
E-Unification by Means of Tree Tuple
Synchronized Grammars 1

S~bastien Limet and Pierre R~ty
LIFO - Universit~ d'Orl~ans

B.P. 6759, 45067 Orlgans cedex 2, France
e-mail : {]imet, rety}~lifo.univ-orleans.fr

Abs t rac t : The goat of this paper is both to give a E-unification procedure that always
terminates, and to decide unifiability. For this, we assume that the equational theory is
specified by a confluent and constructor-based rewrite system, and that four additional
restrictions are satisfied. We give a procedure that represents the (possibly infinite) set of
solutions thanks to a new kind of grammar, called tree tuple synchronized gi.~mmar, and
that can decide unifiability thanks to an emptiness test. Moreover we show that if only
three of the four additional restrictions are satisfied then unifiability is undecidable.

1 I n t r o d u c t i o n

First order E-unification is a tool that plays an important role in automated de-
duction, in particular in functional lo~c programming and for ~ l v ' ~ g symbolic con-
straints. It consists in finding instances co x~ariables tha~ make b*wo ~errns equal modulo
an equational theory given by a set of equalities, i.e. it amounts to solve an equation
(called goal). General E-unification is undecidable and may have infinitely many so-
lutions. This is why E-unification procedures, like narrowing, often loop, enumerating
infinite set of unifiers or computing unproductive branches.

When solving equations in a computation (of a functional logic program for in-
stance), most of the time, it is not interesting to enumerate the solutions. It is more
important to test whether the equation has at least one solution (unifiability test)
and to have a finite representation of the solutions. The first point allows to cut
unproductive branches, and the second avoids generation of infinite sets of solutions.

We have several aims in this paper. First of all, we want to define restrictions on the
unification problem that insure decidability of unifiability. In addition of confluence
and constructor-based property of the rewrite system tha t represents the equational
theory, we need four other restrictions that are shown necessary to decide unifiability
(i.e. if any of them is not satisfied unifiability is undecidable). Thus these restrictions
define a limit between decidability and undecidability of unifiability. Our second goal
is to give a E-unification procedure that never loops when our restrictions are verified,
and that decides-unifiability. The problem is that theories defined in this framework
may be infinitary, i.e. for some goals the set of solutions cannot be described by a finite
complete set of unifiers. So we need a way to represent infinite sets of substitutions.

A solution being defined by the instances of the variables of the goal, i.e. by a tuple
of terms, and terms being trees, the set of solutions can be viewed as a tree tuple

1Missing formal definitions and proofs are given in [1(3].

430

language. To describe this language, we introduce a new -kind of grammar, the tree
tuple synchronized grammars (TTSG). Their particularity is the notion of synchro-
nization, i.e. the fact that some productions must be applied at the same time. For
this reason TTSG's can define context-sensitive languages like {d(a~(0), bi(0), ci(0))}.
The class of languages defined by TTSG's is larger than we need and does not have
nice properties. Fortunately the TTSG's we build from a unification problem are not
any, and the recognized languages have particular properties :

- their intersection is a language recognized by a TTSG,

- emptiness is decidable.

Some authors have already used tree languages to represent infinite sets of solutions.
For example in [5], they are used to solve set constraints, but without any notion of
synchronization. The TTSG's are not identical to the coupled context-free grammars
of [6] because we need a finer control of synchronizations which is achieved thanks to
a tuple of integers. The following example explains the principle of our procedure.

E x a m p l e 1.1 Consider the TRS that defines the functions f and g

/(s(s(x))) f(=), f(p(=)) z f(=),/(0) 0,
g(s(=)) g(0) o

and the goal f (g(x)) ? 0.

Step 1. The goal f(g(x)) 3_ 0 is decomposed into three parts, g(x) 3_ Yl, f(Y2) 3_ Y3

and 0 ~ Y4, where yl, y2, y3, y4 are new variables. The set of ground data-solutions
of g(x) 3_ Yl can be considered as an infinite set of pairs of terms defined by
{(tl, t2)]g(t2) --** tl}. This set is considered as a language (says Z:I) of pairs of trees
where the two components are not independent. In the same way, the set of ground

data-solutions of f(Y2) 3_ Y3 can be viewed as the language (says s of pairs of trees
that describes the set {(tl, t2)lf(t2) --~* tx} and 0 can be viewed as the language (says
s of 1-uple reduced to {(0)}. These languages can be described by TTSG's. The
grammars are computed from the rewrite system and the goal.

Step 2. Once these three TTSG's are constructed, the initial goal is re-composed
by two steps. First the languages s and s are combined to get the language s
of the ground data-solutions of f(g(x)) ~ !t3. This is done by computing a special
kind of intersection between two TTSG's that corresponds to the join operation in
relational data-bases. The result is a TTSG that describes the language of triples
of trees defined by {(tl,t2, t3)[(t2,~3) E s and (tl,t2) e s In other words, t2 is
the result of g(x) when instantiating x by t3, moreover t~ belong to the definition
domain of the function f , and tl is the result of f(t=), i.e. of f(g(t3)). Second the
TTSG of s is combined with the TTSG of s in the same way. We get a TTSG
that describes the language of triples of trees s defined by {(t~,t2,t3)[tl = 0 and
(tl, t2, t3) E s As t3 is an instance of x, tl is the result of f(g(t3)) and tl = 0, we
get a finite description of the ground data-substitutions a such that r --** O.
Moreover it is decidable to know whether the language s is empty or not. Therefore

we can decide the unifiability of f(g(x)) 3_ O.
After basic definitions given in section 2, the four additional restrictions as well

as the undecidability results are given in section 3. The first step of our method is
presented in section 4 and the second step in section 5. An overview of related work

and the conclusion are given in section 6.

431

2 P r e l i m i n a r i e s

We assume tha t the reader is famihar with s tandard definitions of one-sorted terms,
subst i tut ions, equations, rewrite systems (see [3]). We jus t recall here the main defi-
nitions and notat ions used in the paper.

Let ~ be a finite set of symbols and V be an infinite set of variables, T ~ u v is the
term algebra over ~ and V. ~ is part i t ioned in two pa r t s : the set 9 v of f u n c t i o n
s y m b o l s , and the set C of c o n s t r u c t o r s . The terms of T c u y are called d a t a - t e r m s .
A te rm is said l i n e a r if i t does not contain several occurrences of the same variable.
In the following x , y , z denote variables, s, t, l, r denote terms, f , g, h function symbols,
c a constructor symbol, and u, v, w occurrences.

Let t be a term, D (t) is the set of occurrences of t, t]= is the subte rm of t at
occurrence u and t (u) is the symbol tha t labels the occurrence u of t. t [u , - s] is
the term obta ined by replacing in t the subterm at occurrence u by s. We generalize
the occurrences (as well as the above notations) to tuples in the following way: let

P = (P l , . . . ,Pn) a tuple, Vi E [1,n] Pli = Pi, and when the pi ' s are terms, Pli.n = Pil~.
Moreover we define the c o n c a t e n a t i o n of two tuples by (t l , . . . , t=) �9 (t ~ , . . . , t'~,) =
(t l , . . . , tn, ~ , . . . , t'~,) and the c o m p o n e n t e l i m i n a t i o n by (t l , . . . , t i , . . . , t=) \ i =
(t l , . . . , t i _ a , t i + l , . . . , t =) . A term rewrite system (T R S) is a finite set of oriented
equations called rewrite rules or rules. For a TRS R, the rewrite relat ion is denoted
by "-'~R and is defined by t "~R s if there exists a rule l ~ r in r and a non-variable
occurrence u in t such tha t tl= = a l and s = t[u ~-- ar]. The transi t ive closure of --~R
is denoted by ---+~. lhs means left-hand-side and rhs means right-hand-side. A TRS
is said c o n f l u e n t if t ~ t l and t ---~ t2 implies t l ~ t3 and t2 ---~ t3 for some t3. If
the lhs (resp. rhs) of every rule is linear the TRS is said lef t - (resp, r i g h t -) l i n e a r . If
it is both left and right-linear the TRS is said l i nea r . A TRS is c o n s t r u c t o r b a s e d
if every rule is of the form f (t l , . . . , tn) --, r where the t i ' s are data- terms.

t n a r r o w s into s, wri t ten t -,-* s, if there exists a rule l --- r in R, a non-variable
occurrence u of t, such tha t a t l , = al where a = mgu(t l= , l) and s = (a t) [u ~-- ar].
We write t "*[~,~-m~] s.

3 U n d e c i d a b i l i t y R e s u l t s

The considered rewrite systems are supposed to be constructor-based and confluent.
Our four addi t ional restrictions are :

1. L i n e a r i t y o f r e w r i t e r u l e s : every rewrite rule side is linear.

2. N o cq, : if a subterm r of some rhs unifies with some lhs t (after variable renaming
to avoid conflicts) then the mgu a does not modify the variables of l 2.

3. N o n e s t e d f u n c t i o n s in r h s ' s : the function symbols in the rhs 's may not
appear a t comparable occurrences. For example f and g are nested in f (g (x))
but not in c (f (x) , 9 (y)) .

4. L i n e a r i t y o f t h e g o a l : the goal does not contain several occurrences of the
same variable.

2In other words, if o- is split into o- = trin U o-out where crin = Cr [vat(l)] and o'out = o- [vat(r)] then
o-~n must be the identity mapping.

432

These four restrictions together allow non-finitary theories a. The (even minimal)
complete set of solutions and then also the narrowing search space may be infinite.

T h e o r e m 3.1 I f any of the four above restrictions is not satisfied, unifiability is
undecidable.

To prove this result, we show that for each restriction, there exists & rewrite system
satisfying the three others, that encodes a well-known undecidabIe problem, the Post
correspondence problem.

4 S t e p 1 : T r a n s f o r m a t i o n o f a T R S i n t o T T S G ' s

Here is the first step of our method. Recall that the TRS is assumed to be confluent
and constructor-based, and satisfies restrictions 1 to 4. The aim is to convert the TRS
and the goal into several TTSG's. This step is illustrated by example 1.1. For this
example, three TTSG's will be constructed, one for g(x), one for f(Y2) and one for 0.
The terminals of grammars are the constructors.

4:1 N o n - T e r m i n a l s

To each occurrence of each term of the TRS and the goal we associate a non-terminal,
next the productions will be deduced from subterms relations and syntactic unifi-
cations. To each non variable occurrence u of the lhs (resp. rhs) of each rule i is
~ t e d ~-e non terminal L~ (resp. /~) , except when u = e, we associate Riu even
to the lhs. To the occurrences of the variable x is associated X i (see figure below).
In the same way, the non-terminal G~ (resp G~,) is associated to each occurrence u
of the lhs (resp rhs) of the goal. NT(t, u) denotes the non-terminal associated to the
occurrence u of t. An additional non-terminal A~ (resp At) is associated to the argu-
ments of function of the goal (here occurrence 1 of .f(g(x)) to encode the variable Y2)-
t being a side of the goal, ANT(t , u) denotes the additional non-terminal associated

to the occurrence u of t.

R~f I~ f R~ R2[~

I I
L~ s x x ~ L~

] X2x

XlX

f R~ R~ f ~ 0 R~

I I
x X 2 L~ 0

4

L~ ~ g R~ L~O
J I

X4x x X 4

I
X ! x

3for example the rewrite system {f(s(x)) --o f(x), f(O) ---* 0}.

433

4.2 P r o d u c t i o n s

Two kinds of productions are deduced from the TRS. The free p r o d u c t i o n s that
are similar to the productions of regular tree grammars. These productions gener-
ate constructor symbols and are deduced from subterm relations. The second kind
of productions are called synch ron ized p r o d u c t i o n s and come from syntactically
unifiable terms. These productions are empty (they do not produce any constructor).

The way the productions are deduced is motivated by narrowing techniques. From
the correspondence between rewriting and narrowing (lifting lemma [7]), the languages
s s of example 1.1 are the ground instances of the data-solutions computed by
narrowing. This is why we took for narrowing possibilities.: For instance, the rhs of
rule 4 in example 1.1, unifies with the lhs of the same rule.. Therefore the narrowing
step 9(x) ""[~,~4 (~)] s(g(x')) is possible. This step achieves :two operations : it maps
the variable x to s(x') and it sets the result of the narrowing::step to s(g(x')).

From TTSG point of view, this narrowing step is simulated as follows. The term
g(x) is represented by the non-terminal R~ (see figure) and the variable x by X 4
Therefore the pair (R~, X 4) encodes (g(x), x). The fact that g(x) unifies with g(s(x'))
(the renamed version of the lhs of rule 4) is encoded by the empty production R~ =~
R~. The fact that the previous unification instantiates x is::encoded by the empty
production X 4 ~ L14. In order to force these two operations t o be achieved at the
same time, the two productions are synchronized in the pack .of productions {R~
R, 4, X 4 ~ L~}. Thus when it is applied on (R~, X4), we g e t 4 4 (R~, L 1) which means
that the unification is about to be done and therefore the narrowing step too, but
the new constructors produced by the unification and the narrowing step have not
appeared yet.

This is the aim of the free productions deduced from subterm relationships. On
our example, we]-~-t have na~owed .zf-~-, on too_ w-~th rule 4 and we get s(g(x')). So
the narrowing step generates a term wkh the constructor s on top whose argument
is the function call g(x'). This is encoded by the free production R~ ~ s(R~). In
the same way, x is instantiated by s(x~), which is encoded by the free production
L14 =~ s(X4). The narrowing step is completely achieved by the derivation (R~, L~)
(s(R~), L 4) ~ (s(R4), s(X4)). One can easily see that a second application of rule 4
on s(g(x')) can be simulated by applying again the pack of productions and next the
two free productions. Now, let us define more formally all the productions deduced
from the unification problem.

First the free production:. For any term t in the TRS or in the goal and any con-
structor position u in t (i.e. t(u) is a constructor), we create the free production
NT(t, u) ~ t(u)(WT(t, u.1) , WT(t, u.n)) where n is the arity of t(u). tn our
example, we get :
L~ ~ s(L~.,), L 1,,, ~ s(X1), L~ ~ p(X2), L~ ~ O, R~ ~ O,
n~ ~ s(X4), s ~ s(R~), .L[~ 0, R, s =~ 0, G~ ~ 0

Second the synchronized productions : for all ril~ and l j syntactically unifiable, we
create the pack of p r o d u c t i o n s (i.e. The set of synchronized productions)

{gT(r ' , u) ~ NT(l j, e), NT(r' , u.vl) =~ NT(P, v~) , . . . ,
N r (r i, u.v,) =~ NT(lJ, v~)}

where vl v~ are the variable occurrences of ri]u (let 0 -- mgu(ril~,IJ), from the
~ti~ restriction we know that ~ril~ = IJ therefore v b . . . , vn are also occurrences of lJ).
For our example, r I unifies with l 1,12 and 13 which gives the synchronized productions

434

(R~ ~ R~ ,X 1 ~ L~}, {R~ ~ R~,X 1 ~ L~} and (R~ ~ R~,X 1 ~ L~}. r 2 unifies
1~2 ~2 with l 1,12 a n d l 3 too, so we get {R~ ~ R~,X 2 =~L~}, {R~ ~ _ ~ , _ ~ n~} and

{R~ =~ Ra~,X 2 =r n~}. Finally r411 unifies with l 4 and l 5 so we get {R~I =~ R~,X 4 =~
5 4 and R,,X

To generate the synchronized productions coming from the goal, remember that we
consider in fact f(Y2), g(x) and 0. For each function occurrence u of the goal t such
that t(u) -- P(e) (i.e. t (u) (x l , . . . , x ,) unifies with P), we create the synchronized
productions :

{NT(t , u) ~ gT(l j, e), ANT(t , u.1) ~ NT(lJ, 1) , . . . ,
ANT(t , u.n) =~ NT(P, n)}

The language derived from NT(t, u) expresses the terms issued by narrowing from
t(u)(xl , x~) while the languages derived from ANT(t , u.i) expresses the instances
of the fictitious variables xi. In example 1.1, f(Y2) unifies with ll , l 2 and l a, this

1 z L ~ } , (G I r 2 gives the synchronized productions {G t, =~ R~, A~ ~ R,, A~ ~ L~} and
{G i ~ R~,A i ~ L~}. g(x) unifies with 14 and I s so we get {G i "~ R~, X' ~ L~} and

5 !

The languages we want express, are the ground data-instances of the solutions pro-
vided by narrowing. The productions described so far express the solutions provided
by narrowing. To get ground data-instances we introduce the non-terminal A N Y and
for each constructor c we create the free production A N Y =~ c (ANY, . . . , ANY) . Be-
cause of linearity, any variable X j that appears in a rhs under only constructors, will
not be instantiated anymore by narrowing. So to generate the ground data-instances
of these variables we create the production X i =ez A N Y for each X j.

4.3 G r a m m a r s

Many productions have been deduced from the TRS and the goal, let us now define
the grammars that are constructed with them. All the considered grammars have
the same terminals (the constructors), the same non-terminals, and the same produc-
tions, as defined before. Just the axioms (tuples of non-terminals) are different 5. For

example 1.1, we get the grammars
G z

- Gr~ defined by the axiom (,, A~), which generates the language s
- Gr~ defined by the axiom (G~, Xl), which generates the language L1,

- Gr~ defined by the axiom (G~), which generates the language L~.

Here is an example of derivation for Grit.
(G~, A~) =~ (R~,L~) =~ (R~,s(L~3))

(R ,sCsCL)))
=~ (R~,s(s(p(X2)))) =r (Rac,s(s(p(L~))))
=~ (O,s(s(p(L~)))) =~ (0,s(s(p(0))))

This encodes the narrowing derivation
f (Y2) ""2"[r f (X l)**~[~,2'xl~'~p(:c2)] f(x2)~,z[~,3,~2~0] 0

where the resulting term is 0 and Y2 is instantiated by s(s(p(O))).
In ~he genera/case, the definition of the grammars (i.e. of theirs axioms) is a bit

technical because of the constructors that may appear in the goal. See [10].

4Within the goal, the argument of t~he function symbol 9 is a variable, therefore we do not need

an addit ional non-terminal A~.I for it.
5The grammars could be optimized by removing non reachable non-terminals and non usable

productions.

435

4.4 C o n t r o l

Synchronized grammars, as defined previously, are close to regular tree grammars (and
very close to coupled grammars of [6]) and are easy to use, but unfortunately they
do not work in every case because they do not take into account variable renamings.
Indeed, consider the rewrite system {f(c(x, y)) ~ c(f(x), f (y))} and the goal f (x) =
t where t is a~ arbitrary term. The tree grammar GP~ contains the productions
L~ =~ c(X1,y1),R~ =* c(Rl,t~), {R ~ =~ R~,X 1 ~ L~}, {P~ ~ R~,Y ' =~ L~}, {G'~ =~

1 l R~, X ~ L~} and the axiom is (Gl~, X'). A possible derivation of Grl~ is:
1 1 (a'~, x ~) ~ (n., L~)

(c(R~, P~), L~)
(~(n~,@, c(Xl, r '))

(e(c(Rl, P~), P~), c(Ll, y1))
(c(c(nl, R~), R~), c(c(X 1, Y~), Y~))

This encodes the narrowing derivation:
](x) ~I~-r e(f(xA/(Yl)) ~t~,~(~,,~,)l c(4/(x~), f(y2)),/(y,))

The problem now is that both P~ and y1 occur twice. One occurrence of R~ corre-
sponds to the term f(y2) and the other to f(yl). In the same way one occurrence of
y1 corresponds to Y2 and the other to Yl. Obviously if f(Yl) is narrowed, Yl is instan-
tinted whereas if f(Y2) is narrowed, Y2 is instantiated. But using the grammar, the
synchronized productions {P~ =~ R~, y1 =~ L~} can be applied on the first occurrence
o f / ~ and the second occurrence of y1. This means that f(Y2) is narrowed while Yl
is instantiated.

The solution of this problem consists in using an integer number, called control , to
encode variable renamings. In a grammar computation, each non-terminal is coupled
with an integer of control, which is incremented into a not yet used value when a
synchronized production is applied on it. When a free production is applied, the
control number is preserved. Moreover a pack of productions will be applied only on
non-terminals that have the same control number. For example the previous derivation
is transformed into:

((G'c, 0), (X', 0)) ~ ((n~, 1), (n~, 1))
(c((Rl, 1), (P~, 1)), (LI, 2))
(c((R~, 1), (P~, 1)), c((Z 1, 1), (Y', 1)))

=~ (c((R~, 2), (P~, 1)), c((n~, 2), (r 1,1)))
(4~((RI, ~), (R~, 2)), (~ , 1)), c((L~, 2), (r~, 1)))

=~ (c(c((R~, 2), (R~, 2)), (P~, 1)), c(c((X 1, 2), (r~, 2)), (r l , 1)))
Now the pack {R~ ~ RI, y1 ~ L~} cannot be applied in the wrong way.

Thus we can prove the following result, which insures soundness of step 1.

T h e o r e m 4.1 The tree tupIe language recognized by a TTSG gives exactly the ground
data-instances of the data-terms computed by narrowing, thanks to the first field of
tuples, as well as the corresponding instances of variables thanks to other fields.

4.5 General Definit ion of TTSG's

In the following, N T is a finite set of non-terminal symbols and recall that C is the
set of constructor symbols. Upper-case letters denote elements of NT.

436

Actually a tuple of integers instead of one integer is needed to control synchroniza-
tions after intersections of grammars (see section 5). In the following definition, k
is the rank of field (also called level) in the control tuple that is incremented when
applying the pack of productions.

Def in i t ion 4.2 A p r o d u c t i o n is a rule of the form X r t where X E N T and
t E Qugr. A pack of p r o d u c t i o n s is a set of productions coupled with a non
negative integer and denoted {X1 =~ t l , . . . , Xn =~ tn}k.

When k = 0 the pack is a singleton and it is of the form {X1 =~ c(Y1, . . . , Y,)}o
where c is a constructor and YI,--- , Y~ non-terminals. The production is said free,
and is written more simply XI =~ c(Y1,..., Y~).

When k > 0 the pack is of the form {X1 ~ Y1,... ,X~ =~ Y~}~ where Y1,.. . , Y~
are non-terminals. The productions of the pack are said synchron ized .

Def in i t ion 4.3 A T T S G is defined by a 5-uple (Sz, C, NT , PP , T I) where

�9 S z is a positive integer that defines the size of the tuple of control,

�9 C is the set of constructors (terminals in the terminology of grammars),

�9 N T is the finite set of non-terminals,

�9 P P is a finite set of packs of productions,

�9 T I is the axiom of the TTSG. It is a tuple ((/1, c t l) , . . . , (I~, ct ,)) where every/~
is a non-terminal, and every ct~ is a Sz-uple of control containing O's and _L's.

<>

_L means that this field of the control is not used. In fact S z is the number of
intersection + 1 done to build the grammar. Intuitively a free production X
c(Y1, . . . , Y~) can be applied as soon as X appears in a computation of the grammar,
and then Y1,-.., Y~ preserves the same control as X. On the other hand a pack of
productions {X1 =~ ~ , . . . , X ~ =~ Y,}k can be applied iff X1 , . . .X~ appear at the

same time in a derivation and the k th components of their controls are identical (and

are not 3_). The x~'s are then replaced by the yi's and the k th component of control

is set to a new fresh value.

5 S t e p 2 : I n t e r s e c t i o n o f T T S G ' s o v e r o n e C o m p o n e n t

This section describes the second step of our method. Let us consider again exam-
ple 1.1. Recall that we have decomposed the problem into three parts g(x) ~ Yl,
f(Y2) ~ Y3 and 0 ~ Y4- In subsection 4.3, three TTSG's have been deduced from
the problem to solve each of the three parts. The point now is to reconstruct the
initial problem thanks to the intersection over one component of sets of tuples. This
operation corresponds to the join operation in the relational algebra (relational data-

bases).

Def in i t ion 5.1 Let E1 be a set of nl-uptes and E2 be a set of n2-uples. The one
c o m p o n e n t kl, ks in te r sec t ion of E1 and E2 is the set of nl + n2 - 1-uples defined
by {tpl * (tp2\k~) I tpl E E1 and tp2 E E2 a~nd tpl]~l = tp21k~}.

437

For example the one component 2, 1 intersection of the sets E1 = {(0, s(0)), (s(0), 0)}
and E2 = {(s(0), s(s(O)), (s(s(0)), 0)} is the set of triples E3 = {(0, s(0), s(s(0)))}.

To get the solutions of the initial goal, we have to compute incrementally the one
component kl, k2 intersection for each pair of grammars Grl, Gr2 such that the k~ h
component of the axiom of G1 is G~ and the k~ h component of the axiom of G2 is
A~ with the same u (resp. G~ and A~). At the end, we have also to comps,re the
intersection for components GZ~ and G~.

When considering any TTSG's, we have the following result.

L e m m a 5.2 Emptiness of intersection of languages recognized by TTSG's is unde-
cidable.

Moreover the intersection of languages recognized by TTSG's is not always a language
recognized by a TTSG. Fortunately, we do not consider any TTSG's, but only the
ones coming from a unification problem, and in this case the problem is decidable.

Emptiness of intersection becomes decidable if the component kl or k2 has the
property of ex te rna l synchronizat ion. This means that at most one production
can be applied on this component when using a pack of synchronized productions. So,
an externally synchronized component of a TTSG behaves as a regular tree language
in the sense thu; any branch of this component can be generated independently from
the others.

L e m m a 5.3 The first component of every TTSG produced from the unification
problem 6 has the external synchronization property.

Let us give thanks to an example the idea of the intersection algorithm.

E x a m p l e 5.4 This example does not come from a unification problem, but it is eas-
ier to understand, and every component is nevertheless externally synchronized. Let
a l = (1, {s, 0}, {X, X', Y, Y', Y"}, {X' ~ 0, Y' ~ 0, X ' ~ s(X), V' ~ s(Y"), Y"
s(Y), {X ~ X', Y ~ Y~}I}, ((X, 0), (II, 0))) and
G2 = ((1, {s, 0}, {Z, Z',T,T', T"}, {Z' =~ O, T' =~ O, Z' = s(Z), T' =~ s(T"),T" =~
s(T), {Z =~ Z', T =~ T'},}, ((Z, 0), (T, 0))).
G1 and G2 generate the same language i.e. the pairs (sn(0), s2~(0)). The 2,1 inter-
section of G1 and G2 is then the language of triples L3 = {(sn(0), s2~(0), s4"(0))}.
The question is how building from G1 and G2, a new TTSG Gs that generates Ls ?
The idea is that the first component of Ls will be generated by the productions of
G1, the last component of Ls will be generated by the productions of G2, therefore
Gs contains the non-terminals and the productions of both G1 and G2. Thanks to
synchronizations, the links (between components) coming from G1 and G~ are pre-
served. The second component of L3 is the intersection of the second component
of G1 with the first component of G2. The productions that generate it are built
using the same idea as for the intersection of regular languages, i.e. by computing
the Cartesian product of the grammars. More precisely, we note at first that only
the non-terminals Y, y ' , y " (resp. Z, Z') may appear in the second (resp. the first)
component of G1 (resp. G2). Thus, for the intersection the set of non-terminals
is the Cartesian product {YZ, Y'Z, Y"Z, YZ ~, Y~Z', Y"Z'}, and the free productions

SRecall that the first component computes the ground instances of terms obtained by narrowing.

438

are {YtZ' ~ s(YaZ), Y 'Z ' ~ O, Y"Z' ~ s (YZ)} . The packs of productions are con-
structed such that when a synchronization were possible in the initial grammars, it
is still possible in the intersection. More precisely, for each pack of productions of G1
(resp G2) that deals with Y or Y' or Y" (resp Z or Z'), we create a new pack in G3.
We get {X =~ X ' , Y Z ~ Y 'Z}I , { X ~ X ' , Y Z ' ~ Y 'Z '}I from the packs of G~ and
{ Y Z a YZ ' , T ~ T'}~, {Y 'Z ~ Y'Z' , T r T'}~, { Y ' Z ~ Y"Z' , T ~ T'}I from the
packs of G2. The axiom of G3 is ((Z, 0), (YZ, 0), (T, 0)).

Using the pack {X =~ X ' , Y Z ~ Y 'Z}I , the axiom is derived into ((X', 1),
(Y'Z, 1), (T, 0)1. Now the pack {Y 'Z ~ Y'Z' , T ~ T~}I cannot be applied because
the control numbers of Y ' Z and T are not equal, and none other production can
derive Y~Z. The axiom can also be derived using the pack { Y Z ~ YZ~,T ~ T~}I,
but we get the same conclusion. Thus the language recognized by Gz is empty. This
problem is solved by considering pairs of integers as control in Gs, the first (resp.
second) field being incremented-when applying a pack that comes from Gt (resp.
G2). So the packs of productions coming from G2 must have 2 as rank (and are then
{ Y Z ~ Y Z ' , T ~ T ' }2 , {Y 'Z ~ Y ' Z ' , T ~ T ' } 2 , { Y " Z ~ Y ' Z ' , T ~ T'}2. The
axiom is now ((X, (0, .L)), (YZ, (0, 0)), (T, (• 0))). • means that this field of the con-
trol is not used by the non-terminal. A possible derivation for G3 is
((X, (0, 1)), (YZ, (0, 0)), (T, (• 0))) ~ ((X', (1, • (r 'Z , (1,0)), (T, (1, 0)))
Now {Y tZ =~ YrZt, T ~ T'}2 is applicable and we get
((X', (1, _L)), (Y'Z', (1, 1)), (T', (• 1)))

:=~* [f,r (s((X, (1, 1))), s((Y"Z, (1, 1))), s(s((T, (1, 1)))))
(s((X, (1, • s((Y"z', 2))), s(s((T', (_L, 2)))))

~[*S p,od~. 1 (s((X, (1,1))), s(s((YZ, (1, 2)))), s(s(s(s((T, (1, 2)))))))
=~ (s((X', (2, • s(s((Y'Z, (2, 2)))), s(s(s(s((T, (• 2)1))1))

(s((X' , (2, 1))), s(s((Y'Z' , (2, 3)))), s(s(s(s((T', (1, 3)))))))
o,,, s(s(s(s(0))))) ~" ree--Woas.:

For lack of space, the general algorithm to compute intersection is not given here.
See [10]. Since the external synchronization property is preserved when computing
intersection, we can do it incrementally, and next we can prove:

L e m m a 5.5 Emptiness of languages recognized by TTSG's built from unification

problems is decidable.

Thus we get the decidability result:

Theo rem 5.6 The satisfiability of linear equations in theories given as confluent,
constructor based, linear, without crin, without nested functions in rhs's, rewrite sys-
tems is decidable. Moreover the set of solutions can be e~Tressed by a tree tupIe

synchronized grammar.

Example 5.7 Let R = (0+x ---* x, ~+0 ---* x, s(x)+s(y) --~ s(s(x+y)), s(x)+p(y) ---*
x + y, p(x) + s(y) --* x + y, p(x) + p(y) ~ p(p(x + y))} that defines the addition in
positive and negative integers. This rewrite system does not satisfy the restrictions
given in the previous works [7, 11, 2, 12, 9, 1, 8, 4] but satisfies ours. Therefore we
are able to solve linear equations modulo this theory.

439

E x a m p l e 5.8 Let rl f (c (x , x'), c(y, y')) ---, c(f(x, y'), f (x ' , y))
y(0,0) o

This system provides an idea of the expressiveness of TTSG's because when solving
the equation f (x , y) = z, the set of possible instantiations of x and y are the binary
trees such that the instance of x is the symmetric of that of y. For example if we
consider the following narrowing derivation issued from f (x , y) :

f (x , y) "-*[e,T1 (~x,x~),u~c(y,,v~)] c(f(ml, y~),/(m~, Yl))

c(c(0,o),0)
the generated substitution is z ~ c(c(O, 0), 0), y ~ c(O, c(O, 0)). Since this rewrite

system satisfies all our restrictions, our method will be able to compute a TTSG that
recognized the solutions, i.e. the symmetric trees.

6 R e l a t e d D e c i d a b i l i t y R e s u l t s a n d C o n c l u s i o n

In the rewrite domain, some authors have already established decidability results for
unifiabitity, assuming some restrictions on the TRS. The first result imposed that the
rewrite system is ground. J.-M. Hullot has extended i t [7] to rewrite systems whose
rhs's are either variables or ground terms (S. Mitra in [11] allows that the rhs's are
data-terms). Actually these results are very restrictive because they forbid recursivity.
In [1], J. Christian defines a new criterion: every rewrite rule lhs is fiat (f (s l , . . . , s ,)
is flat if Vi E [1, n], si is either a variable or a ground data-term) and the rewrite rules
are oriented by a well founded ordering. H. Comon, M. Haberstrau and J.-P. Jouan-
naud in [2] show that decidability also holds for shallow rewrite systems (the sides of
rewrite rules have variables occurring at depth at most one). R. Nien-~-e_~uis ;_u [12]
extends the shallow theories to standard theories that allow non-shallow variables.
The restriction of D. Kapur and P. Narendran in [9], extended in [11] imposes that
for every rule, every subterm of the rhs having a function symbol on top, is a strict
subterm of the lhs. For all these restrictions the theory is finitary i.e. there always
exists a finite complete set of unifiers. Most decidability proofs are thus based on
the fact that there exists a complete narrowing strategy whose search space is always
finite.

As concerns non finitary theories, a decidability result is given by Mitra in [11] for
constructor-based rewrite systems, assuming that for every function symbol f there is
at most one rewrite rule among the rules defining f , that does not have a data-term
as rhs. Moreover this rhs must contain only one function symbol and the subterm
rooted by this function is flat in the sense of [1]. Thanks to the notion of iterated-
substitution, he is able to represent finitely the infinite set of unifiers and decide
unifiability. In [81, Y. Kaji, T. Fujiwara and T. Kasami give a procedure that, when
it terminates, decides unifiability by means of tree automata. They assume linearity
for the goal, right linearity and (nearly) left linearity for the TRS. Unfortunately,
their procedure does not represent the set of solutions, and does not terminate for
an example like {s(x) + y --, s (x + y), 0 + y --, y} because of the superposition of
s(x) with s(x + y). In [4] H. Fafibender and S. Maneth give a decision procedure
for unifiability, without representing the set of solutions. But they need very strong
restrictions : only one function can be defined and every constructor (as well as the
function) is monadic.

440

In opposite to these results, we can solve only linear goals, but our procedure can
decide unifiability for an example like example 5.7 whereas no other work can.

In the future it would be nice to use TTSG's to deal with disunification problem
i.e. finding the substitutions that are not solution of a given equation. This may be
achieved if it is possible to compute the set minus between two languages recognized
by TTSG's . Another way may consist in studying the place of TTSG's in the known
hierarchies of tree grammars. Thus, we would know more precisely which kind of
problems can be treated with TTSG's.

A c k n o w l e d g e m e n t s

We would like to thank A. Bockmayr, H. Comon, A. Despland and E. Domenjoud for
helpful discussions.

References

[1] J. Christian. Some Termination Criteria for Narrowing and E-Unification. In Saragota
Springs, editor, CADE, Albany (NY, USA), volume 607 of LNAI, pages 582-588.
Springer-Verlag, 1992.

[2] H. Comon, M. Haberstrau, and J.-P. Jouannaud. Syntacticness, Cycle-Syntacticness
and Shallow Theories. Information and Computation, 111(1):154-191, 1994.

[3] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. Van Leuven, editor,
Handbook of Theoretical Computer Science. Elsevier Science Publishers, 1990.

[4] H. Faflbender and S. Maneth. A strict border for the decidability of E-unification
for recursive functions. In proceedings of the intern. Conf. on Algebraic and Logic
Programming. To appear., 1996.

[5] R. Gilleron, S. Tison, and hi. Tommasi. Some new decidability results on positive and
negative set constraints. In LNCS, volume 845, pages 336-351, 1994. First Interna-
tional Conference on Constraints in Computational Logics.

[6] Y. Guan, G. Hotz, and A. Reichert. Tree Grammars with Multilinear Interpretation.
Technical Report FB14-$2-01, Fachbereich 14, 1992.

[7] J.-M. HuUot. Canonical Forms and Unification. In W. Bibel and R. Kowalski, editors,
CADE, Les Arcs (France), volume 87 of LNCS, pages 318-334. Springer-Verlag, 1980.

[8] Y. Kaji, T. Fujiwara, and T. Kasami. Solving a Unification Problem under Constrained
Substitutions Using Tree Automata. In Proc. Fourteenth Conference on FST ~ TCS,
Madras, India, volume 880 of LNCS, pages 276-287. Springer-Verlag, 1994.

[9]D. Kapur and P. Narendran. Matching, unification and complexity. Sigsam Bulletin,
21(4):6-9, November 1987.

[10] S. Limet and P. R~ty. E-Unification by Means of Tree Tuple Synchronized Grammars.
Technical Report 96-16, Laboratoire d'Informatique Fondamentaie d'Orl6ans, 1996.
Available by anonymous ftp at ftp-lifo.univ-orleans.fr.

[11] S. Mitra. Semantic Unification for Convergent Rewrite Systems. Phd thesis, Univ.
Illinois at Urbana-Champaign, 1994.

[12] R. Nieuwenhuis. Basic Paramodulation and Decidable Theories. In procedings of the
11th Annual IEEE Symposium on Logic in Computer Science, to appear, 1996.

