+t = {False} ,  Vi+I = 

P~ and a~+~ = ~i. 
(b) Otherwise,  let E l , . . . ,  E,~, x, y and lr be as in L e m m a  17 and define 

{ E l , . . . ,  E,~}), and o'~+1 = o'i o 7ri. 

The  a lgor i thm terminates  as soon as Si = ~ or Si = {False} .  Upon termi-  
nat ion,  if S~ is em p ty  the a lgor i thm ou tpu t s  c~i, otherwise it reports  failure. 

Example 3. Consider the equat ion 

where X(X) = X(Y) = 3 and X(Z) = 4. A more  compact  nota t ion for this equat ion 
is x(-, x( . , . ,  .), z(- , - , . ,  .)) = y ( z ( . , . , - , - ) , - ,  x( . , . , - ) ) .  Let us run the a lgor i thm over 

this equat ion.  
Iteration 1. Case 4 applies. Here n = 8 and the equivalence classes of ,~y and "~x 
are given by X~ -= {1},X~ = { 2 , 3 , 4 } , X ~  = {5,6 ,7 ,8} ,Y~ = {1,2 ,3 ,4} ,Y~ = 
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{5}, Y~ = {6, 7, 8}. The union -~v tO , ~  is an equivalence relation with equiva- 
lence classes 1/1 = {1,2, 3, 4}, V2 = {5, 6, 7, 8}. 

So, we generate two new equations, which both happen to be equal to 

z ( . , . , . ,  .) = ~ ( . ,  x ( . , . , . ,  .)) 

In conclusion we have: 

vl  = ({z, v, ~};  x(~) = 4, x(~) = 2, x(,v) = 2) 

~1 = [~(~(-, . ) , - ) Ix,  v(., w(. ,  . ) ) /y]  
& : d . , . , . , - )  = ~ ( - ,  v (~ ( . ,  .), .)) 

Iteration 2. This time case 3 applies and we have 

v2 = ({v,  w } ; x ( v )  = 2 , x ( w )  = 2) 
~ = r o [~(., ~(~(. ,  .), . ) ) /z ]  

$2 : ~  

At this point the algorithm terminates and output the assignment c~ = rrl orr2 
defined by er(x) = v(w(., .), .), ~r(y) = v(., w(-, .)) and er(z) = [w(., v(w(., .), .))], 
or more pictorially, 

Example 4. We run the algorithm over a more complicated equation over the 
graded alphabet ({x, y, z}; X(x) = 5, X(Y) = 9, X(z) = 6) defined as follows: 

The solution is given by the following variable assignment: 

~ ( , )  = ~(., w(. ,  . ) , . ,  .) 
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that  is 

~(y) = v( . , . , . ,  w(., v(., w(., .),., .))) 

~(z) = m(., v( . , . , . ,  ~(. ,  .))) 

~(x) ~(v) ~(z) 
If we are looking for a solution over the set of binary trees, then we can map 

w to a punctual tree, and v to any tree with three nodes. 

5 Correctness of the Algorithm 

In this section we will show that  the algorithm always terminates and gives the 
right answer. That  is, the algorithm outputs an assignment a, if and only if the 
input system is satisfiable, and in this case ~ is the most general solution to the 
system. 

T h e o r e m  18. The algorithm always terminates. Moreover the number of itera- 
tions performed is linear in the size of the system. 

Proof. Define the weight of equation (T1, T2) to be 

w(~'l, T~) = Ifr+(rl)l + Ifr+(T2)l- 1. 

Define also the weight of a system by 

f 0 if S = {False} 
W(S) \ ~ e s  w(e) otherwise 

We prove that  W(Si) decreases at each iteration. Since W(Si) is always a non 
negative integer, this proves that  the algorithm stops after at most W(S) it- 
erations. The proof of W(Si+I) < W(Si) is by cases on the branch taken by 
the algorithm. In case 1 and 3, W(Si+1) = W(Si) - W(rl, 72) < W(Si) (notice 
that  the outer frontier of the empty tree has cardinality 1). In case 2 and 4a, 
W(Si+I) = 0 < W(Si). Finally, in case 4b W(Si+l) = W(S~) - w(rl,v~) + 
~k=lm w(Ek) < W(Si) because ~k=lm w(E~) = w ( n , r 2 ) - - m +  l a n d r e > _ 2 .  

The correctness of the algorithm is based on the following lemma. 
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L e m m a 1 9 .  For all i, a: V --+ A # is a solution to S i f f  a = cri o fii for  some 
solution Pi: Vi --+ `4# tO Si.  

Proof. (Sketch) The proof is by induction on i. If  i = 0, then So = S and the 
l emma  is obviously true. The inductive step is proved by cases on the branch 
taken by the algori thm using lemmas  12, 13, 14, 16 and 17. 

Using the above l emma  the proof of correctness of the algorithm is immediate.  

T h e o r e m  20. The algorithm outputs an assignment  c~ i f  and only i f  the sys tem 
is satisfiable, and in such a case c~ is a most  general solution to the system. 

Proof. By Theorem 18 the algorithm always terminates.  Therefore, for some 
n either Sn = 0 or Sn = { F a l s e } .  I f  Sn = 0, the algorithm outputs crn. By 
L e m m a  19, a~ is a solution to S, so S is satisfiable. Moreover, for any solution 
aq  V -~ .4# to S, there exists an assignment p: l;~ --+ ,4 # such that  c~ ~ = a o p. 
This proves tha t  a is a most  general solution to S. Conversely, if Sn = {Fa l se } ,  
the algori thm terminates  with failure. By Lemma  19 if a is solution to S, then 
cr = an o p for some solution p to Sn, but this is impossible because S~ is 
unsatisfiable. Therefore also S must  be unsatisfiable. 

Theorem 11 on the existence of most  general solutions follows immediately 
f rom Theorem 20. 

6 E q u a t i o n s  w i t h  C o n s t a n t s  

We now consider equations containing constants. Let S be a system of equations 
over variables X and constants ,4 and let B be a graded alphabet such that  
.4 C B. We introduce a new variable x~ with arity X(x~) = a (a )  for each 
constant symbol a C A and define the constant-free system S ~ over the variables 
X U 2U by replacing each constant a in S by the corresponding variable Xa. 

There is an obvious bijection between the set of solutions p: .4 U X --~ B # to 
S and the set of solutions p': X ~ U X --+ B # to S ~ such that  p'(xa)  = a for all 
a C A. Therefore the study of the system S can be reduced to the study of the 
constant-free system S ~ with the additional constraint pl(xa) = a. 

By Theorem 11 the system S I has a most general solution c~: X~U X --+ 
(X~OX) # and p/: X~UX --+ B #  solves S / i f fp ~ = o'ozr for some zr : X~UX ---+ B# .  
We also want pt(Xa) -~ 7r(O-(Xa)  ) : a, but  this is possible iff cr(x~) is a punctual  
tree and ~r(xa) # a(xb) for all a # b. Hence we have the following theorem. 

T h e o r e m  21. The sys tem S is solvable i f f  S I has a most  general solution c~ such 
that f o r  all a E A,  a (xa)  is punctual  and for  all a ~ b, a (xa)  ~ a(xb) .  
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7 Conclus ion  

We defined an algorithm that  on input a set of equations between graded trees, 
determines a most  general solution to the equations if a solution exits, and 
reports failure otherwise. In particular this solves our initial problem of finding, 
for x-ary tree equations, solutions over k-ary trees, as any k-ary solution p can be 
expressed as the composition of the most general solution a over (X; X) with a 
morphism p from (X; X) to (A; k). Notice that  an equation can have no solution 
over k-ary trees for some k, even Kit  has a most general solution over (X; ~(). This 
is because there could not exists any morphism from (X; X) to (A; k). However, 
if a most general solution over (X; X) exists, then the system has solutions over 
binary trees because it is always possible to find a morphism from (X; X) to 
(A; 2) when X(x) >_ 2 for all x E X. 

The algorithm partially solves the problem proposed in [4], that  is, the prob- 
lem of finding a solution of equations between ordered trees. Anyway, the prob- 
]era of solvability of ordered tree equations remains open, since we do not have an 
efficient procedure to assign the arity function to the variables in the equations. 
Actually solvability of equations of ordered trees can be reduced to a particular 
case of the second order unification (that, in generM, is undecidable). However 
we don' t  know if second order unification becomes decidable for this particular 
subclass of equations. In fact, the proof of the undecidabitity of second order 
unification (cf. [1]) cannot be extended directly to our case. 

Notice also tha t  the algorithm in Section 4 allows to find solutions in (A; a)  # 
also for non constant arity functions ~, provided that  ~(a) > 1 for all a. This 
problem is in some sense complementary to the word equation problem consid- 
ered in [3]. In [3] it is shown how to solve equations between trees all of whose 
nodes have arity one (i.e., they are words). Here we solved the problem for trees 

whose node have arity greater than one. 
An interesting question that  we leave open, is whether these two results can 

be combined to give an Mgorithm to solve equations over arbitrary trees. 
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