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A b s t r a c t .  This paper presents and compares three techniques for mechanized ver- 
ification of state-oriented design descriptions. The goat of this work is to gain insight 
into quantitative aspects of different modular verification techniques. One of the 
three verification techniques presented here is a traditional forward generation of a 
fixed point characterizing the reachable states. This does not utilize any modular- 
ity provided by the designer, and therefore it forms the basis for the comparison, 
whereas the two others do utilize such a modularity. One requires a substantial 
manual effort by the designer, but is computationally very efficient, while the other 
requires almost no manual assistance with a much better performance than the 
simple forward generation. The performance of the three techniques is compared 
on a set of examples. 

1 Introduction 

Verification is an important  par t  of any non-trivial design project. It  covers a 
wide range of techniques for uncovering errors, and ideally one would like to 
do an exhaustive check, where all behaviors of the design are exercised. How- 
ever, this is seldomly possible in practice. The common practise is to test  a 
sample of the behaviors by execution and/or  simulation. Recently, advances in 
algorithms, da ta  structures, and design languages have provided formal (ex- 
haustive) verification techniques which are powerful enough to handle some 
significant practical examples [12,13]. In order to use the formal techniques, 
both  the intended and actual behavior must be expressed in formal nota- 
tion, e.g., as a program in a programming language or as a logic formula. 
Although these techniques have been demonstrated to work on significant 
examples, scaling is often difficult. The reason is tha t  the modular i ty  found 
in most  large-scale practical designs has been difficult to exploit in an efficient 

way in formal verification. 
The goal of this work is to gain insight into quanti tat ive aspects of differ- 

ent modular  verification techniques. One of the three verification techniques 
presented here is a traditional forward generation of a fixed point character-  
izing the reachable states. This does not utilize any modular i ty  provided by 
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the designer, and therefore it forms the basis for the comparison, whereas 
the two others do utilize such a modularity. The difference between the two 
is in the amount of automation. One requires very little effort from the de- 
signer while the other assumes that  the designer formalizes the behavior at 
the interfaces between all modules. The analysis done here focuses on both 
the computational and the manual effort needed for the verification. To stress 
tha t  the techniques discussed apply to both hardware and software we use 
the generic term design. 

The paper is organized as follows. Section 2.1 introduces a simple state- 
based model that  is used to explain and compare different verification tech- 
niques. In section 2.2 modularity is added to the simple model. Sections 3-5 
give a brief introduction to the three verification techniques that  are com- 
pared. Section 6 contains the actual comparison. 

2 M o d e l  

This section defines the model used to describe a design, it is closely related 
to UNITY[5] and SYNCHRONIZED TRANSITIONS[14]. However, to simplify the 
presentation, it uses a simplified notation avoiding issues like typing and 
scope rules. 

2.1 S ta tes  and t rans i t i ons  

A design is specified by a transition system, that  consists of a fixed number of 
state variables: sl, s2 , . . . ,  sn, and a fixed number of transitions: tl, t 2 , . .  �9 tin. 
Each state variable has a value from a fixed domain. A state is a mapping 
of state variables to values: (Sx ~ vlls2 ~ v2,. . .  ,sn ~ vn), where vi (1 < 
i < n) is a value in the domain of state variable si. A transition is a binary 
relation on states, called pre-states and post-states. A design defines a set 
of computations as sequences of states: So, $1 , . . . ,  such that  So is an initial 
state, and for each pair: Si,Si+I, there is a transition t such that  Si is a 
pre-state of t, and Si+l is a post-state of t. Furthermore, it is required that  
S~ ~ Si+l. A set of initial states is specified by a predicate. 

N o t a t i o n  Transition relations are described by an assignment controlled by 
a boolean expression, called a precondition, for example: 

80 ~ 82 --+ S 1 : ~  S 0 

This transition description defines a relation that  holds only if So ~ s: in the 
pre-state; the value of sl in the post-state is the value of So in the pre-state, 
and state variables other than sl hold the same value in the pre- and post- 
states. Sometimes it is convenient to interpret a transition, t, as a predicate 
t(pre,post) which is true, if and only if t can make a state change from pre 
to post. A number of transition descriptions, t l , t 2 , . . . ,  tn can be combined 
by asynchronous composition, [], to one description: tl [] t2 [[ . .- [[ tn. The 
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transit ion relation defined by this composition is the union of the individual 
relations. 

Example 1. A simple oscillator. Let s0, sl ,  and s2 be three boolean state 
variables. Together they define a state space with 8 possible states. 

i n i t i a l l y  
so # s l  V s l  # s2 

t r a n s i t i o n s  
80 ~ 82 -+ 81 :=  80 [[ 

s~ # so -~ s~ := Sl II 
82 ~ 81 -'-} S0 :---- 82 

The first transit ion description defines two possible state changes, one leading 
from a pre-state where So is true and s2 is false, and another where so is false 
and s2 is true. Similarly, the second and third transitions define each two 
state  changes. The transition system is initialized such tha t  the values of the 
three state variables are not the same. The transitions describe a computat ion 
where the value of So is propagated to sl (and from there to s2 and back to 
So). E n d  o f  e x a m p l e  

The  FIFO queue presented next is used as a running example in the rest of 
the paper.  In section 6 other examples are given and used for a quanti tat ive 
comparison of the different verification techniques. The particular FIFO used 
here is a fundamental  building block in asynchronous circuits [14]. 

Example 2. The FIFO queue. A FIFO (queue) is a da ta  structure that  can 
hold a sequence of elements. For our purposes, an element has one of three 
values: E (for empty),  T (for true), and F (for false). Elements are inserted 
into the queue as sequences of E,  T and F values such tha t  any T and F are 
separated by at least one E,  for example, ETTTTEEEFFETETTE represen- 
t ing the sequence of values T, F, T, T. Given a state variable, s, the predicate 
e(s) is true if s has the value E and false otherwise. 

The FIFO queue is realized as a number  of state variables (each of which 
can hold an element), and a number of transitions for moving elements down 
the sequence. When an element is inserted, it moves down the queue. Mean- 
while, further elements can be inserted, and several elements can move in 
parallel. The following transition describes how elements move: 

.... I 1 I,Iot l t 
e(i) r e(s) -+ o :-= i 

For simplicity the transitions for input from or output  to the environment 
are not shown. Intuitively, the elements move in a worm-like fashion, where 
a particular value might be stretched out over several s tate variables, or it 
can be compressed into a single state variable surrounded by Es. I t  is this 
worm-like behavior tha t  makes the FIFO a key component in asynchronous 

circuits. 
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2.2 M o d u l a r  d e s i g n s  

It  is rarely practical to handle a large design as a single monolithic transit ion 
system. To be manageable,  it must be broken into a number  of (almost) inde- 
pendent modules; such modules are called cells in this paper. A cell describes 
a generic (i.e., parameterized) set of s tate variables and transitions. A specific 
instance contains a distinct set of state variables and transitions, called the 
local state variables and local transitions. Any number  of instances of a cell 
may coexist. 

The interface of a cell is a set of formal parameters;  within the cell these 
are indistinguishable from other state variables, for example, 

cel l  queue(in, out) 
Here there are two formal parameters  in the interface: in, out. When the cell 
is instantiated, an actual parameter  (a state variable) is specified for each 
formal parameter .  Several cell instances can share a particular s tate variable 
by making it an actual parameter  of the cells. 

The sets of transitions of different cell instances are disjoint, therefore, 
any transition belongs to exactly one cell instance. The collection of all cell 
instances in a modular  design defines a transition system, where the set of 
s tate  variables is the union of the state variables of the cell instances, and 
the set of transitions is the union of their transitions. The computat ion is a 
sequence of states, corresponding to executions where transitions are executed 
one at a time. 

N o t a t i o n  The notation for describing modular  transit ion systems is not 
formalized in this paper. This leaves some ambiguity with respect to scope 
rules, typing etc. However, these details are not necessary for the quanti tat ive 
comparisons that  are the focus of this paper. The notation is a simplification 
of the design language SYNCHRONIZED TRANSITIONS [14]. 

Example 3. The modular FIFO. The FIFO can be used to illustrate a modu- 
lar design consisting of a number of similar segments. The following shows a 
segment tha t  contains five elements (the choice of five is somewhat  arbitrary,  
see also section 5): 

cell  element(i,  o, s): e(i) ~ e(s) ~ o:= i 
i n s t a n t l a t i o n s  

element(in, sl, s2) If element(sl, s2, sS) I] 
element(s2, s3, s4) Ii element(s3, s4, s5) [I 
element(s4, s5, out) E n d  o f  e x a m p l e  

Structuring a design into cells is primarily a pragmatic  concern which may 
simplify the (development and) verification. The use of cells may contribute 
to this in several ways. One potential  contribution is the generic nature of a 
cell, which means tha t  the cell is only verified once, even if a large or unknown 
number  of instances of the cell are used. In [11] a similar benefit of generic 
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specifications is used. Another contribution is that  even for irregular designs, 
without re-use of generic cells, it is important  to localize the verification to 
concentrate on one cell at a time. 

2.3 Design verification 

Propert ies  of a design are formalized as predicates, called invariants, con- 
straining the transit ion system, for example, that  no two neighboring ele- 
ments in a FIFO have different non-empty values. An invariant defines a 
subset of the state space containing the initial state. Furthermore,  there must  
not be any transitions from a state within the subset to a state outside. Hence, 
invariants describe properties which hold throughout  the computat ion,  be- 
cause no transit ion will go to a state violating it. An invariant is writ ten as 
a predicate, I(S), on a state S. 

Example 4. The FIFO queue (continued). The transitions of the FIFO queue 
ensure tha t  there will never be a state where two neighboring elements, s l ,  s2, 
contain two different non-empty values, this property is expressed as an in- 
variant, called the alternation invariant. 

i n v a r i a n t  A(sl,  s2): (e(sl)  = e(s2)) = (s l  = s2) 

Note tha t  = is an overloaded binary operator  used for comparing both boolean 
values and the ternary values stored in the queue. E n d  o f  e x a m p l e  

Invariants are used to formalize safety properties of a design. The modular-  
ization provided by the cell mechanism can also be reflected in the invariants, 
because ceils may have their own local inv~riants s tat ing internal properties. 
The next three sections (sections 3-5) present three different verification tech- 
niques for showing that  a given predicate is an invariant. There are many  
interesting properties of a design, e.g., liveness properties, that  cannot be ex- 
pressed as invariants. This paper  does not advocate using only invariants for 
designing and verifying reMistic designs. However, invariants are sufficient to 
demonstra te  the quanti tat ive differences between the verification techniques 

presented here. 

3 L o c a l i z e d  v e r i f i c a t i o n  

This section describes an induction based verification technique for verifying 
an invariant [9]. Assume tha t  I is an invariant and tha t  t is a transit ion of a 

design, then t is said to maintain the invariant if, 

I(pre) A t(pre,post) ~ I(post) 

i.e., if the invariant holds in the pre-state then it is shown to hold in the 
post-state. By showing that the invariant holds in the h~tia~ state and by 
showing the implication for each transition description, t, of the design one 
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may conclude that  the invariant holds throughout the computation. This ver- 
ification technique is really an induction proof [9] (over the computations of 
the design) where the implication shown above corresponds to the induction 
step. The effort needed to do the induction step is proportional to the number 
of transition descriptions and cell instantiations in the textual description of 
the design; but  independent of the size of the state space or the length of the 
computation. 

Example 5. The FIFO queue (continued). One segment of the FIFO queue 
design has five transitions of the form: 

e ( i )  # e ( s )  -+  o : =  s 

To show that  the invariant holds for this segment five implications (one for 
each transition) must be shown. If the size of a segment is increased by adding 
more transitions then the verification efforts grows proportionally. However, 
a bet ter  way to describe a large FIFO queue is to instantiate a number of 
cells (segments). E n d  o f  e x a m p l e  

When a large design is divided into cells, it is possible to divide the verifica- 
tion in a similar modular fashion. This means that  a cell description needs 
only to be veri~ed once, no matter  how many times it is iastantiated. In 
[15] it is shown how the latter can be exploited to yield a localized verifica- 
tion technique with a constant verification effort for each instantiation (two 
implications). This is also an inductive technique. 

Example 6. The FIFO queue (continued). The localized verification tech- 
nique can be illustrated on the FIFO queue realized as three segment cells: 

ill i12 ol i21 i22 02 i31 i32 03 i41 

~ ~  
cell  segment(il, sl, o, s) 

i nva r i an t  [segment : A(il ,  s l)  A A(sl,  s2) . . .  
t r a n s i t i o n s  . .. 

cell  F I F O  
i nva r i a n t  IFIFO : A(ol,i21) A A(i21,i22) . . .  
i n s t a n t i a t i o n s  

segment(ill ,  i12, ol, i21) N element(ol, i21, i22) II 
segment(ill ,  i22, 02, i31) [I element(o2, i31, i32) [I 
segment(i31, i32, 03, i41) 

To verify this design, one first shows that  each of the transitions in the cell de- 
scription of a segment maintains the invariant (Iseament (pre) A t(pre, post) 
I ~ 7 ~ ( p o s t ) ) ,  this is called local invariance. Note that  each transition is 
only verified once, no mat ter  how many times it is instantiated. 

To verify an instantiation of the ceil segment, one shows that  no tran- 
sition in the instantiated cell violates the invariant of its environment (the 
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global level of the FIFO and the other cell instances), this is called up-ward 
non-inter]erence. Furthermore, no transition in the environment must violate 
the invariant of the instantiated cell, this is verified by showing down-ward 
non-inter]erence. To show these two non-interference properties for the first 
instantiation of the FIFO cell, it is sufficient to show the following two im- 
plications denoted UP and DOWN. 

UP: Isegment (pre) A IFIFO (pre) A IFIFO (post) A Sg ::~ Isegment (post) 

where S 9 is a predicate stating consequences of the cell structure, for example, 
tha t  the transitions of the first FIFO segment cannot change state variables 
i11, i21, i22, 02, i31, . . . .  

DOWN: IFIFO (pre) A Isegment (pre) A Isegment (post) A St ~ IFIFO (post) 

where St is a predicate stating consequences of cell structure, for example, 
that  the global transitions of the FIFO cannot change local state variables of 
the first segment s2, s3, s 4 , . . . .  E n d  o f  e x a m p l e  

The verification technique, illustrated by the FIFO example, is useful in gem 
eral. Further examples and a more detailed explanation is given in [15] where 
it is also shown that  the technique is sound. Each line of a design descrip- 
tion gives rise to zero (declarations, headers, etc.), one (local invariance) or 
two implications (non-interference), and this is the justification for the claim 
that the verification effort grows linearly with the size of the textual design 
description. In fact, for recursively defined cell, the effort needed to show 
non-interference is independent of the recursion depth. This is because the 
recursive instantiation of a cell yields just the two non-interference implica- 

tions. 
However, the efficiency of the localized verification has a price. First of 

all, the technique is not complete. One can easily construct an example of 
a correct design where it is not possible to show the required implications 
(UP or DOWN). In practice this does not seem to be a unsurmountable 
problem; a significant number of examples have been verified [I4]. A more 
important  practical problem is inherent in the inductive approach on which 
the technique is based. It is based on showing implications such as: 

• A t(pre,post) I(post) 

Note that  the invariant I appears both as an assumption and as a conclusion. 
This means that  one has to find the right balance when stating an invariant. 
If it is made very strong (I(pre) very restrictive), it means that  I(post) also 
becomes very strong and hence difficult to prove. On the other hand making 
the assumptions very weak, can make it difficult to conclude that  I(post) 
holds. This has turned out to be a significant practical problem. To show an 
invariant using the inductive approach, it is often necessary to find a stronger 
assertion than the straightforward formulation of the desired property. To 
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illustrate this, assume that the designer for some reason only wants to verify 
the invariant A(o3,i41), i.e. that the last two elements in the FIFO queue 
does not contain different non-empty values. In order to verify this using the 
inductive hypothesis, it is necessary for the designer to formulate a much 
stronger invariant. Identifying and formulating this is often a significant part 
of the verification effort. Hence, the linear growth of the verification effort 
has its price, namely an added effort by the designer to identify and state 
auxiliary invariants. 

4 C o m p u t a t i o n  o f  r e a c h a b l e  s t a t e s  

This section describes a technique that overcomes the difficulty of finding 
invariants by computing the strongest of them all: A predicate characteriz- 
ing exactly the set of reachable states. Having computed the set of reachable 
states, the verification task is reduced to checking that the predicate charac- 
terizing this set implies the property of interest. The set of reachable states is 
the subset of the state space that can be reached by a sequence of transitions 
from any of the initial states. This set is often computed as an increasing 
sequence of approximations starting with the initial states and in each step 
adding what can be reached by making one further transition [7]. If the sys- 
tem is finite, this sequence of approximations will always converge to the full 
set of reachable states in a finite number of steps. This is called the forward 
generation technique. 

This computation requires choosing a representation for sets of states. Us- 
ing an explicit representation very quickly leads to a combinatorial explosion 
of the number of states generated, resulting in poor performance. However, 
implicit representations of state sets with clever datastructures can in many 
real examples overcome the problem. We shall use the implicit representation 
known as Reduced Ordered Binary Decision Diagrams [3], ROBDDs. They 
provide compact representations of boolean functions using a special kind 
of directed acyclic graphs. All the standard boolean operations are reflected 
by ROBDD-operations that are implemented as efficient algorithms on the 
underlying datastructure. Representing sets of states by their characteristic 
booIean functions provides the needed representation. 

The use of ROBDDs requires choosing an ordering of the boolean vari- 
ables in the design. This choice greatly influences the efficiency of the ROBDD 
representation. McMillan [13] gives some advice for choosing an ordering for 
circuit designs which we have followed: The variables must be ordered accord- 
ing to how they appear in a depth-first traversal of the circuit. Furthermore, 
pre- and post-variables should be interleaved when representing transitions. 

Using these orderings, the initial states, the set of transitions, and the 
reachable states are all represented as boolean functions. After computing the 
set of reachable states, the verification task is reduced to checking that the 
boolean function characterizing this set implies the property of interest. This 
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n-2 

I . . . .  1 

( [_$1__! ~ - ~  ~ - ~  .......... ~ - ~  ~ - ~  satisfies Q1 

. . . . .  . . . . .  i[-j  . . . . . . . . .  

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  [ . . . . . . . . . . . . . . . .  fn_ . . . . . . . . . . . . . . . . . . .  ] satisfies Qn 

Fig. 1. Sketch of the quotient technique. 

final implication is also computed as an operation on ROBDDs. ROBDDs 
are not guaranteed to avoid the combinatorial explosion - -  and on some 
real examples they fail to do so [4] - -  but  they do on very many examples, 
providing one of the most successful heuristics currently known. 

There are two important  differences compared to the localized verification 
technique described in section 3. One is that  the forward generation technique 
does not require any manual assistance from the designer in formulating aux- 
iliary invariants needed. To verify the invariant A(o3, i41) in the FIFO queue 
no additional effort is needed from the designer. The other significant differ- 
ence is that  neither the forward generating technique nor the ROBDDs make 
use of the modularity of the design. The next section presents an automatic 
technique where this is done. 

5 The quotient technique 

The third technique we shall present combines the ROBDD technique with 
a use of the modularization of the design and maintains the automation 
of the forward generation. Instead of computing the set of reachable states 
by a forwards iteration from the initial states, the quotient technique is a 
modified backwards iteration from the property to be verified towards the 
initial states. A backwards iteration utilizes knowledge of the property to be 
verified. If this property is simple, the hope is that  the intermediate sets of 
states are also simple. The quotient technique with ROBDDs is a refinement 

and modification of this idea. 
Figure 1 gives a sketch of the technique: Q0 is the property to be verified; 

Q1 is constructed from Q0 by backwards iterating with the transitions from 
cell C1 until a fixed point is reached; $1 is constructed by restricting C1 to 
the subset Q1 x Q1, i.e., $1 is a simplified version of C1. As we proceed, Q~+I 
is constructed from Qi by backwards iterating with the transitions from cell 
C~+1 and the simplified representation Si of the transitions of cell C1 to Ci; 
S~+1 is constructed from the union of Ci+l and Si by restricting to the subset 
found as Qi+l. The verification is done by a final backwards iteration of Sn 
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from Qn, followed by a check to decide whether this set contains the initial 
states. 

More precisely, we take So = ~ and define for i E {0 , . . . ,  n - 1}: 

Q~+I = (Si u C~+1)* --o Q~ 

where T* is the transitive, reflexive closure of a transition relation T, x 
forms the Cartesian product of two sets, and T --o Q is the set of states that  
through a transition in T only can lead to states in Q. The operation T --o Q 
is defined by: 

T --o Q _- {s IW' .  (s, s') c T ~ s' E Q}. 

(In program verification this is known as the weakest precondition.) The set 
(Si U Ci+l)* --o Qi is found by a backwards fixed-point iteration. 

The quotient technique "removes" the cells of the design one-by-one. The 
order in which this is done must be determined manually. Since the interme- 
diate sets generated will vary with the order, the choice of order can influence 
the efficiency. For a design that  has a linear topology there are two obvious 
choices: from right to left or from left to right. For other topologies like for 
instance binary trees the best choice is less obvious. 

The quotient technique has two potential benefits over a direct backwards 
iteration [10]. Firstly, the full next-state relation which is a disjunction of all 
transitions of the design need not be computed - a computation that  is often 
costly, as reported for instance in [10]. Secondly, the intermediate ROBDDs 
constructed during the iteration tend to be simpler than the intermediate 
ROl3DDs in the simple backwards iteration. 

For details and more experimental evidence on the quotient technique, 
see [1] (in this paper the technique is called partial model checking) and [2]. 

6 Quantitative comparison 

This section presents a number of quantitative comparisons of the verification 
techniques presented in sections 3 to 5. The comparisons are based on three 
examples: The FIFO queue, a Modulo-N counter, and a tree arbiter. All three 
are rather simple to describe as modular designs where the size can be varied 
in order to analyze how the verification effort grows with the size of the 
problem. 

All experiments were carried out on a Sparc 20 with 96 MB of memory 
using an ROBDD package written in Standard ML of New Jersey, version 
0.93.1 The package was written with the purpose of ease of use and no special 
attention was drawn to optimizing efficiency. Thus less emphasis should be 
put on the absolute running times than the relationship between the results. 

1 The package is freely available via In~ernet: http ://w~r i t .  dtu. dk/,~hra. 
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6.1 T h e  F I F O  q u e u e  

The first series of experiments were carried out with the FIFO queue. It was 
verified that  the alternation invariant holds for the last two elements. The 
design is parameterized in m, the size of each segment, and n, the number of 
segments. With localized verification a set of implications are extracted and 
these are shown to hold by the ROBDD package. As described in section 3 
the number of implications grows linearly with n (and m). The manual effort 
required is to state that  the alternation invariant holds everywhere in the 

FIFO. 
The forwards iteration requires no manual effort. All the work is done by 

the ROBDD package. The quotient technique requires choosing an ordering 
of the cells. Since the modular structure is a linear sequence there are two 
obvious choices. The one used is from output-to-input. Figure 2 shows the 
running times for m = 6 as a function of n. For the forward and quotient 
techniques these are third degree polynomials. However, the polynomial for 
the quotient has much smaller constant factors, resulting in bet ter  perfor- 
mance. We tried increasing m and observed that  the difference between the 
two also increases. This seems to confirm the assumption that  the quotient 
technique can benefit from the cells containing much local state. In fact, the 
quotient technique is so efficient that  the state space must be of considerable 
size before the localized verification is advantageous. (For n = 20 the state 
space is of size 212~ But from that  point on, nothing seems to compete with 
the linear growth of the localized verification. 

6.2 M o d u l o - N  c o u n t e r  

The modulo-N counter with constant response time is a simple example of a 
speed-independent design [8]. To simplify the presentation, it is assumed that  
N is a power of two, and therefore the counter is a modulo-2 n counter. The 
counter has one input, a, and two outputs p and q. Every signal change on 
the input a is acknowledged by a signal change of either p or q. The first 2n-1 
up-going changes on a are acknowledged by up-going changes on p and the 
last, 2n-th, by an up-going change on q. The same with down-going changes. 
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We verified the property that  at each point in time only one of p and q 
holds the value 'one' at the output  of the counter. The running times are 
shown in figure 3. The forwards iteration and quotient techniques again be- 
have as third degree polynomials. The quotient, however, has dramatically 
bet ter  running time than the forwards iteration. We anticipate that  the  main 
reason is that  the quotient technique can fully benefit from the original prop- 
erty being simple and the local state relatively large (each cell contains 7 
boolean variables). 

The design of the counter can be given as a recursive description, which 
means that  the number of implications coming from the localized verification 
is constant, independent of n. The running time is therefore a horizontal 
line very low in the figure (not drawn). The price here is, however, that  a 
relatively strong invariant must be supplied by the designer. 

6.3 A t r e e  a r b i t e r  

An arbiter is a circuit that  provides indivisible access to a shared resource, 
e.g., a bus or a peripheral. The arbiter described here is implemented as a 
binary tree in which all nodes (including the root and the leaves) are identical. 
The arbitration algorithm is based on passing a unique token around the tree. 
An external process using the arbiter is connected to a leaf of the tree, and 
it may use the resource only when that  leaf has the token. 

Each node of the tree has three pairs of connections (see figure 4), one 
for its parent and one for each of its children. A connection pair consists of 
two state variables, req and gr, standing for request and grant. Such a pair 
is used according to the following four-phase protocol: A node requests the 
token by setting req to true. When gr becomes true, the node has the token 
and may pass it down the tree. The token is handed back by setting req to 
false. When gr becomes false, a new request can be made. Figure 4 shows 
a few nodes and their interconnections. The complete design description is 
shown in [14]. 

We verified that  no two children could be granted access at the same time 
(mutual exclusion). Contrary to the two previous examples, the natural  mod- 
ularization of the design is a tree and not a linear sequence. When applying 
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L reqp grp 
reql---- grl-- reqr-- grr - ~  

L reqp grp reqp grp 

reql--- grl-- reqr-- grr---] L reql-- grl-- reqr-- grr---J 

Fig. 4. Two levels of arbiter tree 
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n 

Fig. 5. Running times for the arbiter when verifying mutual exclusion between all 
pairs of children. 

the quotient technique a sequencing of the cells must be chosen. We decided 
to first divide out the leaves and then move upwards in the tree. Again, we 
observed that  the quotient technique performs better  than the forward iter- 
ation. This time each cell has 4 variables but  the property was not as simple 
as in the previous two cases. It expressed that  no pair of children could be 
granted access at the same time: a conjunction of the order of n 2 conjuncts. 
Still the quotient technique seemed to provide an advantage. The order of 
performing the quotienting was significant: starting from the root and moving 
down results in considerably worse performance. 

The a~:biter can easily be described recursively, yielding only a constant 
number of implications to be verified when using localized verification. How- 
ever, this time considerable human effort is involved. It is necessary to for- 
malize the four phase protocol described above in order to actually prove the 
property. This has been done (see [14]), but  it requires manual effort to do. 

7 R e l a t e d  w o r k  

The closest related work seems to be Burch et al [5]. They also t ry  to avoid 
building the complete transition relation t = tl  V t2 V -..  V t~ (using our 
notation) and instead keep a list of the individual transition relations. When 
computing the reachable states by a forward iterations, they repeatedly iter- 
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ate each transition relation independently until a fixed point is reached. Our 
approach differs in at least three respects. 

Firstly, it is a backwards iteration that  utilizes the property to be verified 
in simplifying the computation. This avoids constructing the complete set 
of reachable states. Secondly, a Ci is only used for one fixed-point iteration, 
whereafter it is added, in a simplified version, to the accumulating set of 
transitions Si. Finally, we exploit the modular structure provided by the 
designer by quotienting out one cell at a time. The examples shown in this 
paper show that  this can reduce the verification effort significantly. We would 
expect this to be the case for most examples of practical relevance. 

8 Conclus ion 

This paper has presented and compared three mechanized techniques for 
verifying safety properties of state transition systems. The comparisons have 
focused on the quantitative properties of the three techniques. The forward 
generation of the reachable states puts the minimal demand on the designer, 
all that  is necessary is to formalize the property to be verified. However, the 
automation is computationally expensive which limits the size of the designs 
that  can be verified using this technique. In contrast to this, the verification 
effort needed by the localized technique is much smaller. Unfortunately, the 
price payed for this is an extra effort needed by the designer to formulate 
predicates characterizing the interfaces between the modules of a design. 

The third alternative, the quotient technique, can be viewed as a com- 
promise between the other two. Some manual assistance is needed by the 
designer to identify the module structure of a design, but once this has been 
done the technique proceeds completely automatically. 

These claims are supported by the three examples presented in section 6. 
The examples are relatively simple, but all three techniques have been suc- 
cessfully used on a number of other examples. The localized technique is 
supported by tools for generating and proving the required verification con- 
ditions [14] 2 . 

Acknowledgements 

Thanks to Henrik Hulgaard for commenting on an earlier draft and to the 
anonymous referees for constructive comments. 

References  

1. Henrik P~. Andersen. Partial model checking (extended abstract). In Proceed- 
ings, Tenth Annual IEEE Symposium on Logic in Computer Science, pages 
398-407, La Jolla, San Diego, 26-29 July 1995. IEEE Computer Society Press. 

A package is freely available via Internet: f t p : / / f t p ,  i t .  dtu. dk/pub/ST 



564 

2. Henrik R. Andersen, Niels Maretti, and Jorgen Staunstrup. Partial model 
checking with ROBDDs. To appear in Proceedings of TACAS'97. LNCS. 

3. R.E. Bryant. Graph-based algorithms for boolean function manipulation. 
Transactions on Computers, 8(C-35):677-691, 1986. 

4. R.E. Bryant. Symbolic Boolean manipulation with ordered binary-decision 
diagrams. Computing Surveys, 24(3):293-318, September 1992. 

5. J.  R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with 
partitioned transition relations. In A. Halaas and P. B. Denyer, editors, Proc. 
1991 Int. Conf. on VLSI, August 1991. 

6. K. Mani Chandy and Jajadev Misra. Parallel Program Design: A Foundation. 
Addison-Wesley, 1988. 

7. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skele- 
tons using branching time temporal logic. In Dexter Kozen, editor, Logics of 
Programs, Workshop~ Yorktown Heights, New York, May 1981, volume 131 of 
LNCS, pages 52-71. Springer-Verlag, 1981. 

8. Jo C. Ebergen and Ad M. G. Peeters. Design and analysis of delay-insensitive 
modulo-N counters. Formal Methods in Systems Design, 3(3), December 1993. 

9. ~ R.W. Floyd. Assigning meanings to programs. In J.T. Schwartz, editor, Pro- 
ceedings of the Symposium in Applied Mathematics, volume 19, pages 19-32. 
American Mathematical Society, 1967. 

10. Alan J. Hu, David L. Dill, Andreas J. Drexler, and C. Han Yang. Higher- 
level specification and verification with BDDs. In G. v. Bochmann and D. K. 
Probst, editors, Proceedings of the 4th Workshop on Computer Aided Verifica- 
tion, CAV'92, June 29 - July 1, 1992, Montreal, Quebec, Canada, volume 663 
,of LNCS, pages 82-95. Springer Verlag, 1992. 

11. Jeffrey J. Joyce. Generic specification of digital hardware. In Designing Correct 
Circuits, Oxford 1990, pages 68-91. Springer-Verlag, 1991. 

12. J.P. Billon and J.C. Madre. Original concepts of PRIAM, an industrial tool for 
efficient formal verification of combinational circuits. In G.J. Milne, editor, The 
Fusion of Hardware Design and Verification, pages 487-501, Glasgow, Scotland, 
1988. IFIP WG 10.2, North-Holland. IFIP Transactions. 

13. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Nor- 

well Massachusetts, 1993. 
14. Jcrgen Staunstrup. A Formal Approach to Hardware Design. Kluwer Academic 

Publishers, 1994. 
15. Jcrgen Staunstrup and Niels Mellergaard. Localized verification of modular 

designs. Formal Methods in System Design, 6(3):295-320, June 1995. 


