
Let-Polymorphism and Eager Type Schemes

Chuck Liang

Department of Computer Science
Frostburg State University
Frostburg, MD 21532, USA

Abstract . This paper presents an algorithm for polymorphic type in-
ference involving the l e t construct of ML in the context of higher order
abstract syntax. It avoids the polymorphic closure operation of the al-
gorithm W of Damns and Milner by using a uniform treatment of type
variables at the meta-level. The basic technique of the algorithm fa-
cilitates the declarative formulation of type inference as goal-directed
proof-search in a logical frameworks setting.

1 I n t r o d u c t i o n

Formulations and algorithms for the assignment of principal types to untyped A-
terms have long existed before Damns and Milner [2] extended it to involve the
polymorphic l e t construct of functional programming languages (ML). They
formulated a declarative, proof-theoretic calculus for the ML type system, given
here in Figure 1. Unfortunately, this calculus does not by itself lead directly
to an inference algorithm that yields principal type schemes. For this purpose
the algorithm "W" was given. Algorithm W requires the polymorphic closure
operation called gen (or close) in typing let-expressions. Together with the
unification algorithm, this operation ensures maximal generality of the type
scheme for the locMly-bound term in l e t expressions. With respect to the orig-
inal Damas-Milner calculus, gen effectively represents a forward-chaining step.
Its introduction obscured the relationship between the declarative type system
and the type-inferencing process (and a proof of completeness for W was not of-
fered until Damns' thesis). In particular, we shall show that algorithm W entails
an unnatural treatment of free and bound type variables. A common practice
is to bypass l e t by replacing let x = M in N with N[M/x]. This replacement,
however, is unsatisfactory because it leads to redundant inferences. The problem
with gen becomes especially acute when one tries to formulate type inference
in the context of logical frameworks, which are meta-theoretic environments de-
signed to support the syntax of object-level theories in a natural manner. It is
advantageous to formulate principal type inference, in such frameworks, as deter-
ministic proof search (in the manner of logic programming). Numerous attempts
have been made along these lines (eg, Pfenning [3]), all of which were limited by
complications involving the gen operation. We aim to provide an alternative to
algorithm W (more specifically to using polymorphic closure) which will facili-
tate the formulation of polymorphic typing in declarative settings such as ELF
[8], Coq [4], Isabelle [16], /kFrolog [14], among others.

491

Proj H F z : T , x : T E H

H , z : s F M : t

a b s H ~-) , z . M : s ~

H F M : s - + t H F - N : s
app H F (M N) : t

H F M : S H , x : S F - N : t
let H F l e t x = M i n N : t

H t - M : T (anot free in H)

/ / - I n t r o H F M : IIa.T

H F M : H a . T
H-El im H F M : T[s/a]

(s, t represent unquantified types; S, T represent arbitrary type schemes)

Fig. 1. The Damas-Milner Calculus [2]

In this paper we present an algorithm for type inference that avoids the use of
the t en operation. This algorithm will be presented in a meta-language based on
the simply typed A-Calculus, which is also the language used in several logical
frameworks and logic programming interpreters. In particular, we shall show
how the proper scQping of type variables can be formulated using A-abstractions
and how the polymorphism of types can be implemented with the simple rule of
c~-conversion.

This paper is organized as follows. In Section 2 we discuss and present the
algorithm. In Section 3 we give some sample type inferences using the algorithm.
Sketches of correctness proofs are given in Section 4. We then describe how the
algorithm is implemented in a declarative setting in Section 5. In Section 6
we discuss the significance of our technique with respect to related research in
conjunctive typing disciplines, including those of Leivant [12], Appel and Shao
[1], among others.

2 F r e e , B o u n d , a n d " F u g i t i v e " V a r i a b l e s

Technically, the algorithm W infers types, and not type schemes. Let ~ denote
v, , �9 �9 v,~. Whenever a typing assumption f : HV-~.t is used, a "copy" of the
type t[g-~/~--~] is created using a set of new free variables }-m-re. This occurs uni-
formly except in the l e t case, when type scheme inference takes place in the
form of applying gen. The technique we use approaches type inference from the
opposite direction. Here type scheme inference is the default. In other words,
we shall always try to keep type variables/ /-quantif ied as much as possible. If
the typing of a compound expression e requires two instances of a type scheme
IIg.t , this is made possible by appending two copies of the quantifier prefix to

492

m

yield HV--~Hv~.s, where s is the type of e. New free variables are un i formly
replaced by new / / - b o u n d variables. Typ ing conflicts are resolved post-hoc to
prevent over-general izat ion.

We now present the a lgor i thm in detail. The a lgor i thm takes advan tage of
the fact t ha t in practice, only closed type envi ronments are needed. Wi th closed
envi ronments , all free type variables tha t are dynamica l ly in t roduced during the
type inferencing process can be safely discharged (H-quant i f ied) upon successful
comple t ion of the process. As in Damas-Mi lner , only in the induct ive proofs of
correctness need we be concerned with the more general case of open environ-
ments .

Define an extended type environment H~ to be a m a p p i n g f rom p r o g r a m (or
t e rm) variables z to s t ructures of the fo rm AV-A-~.(G t), which we shall refer to as
eager type schemes. Here, rr is a subs t i tu t ion on type variables and t is a type
such t ha t or(t) = t. The meta- level binding construct A quantifies over the type
var iables ~-A-~, which m a y occur anywhere in the subs t i tu t ion- type pair ((r, t) . The
intui t ive mean ing of this m a p p i n g is tha t x m a p s to the potential type scheme
II-ff-~.t if the subs t i tu t ion o" is applied to the current type envi ronment . The
a lgor i thm, which we shall call WH, is given in Figure 2.

WH(HG x) = H~(x), for program variable x.

WH(H~; Ax.M) = let a be a new type variable, and let

WH(H~,x ~-~ (0,a); M) =~ AF~.(a, t).

Return d a d ~ . (G cr(a --+ t)).

W~(H,; (M N)) = let

W~(H,; M) = ~ AF-~.(crl, tl), and WH(H,; N) = ~ A~--~.(cr2, t2)

such that the bound variables ~ are distinct from F-ff~. For a new type
variable b, let ~ be the most general unifier of tl and t2 ~ b. Let ~r =

j oin(tg , ~2, or1).
Return AbA~-~AF-~.(a, a(b)).

WH(H,; let x = M in N) = let

WH(H~; M) = ~ AF-~.(crl, tl), and

W~(H~, (x ~-+ AF~-~.(~I, tl)); N) = ~ d~-~.(cr~, t2)

such that ~ are distinct from F-~. Let a ----join(a:,~l).

Return A~-~A~-ff~.(a, a(t2)).

Fig. 2. Algorithm Wzr

493

For an extended type environment He and a program expression M,
Wrt(H~; M) returns a structure AV-A-m.(~r, t). Let l~ represent the empty (or iden-
tity) substitution. We use only idempotent substitutions (0 o 0 = 0). The opera-
tion join is borrowed from Leivant [12]. Given substitutions St , . . . ,S ,~ ,
jo in(St , . . . ,S ,~) = R such that for each Si in S1 , . . . , Sn there is a substitu-
tion Pi such that Pi o Si = R. Furthermore, if R ~ also satisfies this property then
there is a substitution P such that P o R = R ~. That is, jo in(S1 , . . . , S~) is the
most general common instance of S I , . . . , S~ (if it exists). The join operation
can be implemented using the standard unification Mgorithm.

The use of c~-equivalenee (=~) in the definition of the algorithm is appropriate
since the A binder is conveniently represented by A-abstraction of the A-calculus.
This amounts to using higher-order abstract syntax [17] for our presentation. We
use "A" to distinguish it from the "A" used in program expressions.

To explain how this algorithm is used relative to a regular (non-extended)
type environment, we define the following:

D e f i n i t i o n 1 (Base E x t e n s i o n) . Given a type environment H, let HI" repre-
sent the extended type environment that includes (x ~-~ A ~--'~.(~, t)) for each
(x : f/vA-~.t) ~n H.

For a c losed type environment H, if Wg(H~; M) succeeds with Ag-~m.((7, t)
then it will be the case that (~, t) contains no free variables. We can then conclude
that H ~- M : IIV~.t.

The critical point in WI~ where "free variables" are dynamically introduced
into an environmen~ occurs in the typing of a A-expression Ax.M. Here x is
assumed to have type a, where a is a new type variable. This variable is free only
in the dynamic, temporary environment. It will be captured by A-abstraction
when the top-level type scheme of Ax.M is constructed. We will call the free
variables introduced for ,~-bindings fugitive variables.

The algorithm W of Damas-Milner requires the prolific generation of new free
variabies. We observe, however, that if the initial environment is closed then all
dynamically generated free variables that can not be immediately quantified are
those that are unified with fugitive variables. But since the fugitive variables will
also be quantifiable eventually, any new variable that occurs in a substitution
for them will also be quantifiable eventually. In algorithm Wu, all new variables
generated from discharging (an instance of) a typing assumption are immediately
quantified. As a consequence, some invalid expressions will appear "momentarily
typable." The join operation, however, will reveal any inconsistencies in the
substitutions and reject untypable expressions. We illustrate this technique of
"eager quantification, delayed resolution" with three examples.

3 S a m p l e I n f e r e n c e s

Assume the type environment H contains the assignment f : IIv.v ~ v. Consider
typing the expression Ax.(f x). Firs~ we augment the extended environment HT

494

with x F-~ (0, a) for a new fugitive variable a. In typing (f x), we unify v --+ v
with a --+ b for some new variable b. Thus

W I I (H t , x ~-+ (~, a); (f x)) =~ AbAv.([v/a , v/b], v).

The accompanying substitution [v/a,v/b] is then applied to a -+ v, and the
fugitive a is "captured," yielding AaAbAv. ([v /a , v/b], (v --+ v). We can therefore
conclude tha t H ~- A x . (f x) : I I a l I b H v . v --+ v.

Now consider let x =)~y.y in (x x). First, Ay.y is inferred as having the eager
type scheme Av.(O, v --+ v). Then x is assumed to map to this eager scheme. For
(x x), the type of x is inferred twice as Av.(O, v --+ v) and Aw.(O, w --+ w). With
a new variable b, (w --+ w) --+ b is unified with v -+ v, yielding the substitution
[w ~ w/b , w --+ w/v]. This substitution can be trivially joined with the two
instances of the empty substitution inferred above. Thus calling W/I on (x x)
will return the structure

AbAwAv. ([w --+ w/b, w --+ w/v], w --+ w),

and since the substitution returned joins immediately with the empty substi-
tution in Av.(O, v --+ v), we can conclude that let x =)~y.y in (x x) has type
I I w . w -+ w (eliminating the vacuous quantifiers this t ime for convenience; we
may also implement this elimination as an optimization). The key observation
here is tha t a type scheme is always inferred, thereby eliminating the need for

the gen operation.
For the final example, assume the program variable p has type I Iv .v --+ v ~ v.

Consider the untypable expression ~y.(let x = (p y) in (x x)). For the top level
A-abstraction, a new fugitive variable a is assumed as the type for y. In the
l e t expression, (p y) can be inferred as having the structure AbAv.([v /a , (v --+
v)/b], v --+ v). The program variable x is then assumed to map to this struc-
ture in the updated extended environment. Typing (x x) will again produce two

individual copies of this structure:

Ab.Av.([v /a , (v --+ v)/b], v -+ v), and Ab2.Aw.([w/a, (w -+ w)/b2], w --+ w).

Another type variable b3 is introduced, and (w --+ w) --+ b3 is unified with v ~ v,
resulting in the substitution [(w --+ w) / v , (w --+ w)/ba]. But this substi tution can
not be joined with the two substitutions from the individual recursive inferences
for y: [v/a, (v ~ v)/b], and [w/a, (w ---+ w)/b2]. The variable a can not have both
w --+ w and w (or both v --+ v and v) as instances.

Notice tha t although a fugitive a is a (dynamically) free variable, it can
be substi tuted by a (A) bound variable, as when a was substi tuted by the A-
bound variable v in the third example. Once a variable is bound, "copies can be
made" , and thus two instances of v, v and w, were created. Type inference was
allowed to continue where in algorithm W it would have failed: v was unified with
w --* w. This "eager inference," however, was invalidated when the substitutions
were joined, revealing that v /a and w / a are inconsistent if v = w --~ w. In case
these substitutions can be successfully joined, then these variables (v and w) can
remain rightfully quantified, since the final type scheme returned will quantify

495

over all fugitive variables. Because we need to keep track of which bound variables
are in fact "eagerly" quantified, the jo in operation must replace the composition
of substitutions as used in algorithm W. That is, we need to "memorize" the
various substitutions for the fugitive variables in the form of extended type
environments.

4 C o r r e c t n e s s P r o o f s

This section addresses the major components required to show soundness and
in particular completeness of Wg with respect to principal type schemes for the
Damas-Milner typing discipline. As a consequence we also show how to extend
the algorithm to accommodate open type environments in general.

With respect to a structure AWA-~.(~r, t), we say that a bound variable vi is
innocent if for some free variable a, (r(a) = t such that vi occurs in t. Tha t is,
innocent variables are variables that were A-bound prematurely, and should be
freed if a occurs in the environment.

D e f i n i t i o n 2 (Base C o m p r e s s i o n) . Given an extended type environment H ,
of the form

{Xl ~ AVnll(O'l, t l) , . . . ,Xm ~--~ (A ~ n .(Crrn, trn)}.

Assume that all variables v / a~ are distinct. Let 6 = j o i n (q 1 , . . . , ~,~). Let ~ be

all the variables in 6 that are innocent. Let ~7 be all the variables v 1 v,~
minus u-~. Define He ~[= (5, H) where H is the type environment

{ x l : n .6(tl), . . . , xm:

For a type environment H, clearly HTI= (0, H).

T h e o r e m 3. Given an extended type environment He and a program expression
M , assume W , (H e ; M) = A ~ . (~ , t) . • y ~ A ~ . (~ , t)] 1= (6, H) for some
new "dummy" variable y, then H F M : H(y) .

Proof. By structural induction on M, appealing to properties of the jo in oper-
ation. []

We forgo the details of the soundness proof in favor of completeness. The
following corollary establishes soundness for closed type environments.

C o r o l l a r y 4. (Soundness of WII)
Given a closed type environment H and a term M, W ~ (H T; M) = AV-~-~.(o-, t)
implies H F M : HV-~,~.t.

The structure of the (syntactic) completeness proof is similar to other such
proofs including those of Leivant [12]. The main contribution here is our l e t
case. Since there is no gen operation, in the proof of the l e t case the inductive

496

hypothesis can be used directly. Most of the detailed proof deals with ordinary
algebraic manipulat ions of the various substitutions. We define the generic ap-
plication of a substitution G to a type scheme II~mm.t as G[I I~ . t] = YI~--g~.G(t).
T h a t is, generic application can replace bound variables as well as free variables.
For every "generic instance" (in the sense of Damas-Milner [2]) c~' of ~r there
is a substi tution G such that G[~r] = ~r' (modulo some vacuous /7 quantifiers).
Because the ~ operation breaks quantifiers, the completeness theorem must be
stated using generic applications of substitutions. In the theorem below, we as-
sume that all variables (free and bound) in H~ are distinct.

T h e o r e m a . Assume for the extended type environment He, He ~ exists and
is equal to (6, H) . Assume S[H] F M : T for substitution S, term M and
type scheme T. Then WH(He; M) = A~--~.(a, t). For a new term variable y, let

1= le t o 5 = and let = also

holds that there exists a substitution p such that p o ~ = S and p[II~-Lf] = T.

Proof. By induction on the height of derivations. For the inductive basis if x :
/ / ~ . t 0 E H then x ~-+ A~--,T,~.(c~, t) E He for some c~ and t, and Ws(He; x) =
A~-~.(c~, t). Here, 6' = 6. We set p = S in this case and the result follows. The
Lr -E l im case is trivial. The L r - I n t r o case also follows easily since all variables
not free in He are always A-bound. The a b s and a p p cases can be shown by
rewritting the inference rules into more general forms:

S[H] x : S [a] F M : S [c] S [H] F M : S [r - ~ b] S [H] F N : S [r]
' abs app

S[H] F Ax.M : S[a --~ c] S[H] ~ (M N) : S[b] ,

where a, c, r and b are distinct type variables not appearing elsewhere.
We concentrate on the le t case. Let He ~= (6, H). A le t rule-application can

be writ ten in the form

S [H] k M : ~ S [H] , x : ~ - N : T
let

S [H] F l e t x = M i n N : T

where (is some type scheme. Then by inductive hypothesis, WH(He; M) =
Ab--s such that [He, y ~ A~--~,~.((h,tl)] $= (51,H,) . Let Hi(y) = FiTvT.t
and 0o6 = 61. There is also a substitution Pl such that p lo0 = S and pl[II~. t] =
~. But pl(t) = pl(61(tl)) by definition of H1, and pl(61(tl)) = f l l (0 (0 (~ (t l)))) :
S(51(tl)). Thus ~ = S[II~.6~(tl)]. We can therefore rewrite the above instance

of th%le t rule as:

S[H] ~- M : S[II@-T.61(tl)] S[H,x : H~.61(t l)] ~- N : T let
S [H] F Z e t x = M i n N : T

The critical observation is that

[He, x F-+ A~-~.(o'l,tl)] 1 = (61, [0[H], x : H~)T.61(tl)])-

1 We know 8 exists since 6' = join(a, ~).

497

But S[H] = Pl o 0 o O[H] = S[O[H]]. We can therefore eliminate 0 by absorbing
it into S: S[H,x : / /~7.51(h)] = S[O[H], x : H ~ . 5 1 (h)] . Thus by inductive
hypothesis on the second premise we have

WH(He, x ~-~ A~-m.(crl, t l) ; N) : AuTh.(o-2, t2).

Let [g~, x ~ AV-~.(al,tl), y ~-+ A~X.(c~2,t2)] l = ((52, g2) , 02 0 (51 = (52, and
H2(y) = II-2-g.t2. The inductive hypothesis also gives a P2 such that p2 0 02 = S
and pB[H~.t2] = T.

Now, join(a2, a l) = ~r succeeds since (52 exists ((52 is an instance of a2 and
a l) , and so

Ve (H ; l e t x = M iN N) =

succeeds. We also have [He, y H Ag-jA~--~.(a, o'(t2))] ~= ((52, H3), and we know
that H3(y) = H-2-~.52(t2). Now 02 o 0 o 5 = 5B and PB o (02 o 0) = S o 0 = S.
Finally, (52(tB) = t2 by definition of (52, and so

= = T .

C o r o l l a r y 6 . (Completeness of WH)
For a closed type environment H such that H F M : T, Wn(HT; M) = A~--~.(a,t)
such that T is an instance of H~--~m.t.

Proof. We may assume, without loss of generality, that ~ are distinct from all
variables in H. Set S = ~. It follows easily from the definition of the algori thm
that cr does not contain variables other than V~ in its support. Thus S[H] = H.
Similarly from the definition of the algorithm, a(t) = t. In terms of the above
theorem, here 5 = 0 and 5 ~ = c~, so we set p = 0 and the corollary follows. []

The ~ operation is not needed in the algorithm for closed type environ-
ments since in the returned substitution all fugitives are captured. If the en-
vironment can be initially open, then we must free the innocent variables from
bondage. The generalized Wz[algorithm merely requires a simple extra step: Let
W//(HT; M) = AW~-m.(cr, t). Then [HT, y ~-+ AV-~m.(a, t)] l = (a, H ') . Return n ' (y) .
It will follow that H ' F M : H'(y).

5 D e c l a r a t i v e I m p l e m e n t a t i o n

The eager quantification technique arose from a t tempts to implement type infer-
ence in a higher-order logic programming language. Such a declarative t rea tment
will aid the analysis of functional languages in the context of logical frameworks,
such as the dependent-type calculus LF [8]. The desire here is for an executable
proof-theoretic formulation of type inference. Tha t is, type inference should be
presentable as proof search. The original Damas-Milner calculus is too non-
deterministic for this purpose. Previous a t tempts at its alteration either took

498

short-cuts with the l e t case or were stopped by gen. In [6], Hannan gave proof-
theoretic formulations of the natural semantics of ML. But his technique for l e t
was basically to replace let x = M in N with N [M/x] . To allow let-expressions
to be typed naturally, Harper defined in [7] an "algorithmic" version of the
Damas-Milner calculus for the express purpose of allowing the modified typing
rules of the new calculus to become logic programs that yield principal type
schemes. He defined a predicate called witnessed that captures the maximal-
ity condition implemented by gen. Application of the gen operation is replaced
by proving that a type scheme is witnessed. Specifying the witnessed predicate
directly as logic programming, however, requires a forward-chaining operation
which is inconsistent with the goal-directed nature of logic-programming. An-
other problem with type inference was the need for an inexhaustible supply of
new variables. In the context of "meta-programming in logic," one can either
use the meta-logic's inherent "logic variables" or define data structures such as
strings to represent object-level variables. Using the meta-logic's own variables
(called the "non-ground representation") is only adequate for a very small range
of problems 2. Strings and similar structures are too algorithmic and "low level."

It is at this point in the type inferencing algorithm, when "new" variables are
needed, that higher-order abstract syntax, combined with a logic programming
environment, can be used to advantage. In intuitionistie logic (which forms the
basis of many logic programming languages), VxF is provable if and only if for a
new symbol a, F[a/x] is provable. Thus the process of "creating a new type vari-
able a" can be represented naturally with the intuitionistie quantification Va. The

clause of the type inference Mgorithm can be automatically implemented in a
logic programming language supporting positive occurrences of V-quantification.
Furthermore, the g quantifier is represented in the (meta-level) simply typed
A-calculus as a second order constant of type (term --+ f o r m) --+ f o r m (where
t e r m and f o r m classify object-level terms and formulas respectively). The con-
sequence of this is that, although a is supposed to represent a new free variable
at the object level, it is in fact represented as a h-bound variable at the meta
level. That is, at the meta-level of higher-order abstract syntax, all type vari-
ables are bound variables. A-abstraction immediately enforces the proper scoping
of the dynamic "new" variables used in type inference. This uniform treatment
of type variables at the meta-level is what allows a-conversion to replace the gen
operation in allowing for multiple instances of polymorphic types.

A full implementation of the WH algorithm has been given in the logic pro-
gramming language L~ [15] without using any extra-logical extensions. The lan-
guage of La, which is a simplification of the better known ;~Prolog, can be directly
embedded in a variety of more powerful logical frameworks. This implementation

is described in the author's Ph.D. thesis [13].

See [9, 13] for further discussion of issues in meta-progtamming in logic.

499

6 R e l a t e d W o r k

The technique presented here is also related to the work of Leivant [12], Appel
and Shao [1] and Jim [10] (among others) in type inferencing with conjunctive
types or multi-environments (environments where variables map to sets of types).
Leivant's algorithm "V" returns a multi-environment (or multi-base) and a type
given a program expression. Type inference in algorithm V does not take place
under a given type environment. As a consequence, there is nothing to constrain
the generalization of free type variables. Variables can be given multiple instan-
tiations which are then resolved at the end. But algorithm V does not include a
case for ML's l e t . Leivant chose to address l e t polymorphism in the context of
a rank 2 conjunct ive type discipline. Wand [18] gave a similar algorithm, which
likewise bypassed l e t . Appel and Shao's algorithm W* [1] can be seen as essen-
tially an extension of algorithm V to include l e t . They use a procedure called
Monouni fy which serves basically the same purpose as j o i n . W* is similar to
the approach here in that it too does not use t e n (t e n would be meaningless
since there is no environment in the input to W*). Instead, for the l e t case
W* uses an operation called Polyunify , which generates a new set of copies of
multi-environments (or "assumption environments") for every occurrence of the
l e t - b o u n d variable. The Polyuni fy technique is a "brute force" method akin
to replacing let x = M in N with N [M / x] . The multi-environment returned by
W* can be enormous, and will have to be further resolved with a given type
environment (using their Match procedure) to derive the final type. Because of
this complexity, Appel and Shao themselves favored a customization of Kaes'
algorithm "D" [11] for their purpose of smar tes t recompilation. Furthermore,
the correctness of W* was proved by a reduction to the correctness of algorithm
W , and not to the Damas-Milner typing discipline itself.

The motivation for W* was to support separate compilation, where the types
of program variables are not always available. Each program variable is always
eagerly given the most general type (a free type variable), and the various possi-
ble instantiations are resolved when the type is finally known. The algorithm W~
as given already contains the essential components necessary for this purpose.
We can assign to each program variable that is not contained in the known type
environment the most general type scheme H v . v . Then Wn will return a substi-
tution containing the different possible instantiations of v. For example, assume
that the type of f is unknown. Consider the expression let x = (f 2) in (f 2.5).
If f is mapped to Av.(0, v), then W~ will return the structure

AbAcAv lAv2 . ([rea l --+ c/v2, in t ~ b/vl] , c).

If we knew that the variables vl and v2 are in fact copies of the type scheme
H v . v , then we can infer the correct type for the expression once the type of f is
available. Assume we now know that the type of f is actually H v . v --~ v. We can
apply Appel and Shao's Match technique to the two instantiations real --~ c and
in t --+ b with two separate instances of H v . v --~ v: H u . u --+ u and H w . w --~ w.

This will reveal that c = real and b = in t , and therefore real should be the

500

type for let x = (f 2) in (f 2.5). To implement this technique correctly, Ws
must be modified so that we can identify which variables are copied from type
schemes IIv .v associated with undeclared program variables. One approach is to
label these special type variables with the program variable they are associated
with. This approach would be similar to Appel and Shao's adaptation of Kaes'
algorithm D for constrained types [11]. However, algorithm D again uses the
gen operation in the l e t case.

The purpose of the above discussion is to clarify the relationship between
our algorithm and work in conjunctive types. It is not our immediate aim here
to formulate an algorithm in a conjunctive type discipline. We wish to derive
principal types as in ML, and not principal typings (as in [10]). Instead, we
use the technique of conjunctive types at an intermediate level (when multiple
substitutions are kept inside extended environments) in order to facilitate the
typing of let-expressions.

7 C o n c l u s i o n a n d F u t u r e W o r k

The traditional gen operation is incompatible with a declarative, logical frame-
work approach to formulating principal type inference. It is hoped that our new
approach will provide a starting point from which various issues of type infer-
ence can be studied in declarative settings, without ignoring le t -polymorphism.
It of course remains to extend Wr/ to other language constructs. We also hope
to study, in the context of the eager quantification technique, type disciplines
other than ML polymorphism (in particular principal typings and conjunctive
types). This will lead to, for example, the use of our technique with respect to
polymorphic references. It is hoped that we will be able to accept more type-
safe programs than current methods. The W/I algorithm can also lead to the
early reportage of typing errors. Because substitutions are composed instead of
joined in algorithm W, by the time we discover a type error the substitutions
may have obscured its origin. Combined with a constrained typing discipline,
the WH technique can potentially offer a new solution to this problem.

A c k n o w l e d g m e n t s

Much of this research was conducted under the supervision and support of Dale
Miller at the University of Pennsylvania. The author also wishes to thank Sandip

Biswas for invaluable help in preparing this paper.

References

1. Andrew Appel and Zhong Sh~to. Smartest t~ecompil~tion. In Tenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles o] Programming Languages, Jan-
uary 1993. Longer version as Princeton University Technical Report CS-TR-395-

92.

501

2. Luis Damns and Robin Milner. Principal type-schemes for functional programs. In
Ninth Annual A CM SIGPLAN-SIGA CT Symposium on Principles of Programming
Languages, pages 207-212, January 1982.

3. Scott Dietzen and Frank Pfenning. A declarative alternative to assert in logic
programming. In Proceedings o] the 1991 International Logic Programming Sym-
posium, pages 372-386. MIT Press, 1991.

4. G. Dowek et al. The Coq proof assistant user's guide. Technical Report 134,
INRIA, 1993.

5. C. A. Gunter. Semantics of Programming Languages: Structures and Techniques.
Foundations of Computing. MIT Press, 1992.

6. John Hannah. Extended natural semantics. Journal of Functional Programming,
3(2):123-152, April 1993.

7. Robert Harper. Systems of polymorphic type assignment in LF. Technical Re-
port CMU-CS-90-144, Carnegie Mellon University, Pittsburgh, Pennsylvania, June
1990.

8. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40(1):143-184, 1993.

9. P. M. Hill and J. G. Gallagher. Meta-programming in logic programming. Tech-
nical Report Report 94.22, University of Leeds, hill@scs.leeds.ac.uk, August 1994.
To appear in Vol. 5 of the Handbook of Logic in Artificial Intelligence and Logic
Programming, Oxford University Press.

10. Trevor Jim. What are principal typings and what are they good for? Technical
Report MIT/LCS TM-532, MIT, November 1995. Extended version of a paper
appearing in A CM Symposium on Principles of Programming Languages, 1996.

11. Stefan Kaes. Type Inference in the presence of Overloading, Subtyping, and Re-
cursive types. In 1992 ACM conference on LISP and Functional Programming,
San Francisco, CA, pages 193-204. ACM Press, 1992.

12. Daniel Leivant. Polymorphie type inference. In Conference Record of the Tenth
Annual A CM Symposium on Principles of Programming Languages, pages 88-98,
1983.

13. Chuck Liang. Substitution, Unification and Generalization in Meta-Logic. PhD
thesis, University of Pennsylvania, September 1995.

14. Dale Miller. Abstractions in logic programming. In Piergiorgio Odifreddi, editor,
Logic and Computer Science, pages 329-359. Academic Press, 1990.

15. Dale Miller. A logic programming language with lambda-abstraetion, function
variables, and simple unification. Journal of Logic and Computation, 1(4):497-
536, 1991.

16. Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of
Automated Reasoning, 5:363-397, September 1989.

17. Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proceedings
of the A CM-SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 199-208. ACM Press, June 1988.

18. Mitchell Wand. A simple algorithm and proof for type inference. Fundamenta
Infomaticae, 10:115-122, 1987.

