
A Comparison of Modular Verification Techniques*

Henrik Reif Andersen Jcrgen Staunstrup Niels Marett i

Department of Information Technology, Building 344,
Technical University of Denmark, DK-2800 Lyngby, Denmark.

A b s t r a c t . This paper presents and compares three techniques for mechanized ver-
ification of state-oriented design descriptions. The goat of this work is to gain insight
into quantitative aspects of different modular verification techniques. One of the
three verification techniques presented here is a traditional forward generation of a
fixed point characterizing the reachable states. This does not utilize any modular-
ity provided by the designer, and therefore it forms the basis for the comparison,
whereas the two others do utilize such a modularity. One requires a substantial
manual effort by the designer, but is computationally very efficient, while the other
requires almost no manual assistance with a much better performance than the
simple forward generation. The performance of the three techniques is compared
on a set of examples.

1 Introduction

Verification is an important par t of any non-trivial design project. It covers a
wide range of techniques for uncovering errors, and ideally one would like to
do an exhaustive check, where all behaviors of the design are exercised. How-
ever, this is seldomly possible in practice. The common practise is to test a
sample of the behaviors by execution and/or simulation. Recently, advances in
algorithms, da ta structures, and design languages have provided formal (ex-
haustive) verification techniques which are powerful enough to handle some
significant practical examples [12,13]. In order to use the formal techniques,
both the intended and actual behavior must be expressed in formal nota-
tion, e.g., as a program in a programming language or as a logic formula.
Although these techniques have been demonstrated to work on significant
examples, scaling is often difficult. The reason is tha t the modular i ty found
in most large-scale practical designs has been difficult to exploit in an efficient

way in formal verification.
The goal of this work is to gain insight into quanti tat ive aspects of differ-

ent modular verification techniques. One of the three verification techniques
presented here is a traditional forward generation of a fixed point character-
izing the reachable states. This does not utilize any modular i ty provided by

* Work supported by the Danish Technical Research Council, project Codesign.
E-mail and WW%V addresses of the first two authors: {hra,jst}@it.dtu.dk,
http : //www. it. dtu. dk/{~hra, ~j st}.

551

the designer, and therefore it forms the basis for the comparison, whereas
the two others do utilize such a modularity. The difference between the two
is in the amount of automation. One requires very little effort from the de-
signer while the other assumes that the designer formalizes the behavior at
the interfaces between all modules. The analysis done here focuses on both
the computational and the manual effort needed for the verification. To stress
tha t the techniques discussed apply to both hardware and software we use
the generic term design.

The paper is organized as follows. Section 2.1 introduces a simple state-
based model that is used to explain and compare different verification tech-
niques. In section 2.2 modularity is added to the simple model. Sections 3-5
give a brief introduction to the three verification techniques that are com-
pared. Section 6 contains the actual comparison.

2 M o d e l

This section defines the model used to describe a design, it is closely related
to UNITY[5] and SYNCHRONIZED TRANSITIONS[14]. However, to simplify the
presentation, it uses a simplified notation avoiding issues like typing and
scope rules.

2.1 S ta tes and t rans i t i ons

A design is specified by a transition system, that consists of a fixed number of
state variables: sl, s2 , . . . , sn, and a fixed number of transitions: tl, t 2 , . . �9 tin.
Each state variable has a value from a fixed domain. A state is a mapping
of state variables to values: (Sx ~ vlls2 ~ v2,. . . ,sn ~ vn), where vi (1 <
i < n) is a value in the domain of state variable si. A transition is a binary
relation on states, called pre-states and post-states. A design defines a set
of computations as sequences of states: So, $1 , . . . , such that So is an initial
state, and for each pair: Si,Si+I, there is a transition t such that Si is a
pre-state of t, and Si+l is a post-state of t. Furthermore, it is required that
S~ ~ Si+l. A set of initial states is specified by a predicate.

N o t a t i o n Transition relations are described by an assignment controlled by
a boolean expression, called a precondition, for example:

80 ~ 82 --+ S 1 : ~ S 0

This transition description defines a relation that holds only if So ~ s: in the
pre-state; the value of sl in the post-state is the value of So in the pre-state,
and state variables other than sl hold the same value in the pre- and post-
states. Sometimes it is convenient to interpret a transition, t, as a predicate
t(pre,post) which is true, if and only if t can make a state change from pre
to post. A number of transition descriptions, t l , t 2 , . . . , tn can be combined
by asynchronous composition, [], to one description: tl [] t2 [[. .- [[tn. The

552

transit ion relation defined by this composition is the union of the individual
relations.

Example 1. A simple oscillator. Let s0, sl , and s2 be three boolean state
variables. Together they define a state space with 8 possible states.

i n i t i a l l y
so # s l V s l # s2

t r a n s i t i o n s
80 ~ 82 -+ 81 := 80 [[

s~ # so -~ s~ := Sl II
82 ~ 81 -'-} S0 :---- 82

The first transit ion description defines two possible state changes, one leading
from a pre-state where So is true and s2 is false, and another where so is false
and s2 is true. Similarly, the second and third transitions define each two
state changes. The transition system is initialized such tha t the values of the
three state variables are not the same. The transitions describe a computat ion
where the value of So is propagated to sl (and from there to s2 and back to
So). E n d o f e x a m p l e

The FIFO queue presented next is used as a running example in the rest of
the paper. In section 6 other examples are given and used for a quanti tat ive
comparison of the different verification techniques. The particular FIFO used
here is a fundamental building block in asynchronous circuits [14].

Example 2. The FIFO queue. A FIFO (queue) is a da ta structure that can
hold a sequence of elements. For our purposes, an element has one of three
values: E (for empty), T (for true), and F (for false). Elements are inserted
into the queue as sequences of E, T and F values such tha t any T and F are
separated by at least one E, for example, ETTTTEEEFFETETTE represen-
t ing the sequence of values T, F, T, T. Given a state variable, s, the predicate
e(s) is true if s has the value E and false otherwise.

The FIFO queue is realized as a number of state variables (each of which
can hold an element), and a number of transitions for moving elements down
the sequence. When an element is inserted, it moves down the queue. Mean-
while, further elements can be inserted, and several elements can move in
parallel. The following transition describes how elements move:

.... I 1 I,Iot l t
e(i) r e(s) -+ o :-= i

For simplicity the transitions for input from or output to the environment
are not shown. Intuitively, the elements move in a worm-like fashion, where
a particular value might be stretched out over several s tate variables, or it
can be compressed into a single state variable surrounded by Es. I t is this
worm-like behavior tha t makes the FIFO a key component in asynchronous

circuits.

553

2.2 M o d u l a r d e s i g n s

It is rarely practical to handle a large design as a single monolithic transit ion
system. To be manageable, it must be broken into a number of (almost) inde-
pendent modules; such modules are called cells in this paper. A cell describes
a generic (i.e., parameterized) set of s tate variables and transitions. A specific
instance contains a distinct set of state variables and transitions, called the
local state variables and local transitions. Any number of instances of a cell
may coexist.

The interface of a cell is a set of formal parameters; within the cell these
are indistinguishable from other state variables, for example,

cel l queue(in, out)
Here there are two formal parameters in the interface: in, out. When the cell
is instantiated, an actual parameter (a state variable) is specified for each
formal parameter . Several cell instances can share a particular s tate variable
by making it an actual parameter of the cells.

The sets of transitions of different cell instances are disjoint, therefore,
any transition belongs to exactly one cell instance. The collection of all cell
instances in a modular design defines a transition system, where the set of
s tate variables is the union of the state variables of the cell instances, and
the set of transitions is the union of their transitions. The computat ion is a
sequence of states, corresponding to executions where transitions are executed
one at a time.

N o t a t i o n The notation for describing modular transit ion systems is not
formalized in this paper. This leaves some ambiguity with respect to scope
rules, typing etc. However, these details are not necessary for the quanti tat ive
comparisons that are the focus of this paper. The notation is a simplification
of the design language SYNCHRONIZED TRANSITIONS [14].

Example 3. The modular FIFO. The FIFO can be used to illustrate a modu-
lar design consisting of a number of similar segments. The following shows a
segment tha t contains five elements (the choice of five is somewhat arbitrary,
see also section 5):

cell element(i, o, s): e(i) ~ e(s) ~ o:= i
i n s t a n t l a t i o n s

element(in, sl, s2) If element(sl, s2, sS) I]
element(s2, s3, s4) Ii element(s3, s4, s5) [I
element(s4, s5, out) E n d o f e x a m p l e

Structuring a design into cells is primarily a pragmatic concern which may
simplify the (development and) verification. The use of cells may contribute
to this in several ways. One potential contribution is the generic nature of a
cell, which means tha t the cell is only verified once, even if a large or unknown
number of instances of the cell are used. In [11] a similar benefit of generic

554

specifications is used. Another contribution is that even for irregular designs,
without re-use of generic cells, it is important to localize the verification to
concentrate on one cell at a time.

2.3 Design verification

Propert ies of a design are formalized as predicates, called invariants, con-
straining the transit ion system, for example, that no two neighboring ele-
ments in a FIFO have different non-empty values. An invariant defines a
subset of the state space containing the initial state. Furthermore, there must
not be any transitions from a state within the subset to a state outside. Hence,
invariants describe properties which hold throughout the computat ion, be-
cause no transit ion will go to a state violating it. An invariant is writ ten as
a predicate, I(S), on a state S.

Example 4. The FIFO queue (continued). The transitions of the FIFO queue
ensure tha t there will never be a state where two neighboring elements, s l , s2,
contain two different non-empty values, this property is expressed as an in-
variant, called the alternation invariant.

i n v a r i a n t A(sl, s2): (e(sl) = e(s2)) = (s l = s2)

Note tha t = is an overloaded binary operator used for comparing both boolean
values and the ternary values stored in the queue. E n d o f e x a m p l e

Invariants are used to formalize safety properties of a design. The modular-
ization provided by the cell mechanism can also be reflected in the invariants,
because ceils may have their own local inv~riants s tat ing internal properties.
The next three sections (sections 3-5) present three different verification tech-
niques for showing that a given predicate is an invariant. There are many
interesting properties of a design, e.g., liveness properties, that cannot be ex-
pressed as invariants. This paper does not advocate using only invariants for
designing and verifying reMistic designs. However, invariants are sufficient to
demonstra te the quanti tat ive differences between the verification techniques

presented here.

3 L o c a l i z e d v e r i f i c a t i o n

This section describes an induction based verification technique for verifying
an invariant [9]. Assume tha t I is an invariant and tha t t is a transit ion of a

design, then t is said to maintain the invariant if,

I(pre) A t(pre,post) ~ I(post)

i.e., if the invariant holds in the pre-state then it is shown to hold in the
post-state. By showing that the invariant holds in the h~tia~ state and by
showing the implication for each transition description, t, of the design one

555

may conclude that the invariant holds throughout the computation. This ver-
ification technique is really an induction proof [9] (over the computations of
the design) where the implication shown above corresponds to the induction
step. The effort needed to do the induction step is proportional to the number
of transition descriptions and cell instantiations in the textual description of
the design; but independent of the size of the state space or the length of the
computation.

Example 5. The FIFO queue (continued). One segment of the FIFO queue
design has five transitions of the form:

e (i) # e (s) -+ o : = s

To show that the invariant holds for this segment five implications (one for
each transition) must be shown. If the size of a segment is increased by adding
more transitions then the verification efforts grows proportionally. However,
a bet ter way to describe a large FIFO queue is to instantiate a number of
cells (segments). E n d o f e x a m p l e

When a large design is divided into cells, it is possible to divide the verifica-
tion in a similar modular fashion. This means that a cell description needs
only to be veri~ed once, no matter how many times it is iastantiated. In
[15] it is shown how the latter can be exploited to yield a localized verifica-
tion technique with a constant verification effort for each instantiation (two
implications). This is also an inductive technique.

Example 6. The FIFO queue (continued). The localized verification tech-
nique can be illustrated on the FIFO queue realized as three segment cells:

ill i12 ol i21 i22 02 i31 i32 03 i41

~ ~
cell segment(il, sl, o, s)

i nva r i an t [segment : A(il , s l) A A(sl, s2) . . .
t r a n s i t i o n s . ..

cell F I F O
i nva r i a n t IFIFO : A(ol,i21) A A(i21,i22) . . .
i n s t a n t i a t i o n s

segment(ill , i12, ol, i21) N element(ol, i21, i22) II
segment(ill , i22, 02, i31) [I element(o2, i31, i32) [I
segment(i31, i32, 03, i41)

To verify this design, one first shows that each of the transitions in the cell de-
scription of a segment maintains the invariant (Iseament (pre) A t(pre, post)
I ~ 7 ~ (p o s t)) , this is called local invariance. Note that each transition is
only verified once, no mat ter how many times it is instantiated.

To verify an instantiation of the ceil segment, one shows that no tran-
sition in the instantiated cell violates the invariant of its environment (the

556

global level of the FIFO and the other cell instances), this is called up-ward
non-inter]erence. Furthermore, no transition in the environment must violate
the invariant of the instantiated cell, this is verified by showing down-ward
non-inter]erence. To show these two non-interference properties for the first
instantiation of the FIFO cell, it is sufficient to show the following two im-
plications denoted UP and DOWN.

UP: Isegment (pre) A IFIFO (pre) A IFIFO (post) A Sg ::~ Isegment (post)

where S 9 is a predicate stating consequences of the cell structure, for example,
tha t the transitions of the first FIFO segment cannot change state variables
i11, i21, i22, 02, i31,

DOWN: IFIFO (pre) A Isegment (pre) A Isegment (post) A St ~ IFIFO (post)

where St is a predicate stating consequences of cell structure, for example,
that the global transitions of the FIFO cannot change local state variables of
the first segment s2, s3, s 4 , E n d o f e x a m p l e

The verification technique, illustrated by the FIFO example, is useful in gem
eral. Further examples and a more detailed explanation is given in [15] where
it is also shown that the technique is sound. Each line of a design descrip-
tion gives rise to zero (declarations, headers, etc.), one (local invariance) or
two implications (non-interference), and this is the justification for the claim
that the verification effort grows linearly with the size of the textual design
description. In fact, for recursively defined cell, the effort needed to show
non-interference is independent of the recursion depth. This is because the
recursive instantiation of a cell yields just the two non-interference implica-

tions.
However, the efficiency of the localized verification has a price. First of

all, the technique is not complete. One can easily construct an example of
a correct design where it is not possible to show the required implications
(UP or DOWN). In practice this does not seem to be a unsurmountable
problem; a significant number of examples have been verified [I4]. A more
important practical problem is inherent in the inductive approach on which
the technique is based. It is based on showing implications such as:

• A t(pre,post) I(post)

Note that the invariant I appears both as an assumption and as a conclusion.
This means that one has to find the right balance when stating an invariant.
If it is made very strong (I(pre) very restrictive), it means that I(post) also
becomes very strong and hence difficult to prove. On the other hand making
the assumptions very weak, can make it difficult to conclude that I(post)
holds. This has turned out to be a significant practical problem. To show an
invariant using the inductive approach, it is often necessary to find a stronger
assertion than the straightforward formulation of the desired property. To

557

illustrate this, assume that the designer for some reason only wants to verify
the invariant A(o3,i41), i.e. that the last two elements in the FIFO queue
does not contain different non-empty values. In order to verify this using the
inductive hypothesis, it is necessary for the designer to formulate a much
stronger invariant. Identifying and formulating this is often a significant part
of the verification effort. Hence, the linear growth of the verification effort
has its price, namely an added effort by the designer to identify and state
auxiliary invariants.

4 C o m p u t a t i o n o f r e a c h a b l e s t a t e s

This section describes a technique that overcomes the difficulty of finding
invariants by computing the strongest of them all: A predicate characteriz-
ing exactly the set of reachable states. Having computed the set of reachable
states, the verification task is reduced to checking that the predicate charac-
terizing this set implies the property of interest. The set of reachable states is
the subset of the state space that can be reached by a sequence of transitions
from any of the initial states. This set is often computed as an increasing
sequence of approximations starting with the initial states and in each step
adding what can be reached by making one further transition [7]. If the sys-
tem is finite, this sequence of approximations will always converge to the full
set of reachable states in a finite number of steps. This is called the forward
generation technique.

This computation requires choosing a representation for sets of states. Us-
ing an explicit representation very quickly leads to a combinatorial explosion
of the number of states generated, resulting in poor performance. However,
implicit representations of state sets with clever datastructures can in many
real examples overcome the problem. We shall use the implicit representation
known as Reduced Ordered Binary Decision Diagrams [3], ROBDDs. They
provide compact representations of boolean functions using a special kind
of directed acyclic graphs. All the standard boolean operations are reflected
by ROBDD-operations that are implemented as efficient algorithms on the
underlying datastructure. Representing sets of states by their characteristic
booIean functions provides the needed representation.

The use of ROBDDs requires choosing an ordering of the boolean vari-
ables in the design. This choice greatly influences the efficiency of the ROBDD
representation. McMillan [13] gives some advice for choosing an ordering for
circuit designs which we have followed: The variables must be ordered accord-
ing to how they appear in a depth-first traversal of the circuit. Furthermore,
pre- and post-variables should be interleaved when representing transitions.

Using these orderings, the initial states, the set of transitions, and the
reachable states are all represented as boolean functions. After computing the
set of reachable states, the verification task is reduced to checking that the
boolean function characterizing this set implies the property of interest. This

558

n-2

I 1

([_$1__! ~ - ~ ~ - ~ ~ - ~ ~ - ~ satisfies Q1

. i[-j

I . [. fn_] satisfies Qn

Fig. 1. Sketch of the quotient technique.

final implication is also computed as an operation on ROBDDs. ROBDDs
are not guaranteed to avoid the combinatorial explosion - - and on some
real examples they fail to do so [4] - - but they do on very many examples,
providing one of the most successful heuristics currently known.

There are two important differences compared to the localized verification
technique described in section 3. One is that the forward generation technique
does not require any manual assistance from the designer in formulating aux-
iliary invariants needed. To verify the invariant A(o3, i41) in the FIFO queue
no additional effort is needed from the designer. The other significant differ-
ence is that neither the forward generating technique nor the ROBDDs make
use of the modularity of the design. The next section presents an automatic
technique where this is done.

5 The quotient technique

The third technique we shall present combines the ROBDD technique with
a use of the modularization of the design and maintains the automation
of the forward generation. Instead of computing the set of reachable states
by a forwards iteration from the initial states, the quotient technique is a
modified backwards iteration from the property to be verified towards the
initial states. A backwards iteration utilizes knowledge of the property to be
verified. If this property is simple, the hope is that the intermediate sets of
states are also simple. The quotient technique with ROBDDs is a refinement

and modification of this idea.
Figure 1 gives a sketch of the technique: Q0 is the property to be verified;

Q1 is constructed from Q0 by backwards iterating with the transitions from
cell C1 until a fixed point is reached; $1 is constructed by restricting C1 to
the subset Q1 x Q1, i.e., $1 is a simplified version of C1. As we proceed, Q~+I
is constructed from Qi by backwards iterating with the transitions from cell
C~+1 and the simplified representation Si of the transitions of cell C1 to Ci;
S~+1 is constructed from the union of Ci+l and Si by restricting to the subset
found as Qi+l. The verification is done by a final backwards iteration of Sn

559

from Qn, followed by a check to decide whether this set contains the initial
states.

More precisely, we take So = ~ and define for i E {0 , . . . , n - 1}:

Q~+I = (Si u C~+1)* --o Q~

where T* is the transitive, reflexive closure of a transition relation T, x
forms the Cartesian product of two sets, and T --o Q is the set of states that
through a transition in T only can lead to states in Q. The operation T --o Q
is defined by:

T --o Q _- {s IW' . (s, s') c T ~ s' E Q}.

(In program verification this is known as the weakest precondition.) The set
(Si U Ci+l)* --o Qi is found by a backwards fixed-point iteration.

The quotient technique "removes" the cells of the design one-by-one. The
order in which this is done must be determined manually. Since the interme-
diate sets generated will vary with the order, the choice of order can influence
the efficiency. For a design that has a linear topology there are two obvious
choices: from right to left or from left to right. For other topologies like for
instance binary trees the best choice is less obvious.

The quotient technique has two potential benefits over a direct backwards
iteration [10]. Firstly, the full next-state relation which is a disjunction of all
transitions of the design need not be computed - a computation that is often
costly, as reported for instance in [10]. Secondly, the intermediate ROBDDs
constructed during the iteration tend to be simpler than the intermediate
ROl3DDs in the simple backwards iteration.

For details and more experimental evidence on the quotient technique,
see [1] (in this paper the technique is called partial model checking) and [2].

6 Quantitative comparison

This section presents a number of quantitative comparisons of the verification
techniques presented in sections 3 to 5. The comparisons are based on three
examples: The FIFO queue, a Modulo-N counter, and a tree arbiter. All three
are rather simple to describe as modular designs where the size can be varied
in order to analyze how the verification effort grows with the size of the
problem.

All experiments were carried out on a Sparc 20 with 96 MB of memory
using an ROBDD package written in Standard ML of New Jersey, version
0.93.1 The package was written with the purpose of ease of use and no special
attention was drawn to optimizing efficiency. Thus less emphasis should be
put on the absolute running times than the relationship between the results.

1 The package is freely available via In~ernet: http ://w~r i t . dtu. dk/,~hra.

560

sec 700

600

500

400

300

200

100

0
0

FIFO
i i i , i

I

5 10 15 20 25 30
i1

Fig. 2. Running times for the FIFO with m = 6

forward - -
quot ient

localized

35

6.1 T h e F I F O q u e u e

The first series of experiments were carried out with the FIFO queue. It was
verified that the alternation invariant holds for the last two elements. The
design is parameterized in m, the size of each segment, and n, the number of
segments. With localized verification a set of implications are extracted and
these are shown to hold by the ROBDD package. As described in section 3
the number of implications grows linearly with n (and m). The manual effort
required is to state that the alternation invariant holds everywhere in the

FIFO.
The forwards iteration requires no manual effort. All the work is done by

the ROBDD package. The quotient technique requires choosing an ordering
of the cells. Since the modular structure is a linear sequence there are two
obvious choices. The one used is from output-to-input. Figure 2 shows the
running times for m = 6 as a function of n. For the forward and quotient
techniques these are third degree polynomials. However, the polynomial for
the quotient has much smaller constant factors, resulting in bet ter perfor-
mance. We tried increasing m and observed that the difference between the
two also increases. This seems to confirm the assumption that the quotient
technique can benefit from the cells containing much local state. In fact, the
quotient technique is so efficient that the state space must be of considerable
size before the localized verification is advantageous. (For n = 20 the state
space is of size 212~ But from that point on, nothing seems to compete with
the linear growth of the localized verification.

6.2 M o d u l o - N c o u n t e r

The modulo-N counter with constant response time is a simple example of a
speed-independent design [8]. To simplify the presentation, it is assumed that
N is a power of two, and therefore the counter is a modulo-2 n counter. The
counter has one input, a, and two outputs p and q. Every signal change on
the input a is acknowledged by a signal change of either p or q. The first 2n-1
up-going changes on a are acknowledged by up-going changes on p and the
last, 2n-th, by an up-going change on q. The same with down-going changes.

561

sec
2500

2000

1500

1000

50O

0
0

Modulo-N Counter
i i i i i

?
/
i

/
/

/
f l

/
/

~..~/ .4--.
, .*- ~ c ,--...-I-------'-'~ " + " ' t I I

5 1 0 1 5 2 0 2 5
n

Fig. 3. Running times for the modulo 2~-counter.

i

forward
quotient:

.-4-

I

30 35

We verified the property that at each point in time only one of p and q
holds the value 'one' at the output of the counter. The running times are
shown in figure 3. The forwards iteration and quotient techniques again be-
have as third degree polynomials. The quotient, however, has dramatically
bet ter running time than the forwards iteration. We anticipate that the main
reason is that the quotient technique can fully benefit from the original prop-
erty being simple and the local state relatively large (each cell contains 7
boolean variables).

The design of the counter can be given as a recursive description, which
means that the number of implications coming from the localized verification
is constant, independent of n. The running time is therefore a horizontal
line very low in the figure (not drawn). The price here is, however, that a
relatively strong invariant must be supplied by the designer.

6.3 A t r e e a r b i t e r

An arbiter is a circuit that provides indivisible access to a shared resource,
e.g., a bus or a peripheral. The arbiter described here is implemented as a
binary tree in which all nodes (including the root and the leaves) are identical.
The arbitration algorithm is based on passing a unique token around the tree.
An external process using the arbiter is connected to a leaf of the tree, and
it may use the resource only when that leaf has the token.

Each node of the tree has three pairs of connections (see figure 4), one
for its parent and one for each of its children. A connection pair consists of
two state variables, req and gr, standing for request and grant. Such a pair
is used according to the following four-phase protocol: A node requests the
token by setting req to true. When gr becomes true, the node has the token
and may pass it down the tree. The token is handed back by setting req to
false. When gr becomes false, a new request can be made. Figure 4 shows
a few nodes and their interconnections. The complete design description is
shown in [14].

We verified that no two children could be granted access at the same time
(mutual exclusion). Contrary to the two previous examples, the natural mod-
ularization of the design is a tree and not a linear sequence. When applying

562

L reqp grp
reql---- grl-- reqr-- grr - ~

L reqp grp reqp grp

reql--- grl-- reqr-- grr---] L reql-- grl-- reqr-- grr---J

Fig. 4. Two levels of arbiter tree

Arbiter
sec 16000 , , , ' ,I,

14000 forward ----~/

12000 quotient 7 z.-. 1
1600080000000 ///////

4000 --~" ,~
2000 ~:::: : : : :-: :~] . ..

0
2 4 6 8 10 12

n

Fig. 5. Running times for the arbiter when verifying mutual exclusion between all
pairs of children.

the quotient technique a sequencing of the cells must be chosen. We decided
to first divide out the leaves and then move upwards in the tree. Again, we
observed that the quotient technique performs better than the forward iter-
ation. This time each cell has 4 variables but the property was not as simple
as in the previous two cases. It expressed that no pair of children could be
granted access at the same time: a conjunction of the order of n 2 conjuncts.
Still the quotient technique seemed to provide an advantage. The order of
performing the quotienting was significant: starting from the root and moving
down results in considerably worse performance.

The a~:biter can easily be described recursively, yielding only a constant
number of implications to be verified when using localized verification. How-
ever, this time considerable human effort is involved. It is necessary to for-
malize the four phase protocol described above in order to actually prove the
property. This has been done (see [14]), but it requires manual effort to do.

7 R e l a t e d w o r k

The closest related work seems to be Burch et al [5]. They also t ry to avoid
building the complete transition relation t = tl V t2 V -.. V t~ (using our
notation) and instead keep a list of the individual transition relations. When
computing the reachable states by a forward iterations, they repeatedly iter-

563

ate each transition relation independently until a fixed point is reached. Our
approach differs in at least three respects.

Firstly, it is a backwards iteration that utilizes the property to be verified
in simplifying the computation. This avoids constructing the complete set
of reachable states. Secondly, a Ci is only used for one fixed-point iteration,
whereafter it is added, in a simplified version, to the accumulating set of
transitions Si. Finally, we exploit the modular structure provided by the
designer by quotienting out one cell at a time. The examples shown in this
paper show that this can reduce the verification effort significantly. We would
expect this to be the case for most examples of practical relevance.

8 Conclus ion

This paper has presented and compared three mechanized techniques for
verifying safety properties of state transition systems. The comparisons have
focused on the quantitative properties of the three techniques. The forward
generation of the reachable states puts the minimal demand on the designer,
all that is necessary is to formalize the property to be verified. However, the
automation is computationally expensive which limits the size of the designs
that can be verified using this technique. In contrast to this, the verification
effort needed by the localized technique is much smaller. Unfortunately, the
price payed for this is an extra effort needed by the designer to formulate
predicates characterizing the interfaces between the modules of a design.

The third alternative, the quotient technique, can be viewed as a com-
promise between the other two. Some manual assistance is needed by the
designer to identify the module structure of a design, but once this has been
done the technique proceeds completely automatically.

These claims are supported by the three examples presented in section 6.
The examples are relatively simple, but all three techniques have been suc-
cessfully used on a number of other examples. The localized technique is
supported by tools for generating and proving the required verification con-
ditions [14] 2 .

Acknowledgements

Thanks to Henrik Hulgaard for commenting on an earlier draft and to the
anonymous referees for constructive comments.

References

1. Henrik P~. Andersen. Partial model checking (extended abstract). In Proceed-
ings, Tenth Annual IEEE Symposium on Logic in Computer Science, pages
398-407, La Jolla, San Diego, 26-29 July 1995. IEEE Computer Society Press.

A package is freely available via Internet: f t p : / / f t p , i t . dtu. dk/pub/ST

564

2. Henrik R. Andersen, Niels Maretti, and Jorgen Staunstrup. Partial model
checking with ROBDDs. To appear in Proceedings of TACAS'97. LNCS.

3. R.E. Bryant. Graph-based algorithms for boolean function manipulation.
Transactions on Computers, 8(C-35):677-691, 1986.

4. R.E. Bryant. Symbolic Boolean manipulation with ordered binary-decision
diagrams. Computing Surveys, 24(3):293-318, September 1992.

5. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with
partitioned transition relations. In A. Halaas and P. B. Denyer, editors, Proc.
1991 Int. Conf. on VLSI, August 1991.

6. K. Mani Chandy and Jajadev Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

7. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Dexter Kozen, editor, Logics of
Programs, Workshop~ Yorktown Heights, New York, May 1981, volume 131 of
LNCS, pages 52-71. Springer-Verlag, 1981.

8. Jo C. Ebergen and Ad M. G. Peeters. Design and analysis of delay-insensitive
modulo-N counters. Formal Methods in Systems Design, 3(3), December 1993.

9. ~ R.W. Floyd. Assigning meanings to programs. In J.T. Schwartz, editor, Pro-
ceedings of the Symposium in Applied Mathematics, volume 19, pages 19-32.
American Mathematical Society, 1967.

10. Alan J. Hu, David L. Dill, Andreas J. Drexler, and C. Han Yang. Higher-
level specification and verification with BDDs. In G. v. Bochmann and D. K.
Probst, editors, Proceedings of the 4th Workshop on Computer Aided Verifica-
tion, CAV'92, June 29 - July 1, 1992, Montreal, Quebec, Canada, volume 663
,of LNCS, pages 82-95. Springer Verlag, 1992.

11. Jeffrey J. Joyce. Generic specification of digital hardware. In Designing Correct
Circuits, Oxford 1990, pages 68-91. Springer-Verlag, 1991.

12. J.P. Billon and J.C. Madre. Original concepts of PRIAM, an industrial tool for
efficient formal verification of combinational circuits. In G.J. Milne, editor, The
Fusion of Hardware Design and Verification, pages 487-501, Glasgow, Scotland,
1988. IFIP WG 10.2, North-Holland. IFIP Transactions.

13. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Nor-

well Massachusetts, 1993.
14. Jcrgen Staunstrup. A Formal Approach to Hardware Design. Kluwer Academic

Publishers, 1994.
15. Jcrgen Staunstrup and Niels Mellergaard. Localized verification of modular

designs. Formal Methods in System Design, 6(3):295-320, June 1995.

