
Subtyping Constraints for Incomplete Objects
(Extended Abstract)

Viviana Bono*, Michele Bugliesi**
Mariangiola Dezani-Ciancaglini*, Luigi Liquori*

* Dip. Informatica, Universit~ di Torino, C.so Svizzera 185, 10149 Torino, Italy
** Dip. Matematica, Universit~ di Padova, Via Belzoni 7, 35131 Padova, Italy

A b s t r a c t . We extend the type system for the Lambda Calculus of Objects
[14] to account for a notion of width subtyping. The main novelties over pre-
vious work are the use of bounded quantification to achieve a new and more
direct rendering of MyType polymorphism, and a uniform treatment for other
features that were accounted for via different systems in subsequent extensions
[7, 6] of [14]. In particular, the new system provides for (i) appropriate type
specialization of inherited methods~ (ii) static detection of errors, (iii) width
subtyping compatible with object extension, and (iv) complete freedom in the
order of method addition.

1 In t roduc t ion
In the last ten years, many theoretical studies have addressed the problem of
deriving safe and flexible type systems for object-oriented languages. The in-
terest of these studies has initially been centered around class-based, languages
like Small~alk [16], and has subsequently been directed to delegation-based lan-
guages, such as Self [21]. Despite the conceptual differences between the un-
derlying object-oriented models 1, several ideas originated from the experience
on class-based languages have proved useful in the development of type systems
for delegation-based languages. For instance, the notion of rozv-vaviable intro-
duced by [22] to type extensible records was refined in [14, 7, 15, 6, 20] to type
extensible objects. Similarly, the reeursive record-~ypes, introduced to provide
functional models of class-based languages [11, 9, 13, 12], have then been ap-
plied to characterize object calculi supporting method override in presence of
object-subsumption [3].

A further impor tan t notion that originated in the study of class-based models,
(as well as in the record calculus of [10]) is that of (F-)bounded quanti.[ica~ion as
a tool for modeling the subclass relation. Unlike other notions, to our knowledge,
the role of bounded quantification has not been as yet investigated in the context
of delegation-based languages, where method extension occurs at the object-level
rather than at the class level2: this paper makes a first step in this direction.

1 Briefly: in class-based languages, objects are created by class instantiation and in-
heritance takes place at the class level. In delegation-based models, instead, objects
are created from existing objects used as prototypes, and inheritance occurs at the
object-level.

2 The higher-order system of the Object Calculus [3] does, in fact, use bounded quan-
tification to capture a notion of method extension. However, in this calculus extension
is only allowed on classes, not on objects.

466

The Lambda Calculus of Objects is an untyped h-calculus enriched with ob-
ject forms and three primitive operations on objects: method addition, to define
new methods~ method override, to redefine methods, and method catl~ to send a
message to (i.e., invoke a method on) an object. In [14] a type system for this
calculus is defined, that provides for static detection of errors, such as message
not understood, while at the same time allowing types of methods to be special-
ized to the type of the inheriting objects. This mechanism, that is commonly
referred to as MyType specialization, is rendered in the type system in terms of
a form of higher-order polymorphism which, in turn, uses implicit quantification
over row-schemes to capture the underling notion of protocol eztension.

The type system we present in this paper develops on the original work of
[14] and subsequent extensions [7, 6]. We next briefly review these proposals and
discuss the relations with our present approach.

In [7], an extension of the system of [14] is presented that gives provision for
subtyping. The subtype relation arises from using labeled-types to allow methods
to be "hidden" from the type of an object, subject to the constraint that "hidden"
methods are not referenced to by other methods in the type.

In [6], an orthogonal extension of [14] is proposed that allows objects to
be typed independently of the order of their method addition 3. This flexibility
arises in [6] from introducing the notion of completion, a complement to interface,
to convey information on (the types of) methods that are not available from
the object, and yet are referenced to by the methods of the interface. Besides
allowing a more flexible typing of methods (in particular, of mutually recursive
method definitions), this extension also gives provision for method invocation
when the receiver of the message is an incomplete object, i.e. an object whose
implementation (i.e. the set of its methods) is only partially specified.

The approach we take in this paper combines the mechanism for subtyping
proposed in [7] with a support for incomplete objects, peculiar also to [6], that
allows prototypes to be defined, and operated with as well, while part of their
implementation (i.e. their methods) is yet to be defined. As a result, the present
type system supports the following features:

�9 appropriate method specialization of inherited methods;
�9 static detection of errors, such as message-not-understood;
�9 "width" subtyping compatible with method extension;
�9 complete freedom in the order of method addition.

The main novelties over previous work are a uniform treatment for the features
that were accounted via different systems in [14, 7, 6], and a new and more direct
rendering of MyType polymorphism for method bodies.

In [14, 7, 6], type specialization is captured by introducing notions such as
row-variables, higher-order rows and row-application which, in turn, require a
rule o f /3 - reduc t ion in the calculus of rows and types. Here, instead, method
specialization is rendered directly in terms of subtyping and (implicit) bounded

3 In [14] the addition of an m method to an object can be typed only if all the methods
that are referenced to (via message send or method override) in the body of rn are
already available from that object.

467

quantification. Technically, the new solution is based on allowing in our contexts
occurrences of type-variables that are subtypes of suitable class-types (i.e. types
of objects). These type-variables, which are implicitly universally quantified, are
used within the types of methods to build methods as polymorphic functions.
The subtyping constraints are then used to enforce correct instantiations of the
method types as these methods get inherited.

Although the original system appears superior to the present one in terms
of a possible encoding in L F [17], the new system does have the advantage of
reducing the technical overhead of the calculus of rows and types in [14] and
subsequent extensions, and hence to allow a simpler and more direct proof of
Subject Reduction.

The rest of the paper is organized as follows. In Section 2, we briefly overview
the untyped calculus of [14] with the operational semantics of [7]. In Section
3, we present the new typing rules for objects. Some motivating examples are
presented in Section 4, while, in Section 5, we prove type soundness. Finally, we
conclude in Section 6 with some additional remarks, and a discussion on related
papers.

2 T h e U n t y p e d Calculus
An expression of the untyped calculus can be any of the following:

e ::= = l c l ~ z . e l e l e 2 l 0 l e ~ m l (e l ~ m = e 2) l e ~ m l e r r ,
where z is a variable, c a constant and m is a method name. The reading of the
object-related forms is as follows:

0 is the empty object;
e ~ m sends message m to object e;
e ~ m searches the body of the ra method within object e;
(el~-o m--e2) extends object ei with a method m having body e2;
err represents run-time errors.

As in [14], the expression (e~-o m--e2) is typeable only when el has a type whose
interface does not contain the ra methodi the difference, here, is that methods
may be added to the same object more than once, provided that they are hidden
from the interface of the object-type prior to a new addition. Note also that
method addition is the only operator available for modifying the structure of
an object: as we shall see, the rules for subtyping allow a uniform treatment
of the operations of addition and override (that were instead distinguished in
[14, 7, 15, 6]) without affecting static typing (see Section 3.2).

Besides method addition, the other main operation on objects is method in-
vocation, whose intuitive semantics may be stated as follows: when an object e
containing an m method is sent the message m, the result is obtained by apply-
ing the body of m to the object e itself. In defining the operational semantics
of the calculus, we must therefore give, besides the rules of f~-reduction and
method invocation, also a mechanism for extracting the appropriate method out
of an object. As suggested in [14], a natural way to approach this is to use a
permutat ion rule like the following:

468

whenever m and n are distinct method names. Given this equational rule, the
semantics of method invocation would then be stated simply as a reduction from
the message sent (el~--o m=e2) ~ m to the application e2 (el~-O re=e2). In [6],
it is shown that this form of method permutat ion can be soundly accounted in a
system without subtyping. Unfortunately, however, in the presence of subtyping,
permuting the order of two method additions within an object may change the
type of the object, thus making the above equation unsound.

Therefore, in the definition of the operational semantics, we adopt a different
solution that uses the search operator %-" to inspect the structure of objects
and perform method extraction. The core of the operational semantics is given
by the following reduction rules:

(#) (,x~,.eD e, ---, [e~./~,] el
(~) e ~ ,~ --~ (e ~ , ,) e

(,-~ , ,e~) (e , ~ , ,=e~) . ~ ~ --, e~ ~ . ~ .

The rule (fl) is standard, while the remaining rules formalize the semantics of
method invocation as the result of search and self-application: evaluating e ~ m
leads to evaluating the application (e ~ m)e , where e ~ m returns the body
of the m method that is then applied to e itself. Method search is performed
by a recursive traversal of the "sub-objects" of e that succeeds upon reaching
the right-most addition of the method in question. The use of search expressions
in our calculus is inspired to [7], and it provides a more direct technical device
than the bookkeping relation originally introduced in [14]. Type soundness for
this extraction mechanism is a direct consequence of subject reduction, while it
required the definition of an evaluation strategy with mutually-recursive func-

tions in [14, 6].
The reduction relation includes additional rules (given in Table 1) that capture
"incorrect" computations leading to run-tlme errors. The operational semantics

~ l is then defined as the reflexive, transitive and contextual closure of the

reduction relation.

~=l (fail abs) Am.e ~ n .> er r (fail O) O ~ '~ ~ err
e~aI

eva! (e r r e --~) e r r ~ n } e r r (err appl) er r e , err
Table 1. Rules for er r .

3 S t a t i c T y p e S y s t e m
The type system gives provision for incomplete objects in ways similar to [6].
Incomplete objects behave operationally as "standard" objects whose methods
may be invoked via corresponding messages. Their typing, instead, is different,
in that an incomplete object may be typed even though it contains references
(via message sends or extensions) to methods that are yet to be added. The type
of an incomplete object is defined by a class-type expression of the form:

r ~ . (- ~ 1 : ~ 1 , �9 �9 � 9 -~:~} ~ (p l m , . . - , p , : ~ ,),
where the rn/'s and pi's are method names, whereas the ~ ' s and the 7~'s are
labeled types (whose role is discussed below). Given the above class-type, we

469

refer to the two components (m z : a t , . . . , m ~ : a ~) and (PI: ' r t , . . . ,PI:71) as, re-
spectively, the in,efface- and eomple~ior~-rows of the type. The binder c l a s s
scopes over the two rows, and the bound variable ~ may occur free within the
scope of the binder, with every free occurrence referring to the class-type itself.

The interface-row of a class-type describes all the methods (and their types)
that have been added to the objects of that type. The completion-row, instead,
conveys approximate information on (the types of) the methods that have not
been added to an object, and yet are referenced to by the methods already
available from that object. Thus, intuitively, methods listed in the completion-
row of a class-type are those methods that are needed to "complete" objects with
that type. The ability to give a type to an object, even though it is incomplete,
derives from the use of labeled-types. Labeled-types bear essentially the same
meaning as in [7]: if a -~ r a is the labeled-type of an m method within an object,
then A provides the names of the remaining methods of that object upon which
m may depend. Unlike [7], labels contain also indirect dependencies, i.e. the label
A contains the names of the methods referenced to by m in a send or an override
for self, together with the methods referenced to by these methods and so on.
This encoding still allows new types to be derived, by subtyping, from a given
class-type: the new types arise from hiding, from the rows of the given type,
(types of) methods that do not occur in the labeled-types of the methods which
remain in the interface-row.

3.1 T y p e s a n d R o w s

The type expressions include type-constants, type-variables, function-types and
class-types. The symbol L denotes type-constants, ~, u, and v denote type-
variables, g, r , p, denote types, whereas a, fl, 7, denote labeled-types. All sym-
bols may appear indexed by integers.

The set of labels, rows, and types are defined inductively as follows:

Labels A ::= { m l , . . . , m~} (k > 0)

Rows R : : : (} [(R [m:TA} with m ~ A4(R), m r A

Types r : :=bl t]r-~r]c lass t .RloR2 withA4(R1) A A 4 (R 2) = { }

where the set A4(R) of method names of a row R is inductively defined by:
and

Row expressions that differ only for the order of m:~ pairs, or for the name of
the type-variable bound by c l a s s are considered identical.

Although the interface- and completion-rows of a class-type are structurally
equivalent, we will often find it convenient to distinguish their role by choos-
ing different labels, namely, R and C stand for arbitrary interface-rows and
completion-rows, respectively.

As an important remark, we note that, in contrast to the systems of [14, 7,
6], our types are defined independently from row-variables, higher-order rows,
applications of rows to types, and kinds. This allows a simplification over these
proposals as, having no fl-reduction for types, our type derivations are in normal-
form by construction.

470

The contexts are defined a follows: P ::= r I P, ~ : T I /~, U -4 r . Judgments have
the f o r m / ' t - . , _P }- e : r , and _P F- T1 -4 T~, where /" }- * can be read as "/" is a
well-formed context" and the meaning of the other judgments is the usual one.
Table 2 shows the formation rules for contexts.

(~) (.~)
P , F, z:r ~- *

P } - , u ~ / " u ~ T F F A P , r ' } - *
(~ va t) (weak)

F; u ___ T t- * F , /w F A

whe re / " }- A is any judgment .

Table 2. Rules for Contexts.

3.2 S u b t y p l n g

The subtyping rules are listed in Table 3. The rules for constants, reflexivity,
t ransi t ivi ty and for the arrow-type constructor (that behaves contravariantly in
its domain with respect to the -4 relation) are standard: the two rules related to
width subtyping over class-types are discussed below.

The ('~h~]~) rule allows methods (together with their types) to be moved
from the interface-row to the complet ion-row of a class-type. The ("~hide) rule
is the classieal rule of subtyping in "width" that allows generalizing a class-type
to other ~tass-types containing fewer methods (types). The condition ~ ~ s
ensures tha t the remaining methods do not use the methods ~.

r } - * u ~ r 6 F P}-*
- (-.< p,,oj) (-4 refl)

F P u - < T F F T - 4 T

P F o ' - 4 r E F ' r - 4 p F P a ' - ~ a F?r- -<r '
(-4 ~ , .a ,~s) - - (-4 , . . , . o ~ ,)

' r ~ cr -4 p F ~ cr--*r -4 a'--*r'

P P ,
(___,h~:,)

r e r I m:~) o c _~ r o (c I m..~)

r e , ~ ~ z(~)

where s denotes the set of method names occurring in the labels of ~, i.e:

s and s T~)=f.(-d) U A.
Table 3. Subtyp[ng Rules.

4 The vectornotation - has the usual meaning.

471

Notice that, although (-z, uia,) hides only methods which are in the completion-
row, the combination of (___,~) and (__h~&) allows methods in the interface-row
to be hidden, by first moving them to the completion-row. Hence, the combina-
tion of (~,hif ,) and (___U~d,) leads to the same subtype relation ove~ class-types
as in [7]: a set of methods may be hidden from the interface-row of a class-types
only if no method in the set occurs in the dependency set of the remaining meth-
ods of the interface. Since labels are enforced to provide a sound representation
of the dependencies of a method (see the (e ~ , ~) rule in the next subsection),
hiding of methods may safely be done looking at the method labels without
imposing the covariance constraints on the occurrences of the bound variable
peculiar to the standard subtype rules for recursive record-types.
3.3 T y p i n g Ru le s

The full set of typing rules is presented in Table 4. The rules (proj), (ezp app~
and (ezp abs) are standard; the subsumption rule (_) is used in conjunction
with the subtype relation to account to type promotion. The remaining rules
are described next.

The rule (0) should be self-explanatory: since the empty object contains no
method, it needs no further method to be completed.

e l - , z : r E ? ?, z :n ~ e:r=

I" I- z : r 1" I- A~.e:rl--+rz

/~F-el:rl~r2 /'}-e2:rl / ' t - e :~ r F~-cz-<r
(ezp appl) - (___)

-P ~- e~e~:~-~ _P ~- e : ~-

_P F- * _P F- e: (r _P ~- ~ ~ c l a s s l . (~ , n : r { m - - - }) o O
(<))

fl-e~:classtRoO m:~ERoC n,~Tat4(R) uAz((C)
r, ~ ~ ~1.~.(~--~,p-r-~,.:~,~))oO V ~= : [~I~](~-+~)

(send)

r e (e,~o ,=e=) : ,~,,,,.(R I -:~.D)o(C I~)

r ~ e l : ~ r ~ ~ ~ ~Za,~.Oo(~.--.-<n:~{~)

F ~- e: class%.(n:T{m---})o(~.--:-:~) F l- = _ ciass,.(~--~, n:r{=--})o 0

r x ~ ~ n: [~/t](~-~)

Table 4. Typing Rules.

(8 ~ a , c h)

The intuitive reading of the (send) rule is as follows: according to the sub-
type relation, the type a above will, in general, have the form s c l a s s t (R I

5 There is a subtler point here, that explains the use of the generic type ~ instead

472

m:ct, n:7-{~})oC, for any R and C, provided tha t no method-name of _R and C
occurs in the labels of either ~ or n. Accordingly, in order to type a method
invocation for an n method on an object e, we require (i) that e contains (in
its interface-row) the method-name n, and (ii) tha t every method contained in
the label associated to the type of n is also contained in the interface-row of the
type of e. The substitution for ~ in r in the conclusion of the rule reflects, as in
[14], the recursive nature of class-types.

To explain the typing rule for method addition, we distinguish the case when
the n method to be added does not occur in type of the object tha t gets extended,
from the case when it does.

In the first case, we need to determine the labeled-type of n, and possibly
to extend the completion-row with new methods referenced to by this method.
This is accomplished by the rule (ez~e~), where m:c~ E R o C indicates tha t the
m : a methods are contained in R o C, whereas the condition n, ~ ~ A4 (R)UA4 (C)
ensures tha t the final type will be well-formed. The intuitive reading of the rule
is as follows. First we note that n may, in general, depend on methods tha t are
already contained in the object as well as on methods that are yet to be added.
Accordingly, the label associated to the type of n includes the ~ methods tha t
are already present in the type of el, and the ~ that are, instead, new. Note,
further, that all of these methods (i.e. the ~ and ~ methods) are assumed to
occur in the interface-row of the type tha t constrains u in the typing of e2: this
guarantees that the choice of {~ , ~} as the label o f n is a sound representation of
the dependencies of n. To see this, consider the case when e~ = :~self.(self~p),
for a given method p. Then, an inspection of the (send) rule shows that , in order
for the invocation selfc=p to be typeable, the interface-row of the type of self
must include not only p, but also all of the, say, ~ methods in the label of the
type of p. But then, the label of n must include p, a direct reference, as well as
the ~ methods that n references indirectly via p. Note, finally, that , as in [14],
the type of n has the form t --* ~- (with a class-type substi tuted for 4) to conform
with the self-application semantics of method invocation. The difference is in the
way polymorphic types of method bodies are instantiated to allow applications
to extended objects. Instead of introducing row-variables, we allow applications
of e2 to any object of type u with u subtype of classt . (rn:a,p:7, n:T{~,p-})o().

The other case of method addition arises when the n method occurs in the
type of the object el tha t is being extended, and it is handled by the rule
(ezto,,~). There are two possible situations that may lead to this case: either n
has already been added to el (in which case, the addition is, operationally, an
override) or it is referenced to by other methods of tha t object. In the first case, n
occurs in the interface-row of the type of e 1, in the second in the completion-row.
However, as we anticipated, these two situations may be dealt with uniformly
by assuming tha t n occurs in the completion-row, where it can be moved by
an application of (___sh~f~). Similarly to the case of the (send) rule, el above

of the indicated type. The point is that when e is a variable (e.g. self) ~r may as
well be a constrained type-variable occurring in the context F. This allows method
invocations inside the bodies of methods.

473

will, in general, have the type P el : c l a s s t . R o C ' , with m:a ,n : r{~} E R o C,
where the n and ~ methods do not depend on other methods of R o C (this
is ensured by the choice of ~ as the label of n, made when typing el). The
constraint for o" is then mot ivated by the fact tha t every type that satisfies
these constraints is a subtype of c l a s s t.(}o(~---~, n:v{~}). Finally, as for (send),
the generality that derives from the use of the type ~ is needed to carry out
derivations in which the (ezto~e~) rule is applied when el is a variable (e.g. sel~.
Propagat ion of labels may be observed as in the example above, now taking
e 2 = Aself.(self~-o m=As.(s~p)) where p is, say, a constant method (whose
type has an empty label).

We conclude with the rule (search) for typing a search expression. The in-
tuitive reading of the rule is as follows: first note that the e ~ n expression is
error-free only if e is an object that contains the n method and its dependencies;
when this is the case, the result of e ~ n is the body defined by the last addition
of the n method. Then, it follows that in order for e ~ n to be typeable, the
type of e must contain n as well as its dependencies re:a, with the additional
constraint that n must occur in the interface-row of the type, so as to guarantee
that e does indeed contain the n method. This explains the left judgment in the
premises of the above rule; as for the remaining judgment , since the result of
evaluating e ~-, n is the body defined in the last addition of n to e, its type may
be chosen to be any instance of the type we deduced for this body when it was
added (see the (extent) rule).

4 E x a m p l e s

The following two examples help illustrate the distinguishing features of our type
system, and relate it to previous proposals (see [5] for other examples). To ease
the presentation, we use (m = e> as short for (()~--~ m --- e) and we assume that
omit ted labels represent the empty set.

Con tex t s

-P0 = u _ r mv:(int__+~){x})O 0 /'i = /~o, self: u, dx: in~
r~ = r l , v _-5 e z a s s t . (x : i n t) o 0 r~ : r~ , s : v

Der iva t ion

1. P3 ~ (s e l f ~ x) + dz : int
by (send) from Fa F- self : u, and Fs l- u -< elasst.(x:int)oO.

2. -P2 ~- As.(self r x) + dx : v-~int

by (exto~e~) from/'1 k s e l f : u, /~1 P u -~ zZasst .0o(x: int) , and 2.

s . . ~ i v : .Z~sst.(.~:(in~-~O{.})o(x:int)
by (ext,,t) from e ~- () : c l a s s t . O o O , and 4.

Table 5.

E x a m p l e 1. This example shows that our typing rules allow complete freedom
in the order of method additions. Let i p be the following incomplete object:

474

ip ---- (my ~- Aself.Adx.(self+-o x ---- As.(self ~ x) d- dx>).

While this object cannot be typed in the system of [14], Table 5 shows that ip is
typeable in our system. From this, we may easily derive the expected judgment:

e <ip x = Asel .S> :

Example 2. This example illustrates one interesting difference between our
system and a related extension of the system of [14] presented in [15]. In this
latter paper, subtyping arises from introducing two distinguished sets of object-
types: pro-types, and obj-types. These types are ordered by the subtype relation,
so as to allow pro-typed objects to be "packaged" to produce corresponding obj-
typed objects.

Objects having pro-types may be freely operated with (they may be sent
messages, or extended with new methods, or modified by overriding existing
methods), but only trivial subtyping is allowed over pro-types. On the other
hand, objects having obj-types may only respond to messages, or modify their
own structure from the "inside" (i.e. via overrides on self within their own
methods), whereas they may not be modified or extended from the outside.

Preventing from outside extension and override allows "width" and "depth"
subtyping for obj-types, provided that the bound type-variable of an obj-type
does not occur in contravariant position. This distinction between pro- and obj-
types has other interesting consequences: first it gives insights into the different
nature of the inheritance and client interfaces of objects and classes in object-
oriented languages; secondly, as shown in [15], it allows a quite natural modeling
of method encapsulation. However, the resulting type discipline does not allow to
type some expressions that we can deal with. To illustrate the problem, consider
the following function:

plot ~ Ap.(p~--o c----As.white),

which can be viewed as a mapping of one-dimensional points to colored-points.
The following judgment is easily derived in our type system:

plot: class .(x:i)oO r c: oZ) oO.
Then, given a colored point cp of type, say, classt.(x:inr c:col)o O, we may
safely apply p lo t to cp because, by subtyping, we have cp : c lass t . (x : in t}o0 .

This simple property is lost in the system of [15]. In fact, having distinguished
obj- and pro-types, we may prove that:

p l o t :

where probj is either pro or obj, but we eanr~o~ prove that:

p l o t : obj
This is because p lo t modifies its input argument with a method addition, an

operation that is only allowed on pro-types. But, then, there is no way that we
may type an application of p lo t to the colored point cp. In fact, we may either
take cp to have type obj t.(x:in~) or type prot.(x:in~, c:col), but, according to
the subtype relation of [15], neither of these types is a subtype of pro t.(x:in~)
(since pro-types are subtypes of obj-types, but not vice-versa, and "width"

subtyping is not allowed over pro-types).

475

5 S o u n d n e s s o f t h e T y p e S y s t e m
We conclude the description of the type system stating soundness. We first show
that types are preserved by the reduction process. Due to the lack of space, we
can only state the result: the reader is referred to [5] for a detailed proof of the
following theorem.

e v a /
T h e o r e m l (S u b j e c t R e d u c t i o n) . I f F ~- el : T iS derivable and el ,, e2,
then 1 ~ ~ e2 : "r is also derivable. []

The subject reduction property shows the power of the type system. Labeled-
types not only allow a restricted form of subtyping that enriches the set of
typeable objects, but they also fit well with the operational semantics based on
the ~ operation: in fact, the typing rule for the ~ expression is based on the
information given by the labels.

Since an e~az step produces the object err (which has no type) when a mes-
sage m is sent to an expression which does not define an object with a method
m, the type soundness follows directly from Theorem 1.

T h e o r e m 2 (T y p e S o u n d n e s s) . / f e F- e : T is derivable for some r, then ~he

evaluation of e canno~ produce err, i.e. e e]~z err . []

6 C o n c l u s i o n
We have presented an extension of the Lambda Calculus of Objects [14] with a
new type system that gives provision both for incomplete objects, in the style
of [6], and for a relation of "width" subtyping in the style of [7].

The main technical tool of the new system is represented by labeled-types,
that are central both to the subtype relation and to the rendering of method
polymorphism based on bounded quantification. While it could be argued that
labels may be costly to handle and somehow difficult to explain, it should be
noticed that their use is relevant to the soundness of the system and not to the
meaning of types. Notice, in fact, that labels are inSroduced (i.e. computed) upon
object extension, in the (emt~=z) rule, and then only used in the rules (ezt),
(send), (search) and in the rules that define the subtype relation. In particular,
labels are computed in the application of (ezt~=~) by looking at the set of method-
names occurring in the bound of the variable u used in the typing of method
bodies. Therefore, in principle, the system can infer labels automatically, and
then simply verify that the application of the rules (e~to~) , (send), and (_~)
do respect them. In this way labels would be made transparent from '%utside"
class-types (hence, to the user of the system) and would only serve as "internal"
devices needed to ensure type soundness.

A system that exhibits features comparable to our system is Baby Modula-3
[1] which, however, we generalize in two respects: (a) we allows object extensions
and subsumptions in any order, while Baby Modula-3 requires that all the ex-
tensions be done before the subsumptions; (b) our completions may be extended
as a result of a method addition~ while in Baby Modula-3 completions are fixed
ahead of time, prior to any addition. A feature of [1] which we do not provide,
even though we could, is the distinction between fields and methods, that allows
one to isolate the state of an object from the operations on the state.

476

Another related paper is [20], which combines row-variables and refined sub-
typing in presence of extensible objects. There are similarities with our pro-
posal, in particular in that our interface and completion-rows behave simi-
larly to the Pre types and Maybe types of [20]. On the other side, the sub-
typing of [20] is weaker than ours, since for example one cannot derive that the
type "colored point" a subtype of "point", i.e. that classt.(x:int, c:col}o {} -~
c l a s s t.{x:int}o(} using our notation. Also, unlike [20], we do not require object-
types to be total functions from names to types and we disregard row-variables
by taking advantage of subtyping. Finally, our system appears to be more lib-
eral in the typing of objects, since we allow incomplete objects to be typed,
and the same method to be hidden and later safely redefined with a possibly
incompatible type, two features that are not accounted for in [20].

Further remarks concern [15]. On one side, we allow to do extensions, over-
rides and subtypings on the same object in any order, while [15] forbids to extend
or override objects for which we already used subtyping. On the other, method
encapsulation is not accounted in our system and is instead provided in [15]. To
this regard, we note that the solution proposed in [15] could be accommodated
just as well in our system. As in [15], we would need to distinguish the types
of prototypes from the types of objects, so as to allow altering the structure of
the former with method additions and overrides while instead preventing such
operations to be applied to the latter. Methods of a complete prototype (i.e. a
prototype whose completion-row is empty) could then be "sealed" (hence en-
capsulated) within the object corresponding to the prototype exactly as in the
system of [15].

A few other studies on delegation-based languages have recently been pro-
posed as elaborations of the Lambda Calculus of Objects and related calculi:

[19] presents a (decidable) typed version of the original calculus of [14];
[18] adds object extension and width subtyping to the system of [3];
[4] presents a type system for the Lambda Calculus of Objects based

on matching.
In particular, the system of [4] and the one of this paper share the same idea
of using bounded type-variables to capture polymorphic method-types. The key
difference is that [4] uses a simplified notion of matchi~.g [8, 2] (without subsump-
tion) and match-bound variables, whereas here we use subtyping and subtype-
bound variables.

It should also be mentioned that [4] proves that bounded type-variables and
row-variables have the same expressive power, more precisely the systems of [4]
and [14] derive the same judgments from the empty basis s. Instead there is a
trade-off between the present system and that of [14], since on one side we add

s There are also examples suggesting that bounded type-variables can replace row-
variables when the context is not empty, like the following judgment typing compo-
sition of two messages:

477

subtyping, while on the other side, the use of labeled types prevents us from
deriving some judgments which are valid in [14].

Acknowledgments . The present version of this paper has strongly benefitted from
comments and remarks by an anonymous referee that the authors like to thank.

R e f e r e n c e s
1. M. Abadi. Baby Modula-3 and a Theory of Objects. Journal of Functional Pro-

gramming, 4(2):249-283, 1994.
2. M. Abadi and L. Cardelli. On Subtyping and Matching. In ECOOP'95, LNCS

952, 145-167. Springer-Verlag, 1995.
3. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
4. V. Bono and M. Bugliesi. Matching Constraints for the Lambda Calculus of Ob-

jects. In TLCA '97, LNCS. Springer-Verlag, 1997. To appear.
5. V. Bono, M. Bugliesi, M. DeT.ani-Ciancaglini, and L. Liquori. Subtyping Con-

stralnts for Incomplete Objects. Technical Report CS-34-97, Computer Science
Department, Turin University, 1996.

6. V. Bono, M. Bugliesi, and L. Liquori. A Lambda Calculus of Incomplete Objects.
In MFCS'96, LNCS 1113, 218-229. Springer-Verlag, 1996.

7. V. Bono and L. Liquori. A Subtyping for the Fisher-Honsell-Mitchell Lambda
Calculus of Objects. In CSL'94, LNCS 933, 16-30. Springer-Verlag, 1995.

8. K.B. Bruce. A Paradigmatic Object-Oriented Programming Language: Design,
Static Typing and Semantics. Journal of Functional Programming, 4(2):127-206,
1994.

9. L. Cardelli. A Semantics of Multiple Inheritance. Information and Computation,
76:138-164, 1988.

10. L. Cardelli and J.C. Mitchell. Operations on Records. Mathematical Structures in
Computer Sciences, 1(1):3-48, 1991.

11. L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction and Poly-
morphism. Computing Surveys, 17(4):471-522, 1985.

12. W. Cook, W. Hill, and P. Canning. Inheritance is not Subtyping. In POPL'90,
125-135. ACM Press, 1990.

13. W.R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown Uni-
versity, 1989.

14. K. Fisher, F. HonseU, and J. C. Mitchell. A Lambda Calculus of Objects and
Method Specialization. Nordic Journal of Computing, 1(1):3-37, 1994.

15. K. Fisher and J. C. Mitchell. A Delegation-based Object Calculus with Subtyping.
In FCT'95, LNCS 965, 42-61. Springer-Verlag, 1995.

16. A. Goldberg and D. Robson. Smalltalk-80, The Language and its Implementation.
Addison Wesley, 1983.

17. R. Harper, F. Honsell, and G. Plotldn. A Framework for Defining Logics. J.ACM,
40(1):143-184, 1993.

18. L. Liquori. An Extended Theory of Primitive Objects. Technical Report CS-23-96,
Computer Science Department, Turin University, 1996.

19. L. Liquori and B. Castagna. A Typed Lambda Calculus of Objects. In Asian'96,
LNCS 1179, 129-141. Springer-Verlag, 1996.

20. D. R~my. Refined Subtyping and Row Variables for Record Types. Draft, 1995.
21. D. Ungar and R. B. Smith. Self: the Power of Simplicity. In OOPSLA '87, 227-241.

ACM Press, 1987.

22. M. Wand. Complete Type Inference for Simple Objects. In LICS'87, 37-44. Silver
Spring, 1987.

