
A C o m p o s i t i o n a l P r o o f of a R e a l - T i m e M u t u a l
Exc lus ion P r o t o c o l

K~re J. Kristoffersen 1 Francois Laroussinie 3 Kim G. Larsen 1
Paul Pettersson 2 Wang Yi 2

1 BRICS t , Aalborg University, DENMARK
2 Department of Computer Systems, Uppsala University, SWEDEN

3 LSV - CNRS & ENS de Cachan, FRANCE

Abst rac t . In this paper, we apply a compositional proof technique to

an automatic verification of the correctness of Fischer's mutual exclusion
protocol. It is demonstrated that the technique may avoid the state-
explosion problem. Our compositional technique has recently been im-
plemented in a tool CMC ~, which verifies the protocol for 50 processes
within 172.3 seconds and using only 32MB main memory. In contrast all
existing verification tools for timed systems will suffer from the state-
explosion problem, and no tool has to our knowledge succeeded in veri-
fying the protocol for more than 11 processes.

1 I n t r o d u c t i o n

It is well-known that the major problem in applying automatic verification tech-
niques to analyze finite-state concurrent systems is the potential combinatorial
explosion of the state space arising from parallel composition. In the last few
years, there has been a number of automatic verification tools for real-t ime
systems [4, 12, 8]. Experiences with these tools show that the state-explosion
problem is even more serious in verifying timed systems. As such a system must
satisfy certain timing constraints on its behaviour, a model-checker must keep
track of not only the part of state-space explored, but also timing information
associated with each state (i.e. possible clock values), which is both time and
space-consuming.

During the last decade, various techniques have been developed to avoid
the state-explosion problem in verifying finite-state systems, either by symbolic
representation of the states space using BDDs [5], by application of partial order
methods [10, 18] which suppresses unnecessary interleavings of transitions, or
by application of abstractions and symmetries [6, 7, 9]. These techniques have
been further extended to deal with timed systems, e.g. [4, 12],[17], [8]. However,
when applying these techniques to parallel systems such as Fischer's protocol,
a potential explosion in the global state-space remains. In [2], a compositional

t Basic Research in Computer Science, Centre of the Danish National Research
Foundation.

5 CMC: Compositional Model Checking

566

verification technique is developed by Andersen [2] for finite-state systems. In
[13, 15], the technique has been further extended to deal with real-time sys-
tems modelled as networks of timed automata, which allows components of a
real-time system to be gradually moved from the system description into the
specification, thus avoiding any global state-space construction and even exam-
ination. Essential to the technique is that intermediate specifications are kept
small using efficient minimization heuristics.

In this paper, we apply this technique to give a compositional proof for Fis-
chefs mutual exclusion protocol. In particular, it is shown that state-explosion
is avoided in the verification of the protocol: the size of the correctness proof
we offer only grows polynomially in the size of the number of processes in the
protocol. A similar compositional technique has recently been implemented us-
ing C + + in a tool called CMC, Compositional Model Checking. This tool gives
further experimental evidence of the potential of the technique: using only 172.3
seconds and 32MB main memory CMC automatically verifies the mutual exclu-
sion property for the acyclic version of Fischer's protocol with 50 processes.

The paper is organized as follows: In the next section we briefly introduce
our modelling and specification languages for real-time systems, and the formal
description of Fischer's mutual exclusion protocol. Section 3 describes the com-
positional quotienting method and simplification techniques for logical formulas.
In section 4, we present the proof for the mutual exclusion property of Fischer's
protocol. In section 5 we report on the experimental results obtained using the
CMC tool and compare the performance with that of our existing tool-suite [3].
Finally, in section 6 we give some concluding remarks and illustrate future work.

2 R e a l - T i m e S y s t e m s

In this section, we briefly introduce our modelling and specification languages
for real-time systems, that have been studied previously in the literature, e.g.
[19, 13, 15, 16]. For details, we refer to [15].

2.1 M o d e l s
We use t imed transi t ion s y s t e m s as a basic semantic model for real-time systems.
A timed transition system is a labelled transition system with two types of
labels: atomic actions and delay actions (i.e. positive reals), representing discrete
and continuous changes of real-time systems. Assume a finite set of actions A c t
ranged over by a, b etc, and a finite set of atomic propositions P ranged over by
p, q etc. We use R to stand for the set of non-negative real numbers, A for the
set of delay actions {~(d) I d E R}, and L for the union Ac t U A .

Def in i t i on 1. A t imed transi t ion s y s t e m over Ac t and 7) is a tuple, S = (S, so,
, V) , where S is a set o f s tates , so is the ini t ial s tate , ~C S x L x S is a transi-
t ion relation, and V : S --+ 2 p is a propos i t ion ass ignment func t ion tha t for each

s ta te s C S assigns a set o f a tomic propos i t ions V (s) t ha t hold in s. []

We use synchronization functions to describe concurrency and synchronizations
between timed transition systems. A synchroniza t ion func t ion f is a partial

5 6 7

funct ion (Act U {0}) x (Act U {0}) ~ Act, where 0 denotes a dist inguished no-
act ion symbol 6. Now, let $~ = {Si, si,o, >~, V~), i = 1, 2, be two t imed t rans i t ion
systems and let f be a synchronizat ion function. Then the parallel composition
81 Is $2 is the t imed t ransi t ion sys tem (S, so, >, V), where Sl Is s2 C S whenever
sl E $1 and s2 E $2, so = sl,0 Is S2,o, > is inductively defined as follows:

a b t
- ' if sl >i ' s 2 - - + 2 and f (a , b) = c sl It s~ -% sl b s2 sl , s2

t e(d t -- 81 If 82 e (~ Sl It S~ if sx ~(dll s i a n d s2 2 s~

and finally, the proposi t ion assignment funct ion V is defined by V(s l]i s2) =
Vl(Sl) u V~(s2).
The type of systems we are s tudying is a par t icular class of t imed t ransi t ion
systems tha t are syntact ical ly described by networks of timed automata [19, 13,
15, 16]. A t imed a u t o m a t o n [1] is a s t andard finite-state a u t o m a t o n extended
with a finite collection of real-valued clocks. Let C be a finite set of real-valued
clocks ranged over by x, y etc. We use B(C) ranged over by g (and lat ter D),
to s tand for the set of formulas t ha t can be an a tomic constra int of t h e form:
x ,-~ n or x - y ~ n for x , y C C, ,,~E {<, > , < , >} and n being a na tura l number ,
or a conjunct ion of such formulas. B(C) are called ctock constraints or clock
constraint systems over C.

D e f i n i t i o n 2. A timed automaton A over actions Act, atomic propositions 7 9
and clocks C is a tuple (N, lo, E, V). N is a finite set of nodes (control-nodes),
lo is the initial node, E C_ N x B(C) x Act x 2 c • N corresponds to the set of
edges, and finally, V : N -+ 2 ~' is a proposition assignment function. In the case,
(1, g, a, r, 1') E E it is written, I g,a,[l'. []

The semantics of a t imed a u t o m a t o n is given in terms of clock assignments. A
clock assignment u for C is a funct ion from C to R. Let R e denote the set of
clock assignments for C. For u E R C, x C C and d C R, u + d denotes t he ' t ime
ass ignment which maps each clock x in C to the value u(x) + d. For C ~ C C,
[C ~ ~-~ 0]u denotes the assignment for C which maps each clock in C ~ to the
value 0 and agrees with u over C\C ' . A semantical state of an a u t o m a t o n A
is a pair (l ,u) where 1 is a node of A and u a clock assignment for C. The
initial state of A is (lo, Uo) where Uo is the initial clock assignment mapp ing all
clocks in C to 0. The semantics of A is given by the t imed t ransi t ion sys tem
,,CA = (S, ~r0, >, V), where S is the set of s tates of A, ~r 0 is the initial s tate
(lo, Uo), ---+ is the t ransi t ion relat ion defined as follows:

(l ,u) - -~(l ' ,u ') if there exist r,g such tha t l > l , g(u) and u ' = [r --+ 0]u

- (1,u)~(-~(l',u ') i f (l = l ') , u' = u + d

and V is extended to S s imply by V(l, u) = V(l).

6 We extend the transition relation of a timed transition system such that s 6 s ~
s = J . :' iff

568

(s,u)~Y/~.:::> Vd, s ': s d - ~ s ' ::~ (s ' , u + d) ~ g ~
(~, ~) ~ [a] ~ ~ V~': s --% ~' ~ (~', ~) ~

(s, u) ~ x in ~o ~ (s, u t) ~ ~o where u' = [{x} --+ O]u

Table 1. Definition of satisfiability.

Finally, for two timed au toma ta A and B and a synchronization function
f , the parallel composition AI i / 3 denotes the t imed transition system SA ls SB.

2.2 S p e c i f i c a t i o n s
To specify safety and bounded liveness properties of t imed systems, we use the
t imed modal logic s studied in [14, 15, 16]. Let K be a finite set of clocks,
called formula clocks, and Id a set of identifiers. The set of formulas o f / : s over
K, [d, Act, and 7) is generated by the following syntax with ~ and r ranging
over s

: : = cp l c p v ~ l ~ A O I V~ l [a]~ l z i n w l z

where cp may be an atomic clock constraint c in the form of x ~ n or x - y ~ n
for x, y E K and natural number n, or an atomic proposition p E 7), a c= Act
(an action), z C K and Z E [d (an identifier). The meaning of the identifiers is
specified by a declaration :D assigning a formula of s to each identifier. When

:D is understood we write Z ~ f ~ for D(Z) = ~.
Given a t imed transit ion system $ = (S, so, ~,V) described by a net-

work of t imed au tomata , the/ :~ formulas are interpreted in terms of an extended
s tate (s, u} where s E S is a s tate of a t imed transit ion system, and u is a clock

assignment for K.
Let D be a declaration. Formally, the satisfaction relation ~ between

extended states and formulas is defined as the largest relation satisfying the
implications of Table 1. For simplicity, we shall omit the index D and write
instead of ~ D whenever it is understood from the context.

Finally, a network of t imed a u t o m a t a A satisfies a formula ~ writ ten
A ~ ~ when ((lo,uo),Vo) ~ ~ where l0 is the initial node of A, and u0 and vo
are the assignments with uo(x) = 0 for all au tomaton clocks x and Vo(Z) = 0 for
all formula clocks z. Note tha t (lo, u0) is the initial s tate of A.

2.3 Fischer's Protoco l Revis i ted
As an example of networks of t imed au tomata , we study Fischer's mutual

exclusion protocol. The reason for choosing this example is tha t it is well-known
and well-studied by researchers in the context of real - t ime verification. More
importantly, the size of the example can be easily scaled up by simply increasing

569

@ ~ { x ~ } > @ x ~ < l { x ~ } > ~ x i > 2 { } ~ = O : = i = i

{} : = 0

Fig . 1. Fischers Protocol for Mutual Exclusion.

the number of processes in the protocol, thus increasing the number of control-
nodes - - causing state space explosion - - and the number of clocks - - causing
region-space explosion. Thus it is part icularly well-suited for our technique.

The protocol is to guarantee mutual exclusion in a concurrent system
consisting of a number of processes, using clock constraints and a shared variable.
We shall model each of the processes as a t imed automaton, and the protocol
as a network of t imed automata . Each of the processes is assumed to have a
local clock. The idea behind the protocol is tha t the t iming constraints on the
local clocks are set so tha t all processes can change the global variable to its own
process number, then read the global variable later and if the shared variable
is still equal to its own number, enter the critical section. Each process Pi with
i being its identifier, has a clock z~. Let Ak = {:= i I i = k + 1...n}, Tk =
{= i l i = k + l...n}, F~ = {~ i l i = k + l . . . n } , and S0 = Ak UTk U Fk.
We model the shared variable as a t imed au tomaton V over the set of atomic
actions So U {:= 0, = 0}, where V = (N, ho, E, V) with N = {V0...Vn}, h0 = V0,
E = {(V~,tt, := j , 0, Vj) l i , j = 0...n} U {(Vi,tt, = i, 0, Vi) l i = 0...n} u { (E , t q #
j, 0, V~) I i ~ j}, and we simply assume V is defined by V(V~) = 0 for all i < n.
The au tomaton for a typical process Pi is shown in Fig 1.

We assume tha t the proposition assignment function is defined in such a
way tha t at(l') E V(1) if l' = l and -.at(l') E V(l) if l ' ~ l for all nodes 1 and I'.
Now, the whole protocol is described as the following network:

FISCHER~ _= (Pxls~ (P2Is~(P3I~...II~_~Pn)...)IgV
where [f~ and [g are the interleaving and full synchronization operators, induced
by synchronization functions f i and g respectively, defined by fi (a, 0) = a when
a E {:= i ,= i , r i} and fi(O,a) = a when a C Si, and g(a,a) = a. Note that in
P~Iy, (Py~+I ...), Pg is allowed to perform {:= i, = i, r i} and the r ighthand side is
allowed to perform all actions with indices higher than i that is, Si.

Intuitively, the protocol behaves as follows: The constraints on the shared
variable V ensure that a process must reach B -node before any process reaches
C-node; otherwise, it will never move from A-node to B-node . The timing
constraints on the clocks ensure that all processes in C-nodes must wait until
all processes in B-nodes reach C-nodes. The last process tha t reaches C-node

.570

and sets V to its own identifier gets the right to enter its critical section.
We need to verify that there will never be more than one process in its

critical section. An instance of this general requirement can be formalized as an
invariant property: M12 = (-,at(CS1)V -~at(CS2)) A Aaeso[a] M12 A •M12So we
need to prove the theorem FISCHER~ ~ M12

3 C o m p o s i t i o n a l M o d e L - C h e c k i n g

Model-checking of reM-t ime systems may be carried out in a symbolic fash-
ion e.g. [11, 19]. However, when appl,ying these techniques to parallel networks
such as FISCH ER~ a potential explosions in the global symbolic s ta te-space may
seriously hamper the technique.

In [13, 15] we presented a compositional verification technique, which al-
lows components of a rea l - t ime system to be gradually moved from the system
description into the specification, thus avoiding any global s ta te-space construc-
tion and even examination ~. Essential to the technique is tha t intermediate spec-
ifications are kept smal l using efficient minimization heuristics. Our technique
may be seen as a real=time extension of the compositional technique presented
and experimentally apptied~by Andersen [2] for ordinary f ini te-state systems. In
this section we give a brief review of the technique in [13, 15].

3.1 Quotient ConstRuction
The main ingredient in our compositional verification technique is the so-called
quotient construction, which allows components of a network to be moved into
the specification. More precisely, given a formula 9~, and two t imed au toma ta A
and B we may construct a formula (called the quotient) ~/i B such tha t

A I j B ~99 if and only if A ~ / s B (1)

The bi- implicat ion indicates tha t we are moving parts of the parallel system into
the formula. Clearly, if the quotient is not much larger than the original formula,
we have simplified the task of model-checking, as the (symbolic) semantics of
A is significantly smaller than tha t of A Is B. More precisely, whenever ~ is a
formula over K , B is a t imed au tomaton over C and l is a node of /3 , we define
the quotient formula ~/~ l over C U K in Table 2 on the structure of ~ 7 s. Note

tha t the quotient construction for identifiers introduces new identifiers of the
form Xt. The new identifiers and their definitions are collected in the (quotient)
declaration ~DB. We recall from [15] the following important theorem, which

justifies the construction:

7 For g = cl A . . . c,~ a clock constraint we write g =~ qo as an abbreviation for the
formula -~cl V ... V ~cn V qo. This is an /2~-formula as atomic constraint are closed

under negation.
s In the rule for [a]p, we assume that all nodes 1 of a timed automaton are extended

with a 0-edge l ~ l.

571

c / i l = c

l)
([~]~)/~ z=

p/, z= { ~ ;P~ v(o
p ;p ~ v(z)

.u l = X, where.Y, d---4f D (X) ; /

A
l ~ r it A f (b , c) = a

Table 2. Definition of Quotient qo/f 1

T h e o r e m 3. Let A and B be two timed automata and let lo be the initial node
o ~ . . T~en A r, B ~ v ~ i~ and oni~ i~ A >~,~ "(~/lo~ "

k l l /

3 .2 M i n i m i z a t i o n s
It is obvious that repeated quotienting leads to an explosion in,the formula (in
particular in the number of identifiers). The crucial observation :made: by Ander-
sen in the (untimed) finite-state case is that simple and effective transformations
of the formulas in practice may lead to significant reductions.

In presence of real-time we need, in addition to the minimization strate-
gies of Andersen, heuristics for propagating and eliminating constraints on clocks
in formulas and declarations. Below we describe the transformations considered:

Reachability: When considering an initial quotient formula ~o/f]'9 .:not all iden-
tifiers in 7)B may be reachable. Application of an "on-the-fly'vfechnique will
insure that only the reachable part of DB is generated.

Boolean SimpIification Formulas may be simplified using the following simple
boolean equations and their duals: ff A W -- f[, I/: A 9~ _---- W, x in if, ~ ft.

Constraint Propagation: Constraints on formula clocks may be propagated using
various distribution laws (see Table 3). In some cases, propagation will lead to
trivial clock constraints, which may be simplified to either tt or ff and hence made
applicable to Boolean Simplification. As can be seen in Table 3 certain operations
are to be performed on constraints during propagation. These operations include
the following:

D ~ = { u + d l u e D a n d d e R } {r}D={[r~+O]u I u e D }
D + = { u [3 d E R : u + d E D }

It may be shown that the set of constraints B(K) is closed under the above
operations, and that they together with inclusion- and emptyness-checking may
be computed efficiently (in cubic time in the number of clocks) (see e.g. [15]).

572

D :=> ([a]~o) _= [a](D :=> ~o)
D => (x in ~) --= x in ({ x } D =:> ~o)
D ~ (c v v) - (D A =~) ~

D ~ X - D ~ /) (X)

D~c==-lt ; i f D C c

D ~ (pV~) = - p V (D ~ o)
D ~ (~ ' ~) - - - V (D * ~) ; i f D +C_D

Table 3. Constraint Propagation

Constant Propagation: Identifiers with identifier-free definitions (i.e. constants
such as It or t~) may be removed while substi tut ing their definitions in the dec-
laration of all other identifiers.

Trivial Equation Elimination: Equations of the form X def [a]X are easily seen
to have X = It as solution and may thus be removed. More generally, let S be

the largest set of identifiers such tha t whenever X E S and X def = qo then %o[it/S]
9 can be simplified to tt. Then all identifiers of S can be removed provided
the value It is propagated to all uses of identifiers from S (as under Constant
Propagation). The maximal set S may be efficiently computed using standard
fixed point computat ion algorithms.

Equivalence Reduction: If two identifiers X and Y are semantically equivalent
(i.e. are satisfied by the same t imed transit ion systems) we may collapse them
into a single identifier and thus obtain reduction. However, semantical equiv-
alence is computat ionally very hard 10. To obtain a cost effective s trategy we
approximate semantical equivalence of identifiers as follows: Let 74 be an equiva-
lence relation on identifiers. 7-4 may be extended homomorphical ly to formulas in
the obvious manner: i.e. (~1A~2)T~(01A02) if ~IT~01 and ~2T~02, (ximz)T~(xinO)
and [a]~7~[a]0 if ~T~0 and so on. Now let ~ be the maximal equivalence relation

def def
on identifiers such tha t whenever X ~ Y, X = ~ and Y = 0 then ~ ~ 0. Then
-~ provides the desired cost effective approximation: whenever X ~ Y then X
and Y are indeed semantically equivalent. Moreover, ~ may be efficiently com-
puted using s tandard fixed point computat ion algorithms.

4 Fischers Protoco l

From section 2 we recall tha t the protocol FISCHER~ consists of n processes
P1. - �9 Pn competing for a critical section by setting and testing a shared variable
V, and tha t the mutual exclusion proper ty we verify is tha t P1 and P2 cannot

be in their critical section at the same time, i.e:

M12 = (~at(CS1)V ~at(CS2)) A Aa~s0[a] M12 A VM12

9 ~o[lt/S] is the formula obtained by substituting all occurrences of identifiers from S

in ~ with the formula tt.
lo For the recursion-free, untimed part of the logic semantical equivalence is already

NP-complete.

573

In the remainder of this section we shall apply our compositional model checking
technique to verify the protocol. Our observation is that by first quotienting away
V, P1 and P2 the quotient hereby obtained simplifies to t[under our minimiza-
tion heuristics. Thus no examination of the components P3 , - - - ,P~ is required:
regardless of their behaviour the mutual exclusion property M12will be satisfied.
In other words, state space explosion is avoided as it is sufficient to explore only
a fixed part of the system to prove the desired property.

4.1 Constructing the Quotient
The order by which components of a network is quotiented out may highly
determine the success of our method (this resembles the importance of variable-
ordering in the BDD technology). Here, we choose to first quotient out the vari-
able V followed by the relevant processes P1 and P2, while of course constantly
minimizing the intermediate equation systems as much as possible.

Step 1: In the first step we remove the variable V from the network and trans-
form M12 by quotienting it with the locations Vo, . . . , Vn. This will result in an
equation system containing n + 1 identifiers X0, �9 �9 �9 Xn where X~ denotes the
quotient M12/gV~.

As the synchronization function g between V and the rest of the system is
defined as g(a, a) = a for all possible action transitions a the quotient will have
exactly same conjuncts as Mle. Further as V does in all of its locations satisfies
neither -~at(CS1)nor ~at(CS2)we get the following family of formulae X~, where
i = 0 , . . . , n :

X~ -- (-~at(CS1)v -~at(CS2)) A [---- i] X i Aj [: = j] xj A Aj#~[# J] x~ A ~fXi.

This new equation system (i.e. the top identifier X0) constitutes the require-
ment for the remaining components PI , . �9 Pn. The identifier Xi expresses the
requirement to the remaining system when the variable holds the value i. Tha t
is, (~at(CSi)v ~at(CS2)) should still be satisfied, and as long as the variable is
only tested upon or as long as time passes X~ should still hold. If the variable is
set to another value j the formula defined by Xj should hold instead.

Step 2: As (~at(CSi)V ~at(CS2))is required by all identifiers and their definitions
differ slightly the equation system cannot be simplified any further. Thus we
proceed to transform the equation system with respect to removal of P1 from
the network. The quotient operator used to do this will be subscripted with the
synchronization function f l . In the following we will drop the synchronization
function as subscript to the quotient operator, as it is obvious which one is used.

As the equation system after step 1 contains n + 1 equations and P1 has
four control locations the new equation system will contain 4. (n + 1) equations.
For each j = 0 , . . . , n we compute Xj/1, where l C {A1, B1, C1, CS~ }. The three
cases where j = 0, 1,2 are treated separately, while the remaining cases are
treated together. When quotienting any of the identifiers Xi with A1, B1 or C1
the requirement (-~at(CS1)V -,at(CS2)) disappears because ~at(CS1) is satisfied
in all three locations. When quotienting any of the identifiers X/ with CS1,

574

(-,at(CS1)v -~at(CS2)) remains in the definition of the new identifier as neither
-,at(CS1) nor ~at(CS2) is a satisfied by CS1. Due to lack of space we do not
display this quotient, instead we continue the quotienting with respect to P2
and therefore calculate Mls/Vo/A1/As.

Step 3: The equation system of M12/Vo/A1/A2 consists of 4.4. (n + 1) equations,
namely the size of the product automaton of V, P1 and P2- The equations can
be grouped as 16 equations resulting from Xo/P1/P2, 16 equations resulting
from X1/P1/P2, 16 equations resulting from X2/P1/P2 and finally 1 6 - (n - 2)
equations resulting from Xj/P1/P2 where j = 3 , . . . ,n. For a fixed choice of
locations, ll and 12 in P1 and Ps the set of identifiers Xj/ll/ls for j = 3 , . . . ,n
will describe very similar properties.

The equation system is presented as a formula graph, and part of it
appears in Figure 2. Each node represents a formula identifier, and outgoing
edges represents conjuncts in the definition of an identifier. For instance, the
upper most node in the graph, reflects that: Xo/A1/A2 = xl in (Xo/B1/As)A
[= 0] (X0/AlIAs) A An atomic proposition (possibly a disjunction) labelling
a node means that this atomic proposition appears as a conjunct in the definition
of the identifier the node represents. Hence, (-,at(CS1)v -,at(CS2)) is a conjunct
in the defining equation of X2/CS1/CSs.

In the quotient all identifiers have a conjunct which refers to the identifier
itself through the ~-modal i ty . That is, For all Y the definition is on the form
Y A VY A In the formula graph this would appear as self loops labelled
with the ~r in all nodes, but in order to keep the graph simple we
have omitted these loops. Further the quotient is symmetrical as P1 and/>2 are
symmetrical up to names on locations and clocks, therefore we only display half

of the quotient as a formula graph.
To obtain a compact representation in Figure 2 we have used the the

following abbreviations. A grey node labelled Xj/ll/I2 where 11,12 are loca-
tions of PI and Ps abbreviates the whole family of nodes X3/ll/Is,..., Xn/ll/12.
Similarly, edges labelled := j or = j really represents a whole family of edges
namely one edge for each choice of j = 3,...,n. E.g. the := j labelled edge

from Xo/AI/A2 to Xj/AI/A2 in Figure 2 represents the family Xo/A1/As :=%

x3/A1/As,..., Xo/A1/As Xn/A /A2.
The overall structure of the formula graph for the resulting quotient is

shown in Figure 3. Six typical parts of the quotient can be identified, these parts

are labelled I, 2, 3, 4, 5 and 6.
Par t I of the quotient results from keeping P2 fixed in its initial location

A2 and letting/~ and the variable V vary as much as they can. Not surprisingly
this part of the quotient reduces to tt. We will later argue formally why this is

actually the case.
Par t 2 of the quotient corresponds to the behaviour part where first P1

assigns the variable, then P2 assigns it, where after/~ enters the critical section
and hence P1 fails to observe the variable having the value 1 and it returns to

its initial state A1.

575

=0

):=j

~ [x21

ix]}

[xl]

xl<l

, = 0

=0

- - - "~ (X2/B1/C2)
4

:=j �9
,. ff

\

Ix2) ~ ix2} x2<l (

(XO/A1/CS2)

i .

(Xj/AI/CS2)
/x2]

Fig. 2. Formula (sub-)Graph for M12/Xo/A1/A2.

Part 3 of the quotient is where P1 and P2 are in the critical section at the
same time. The concrete manifestation of this is that the formula identifiers of
this part requires (-~at(CS1)V -~at(CS2)) to be satisfied by the remaining compo-
nents P3, �9 P~. It is essential to the proof of the correctness that this part of
the quotient will not be required to hold for the network of processes P 3 , . . . , P~.
The actual proof of this relies on the use of constraint propagation: We show
that from the initial clock constraint (all clocks having value 0) this dangerous
part of the quotient cannot be reached.

Par t 4 is symmetrical to part 2 and part 5 is symmetrical to part 1. The

576

Fig. 3. Overall structure of Formula Graph

last par t of the quotient, the one numbered 6, consists of the before mentioned
identifiers Xj/ll/12 where 11 is a location in P1, 12 is a location in P2 and j =
3 , . . . , n . This part of the quotient is the requirement when V takes a value
different: from 0, 1 and 2.

4.2 Simplification
The quotient formula M12/Vo/A1/A2 illustrated in figure 2 is according to Theo-
rem 3 the necessary and sufficient property of the remaining components P3, �9 �9 P~
in order tha t the overall system HSCHER~ satisfies M12. We may now apply our
simplification heuristics.

To our pleasant surprise we observe the quotient formula M12/Vo/A1/A2
calculated above simplifies to it when first applying Constraint Propagat ion fol-
lowed by Trivial Equation Elimination. Therefore we do not have to perform
quotienting with respect to the remaining components in the protocol, and hence
we may conclude that an increase in the number of components in the protocol
only gives rise to a polynomial growth in the size of the proof.

Applying constraint Propagat ion reveals the fact tha t none of the identi-
fiers Xj/CS1/CS2 where j = 1 , . . . , n can be reached from the initial constraint.
As none of the remaining nodes in the graph contains propositions or clock con-
straints Trivial Equation Elimination will immediately reduce all identifiers and

especially the top identifier M12/Vo/A1/A2 to it.
Constraint Propagat ion can be implemented on our formula graphs in the

following manner: Whenever X g'~'~ Y is an edge in the graph and we consider
an implication D ~ X, the constraint D may be propagated using the rewrite
rules of Table 3 to a constraint on Y represented by the implication:

({r}(D A g))? ~ Y. (2)

Thus constraint propagat ion in a general formula graph, where a node can have
multiple outgoing edges will result in a conjunction of formulas of the type in (2).
Wha t we intend to do here, however, is to direct the propagat ion of constraints
along a speci~c path in the formula graph towards specific identifiers that we

577

wish to prove unreachable. To this specific purpose we introduce the notion of
guided Constraint Propagation. In a guided Constraint Propagat ion we simply
focus on a specific pa th in the formula graph and disregard all other edges.

In the following we perform such a guided constraint propagat ion towards
par t 3 of the quotient by following a pa th through (Xo/A1/A2), (Xo/A1/B2),
(Xo/B1/B2), (Xl/Cl/U2), (X1/CS1/B2), (X2/CS1/C2), (X2/CS1/CS2), see
Figure 2, and discover tha t (X2/CS1/C2) is hit by the empty constraint and
thus its reference to (X2/CS1/CS2) has no importance in practice.

In the propagat ion we jump directly to the situation where the node
(Xo/B1/B2) has been reached by letting t ime pass while resetting first the
clock x2 and then xl . In other words we consider the implication (x~ > xl) :>
(Xo/B1/B2). Using (2) we may propagate with respect to the edge Xo/B1/B2
xl<t,T,>{=l} X~/C~/B2 yielding x2 > Xl ~ X1/C1/B2. Now propagat ing this

with respect to the edge X~/C1/B2 ~ ' 0 X2/CS~/B2 yields (x2 > x2 A
xl > 2) ~ X2/CS1/B2. Finally propagat ing this constraint with respect to

X2/CS1/B 2 x2<l,r,){xe} X2/CSi/C 2 we ge t x2 in (x2 > x l A Xl > 2 A x2 < 1) =~
X2/CS1/C2. Clearly the constraint (x2 > xl A Xl > 2 A x2 < 1) is empty and
hence the whole propagat ion simplifies to It.

By performing this form of guided Constraint Propagat ion we can prove
tha t none of the formula identifiers in the quotient requiring P1 or P2 not to be
in the critical section are reachable from the initial t ime zone. Of course we can
also propagate constraints to all the other parts of the quotient, but this will
not reduce the quotient as all other parts really are reachable.

Trivial Equation Elimination reduces all remaining identifiers to tt as they
are defined by righthand sides which after Constraint Propagat ion are entirely
built from the following connectives: tt, g 3 , A,u

5 E x p e r i m e n t s

The quotient construction together with the simplification techniques presented
in the previous section have been implemented with C++ in a prototype tool
called CMC (Compositional Model-Checking) u. CMC enables us to compute the
quotient of an/~s formula with respect to a timed automaton and then to simplify
the quotient using our simplification. In fact, CMC enables quotienting with
respect to formulas of the richer logic/:~ [14] which allows general disjunction
and existential modalities (~], (a}). All simplification techniques of s can be
applied (and have been implemented in CMC) to s with the exception that no
constraint propagation has been given for general disjunction and the existential
modalities.

A few new simplification strategies, which are quite useful in an actual
verification, have been introduced. One of these is reduction with respect to
so-called hit-zones, which essentially is an exhaustive constraint propagat ion

n In the near future CMC will be integrated in and available through the tool suite
UPPAAL [3].

578

providing the automatic counterpart to the so-called guided constraint prop-
agation used in the previous section. The idea behind this simplification is to
precompute, for any variable, the domain (in terms of clock constraints) in which
the variable will be considered during a given verification. Given these domains,
called hit-zones, it is possible in several cases to simplify clock constraints to
either 'true' or 'false' (and hence amenable to constant propagation). Another
simplification which is performed by the program is to replace any variable X
with the following form: X A y < k A ~'X by 'false'.

In our experimental investigation we have compared the current version of
the tool CMC with the performances of both the backward and forward reacha-
bility checker of UPPAAL on an acyclic version of Fischer's protocol. During the
experiment both CMC and UPPAAL was installed on a machine running SunOS
5.5 with 32MB of pr imary memory and 128 of swap memory. Previously the
backward reachability tool of UPPAAL has been demonstra ted advantageous
in a comparison with other verification tools [15] on this version of Fischer's
protocol. However, as can be seen by the outcome of the present experiment in
Table 4, UPPAAL is clearly outperformed by CMC, which manages verification

of 50 processes.

Itool\,-processes] 2 I 3 14 I 5 I 6 L 7 I S]9]10J 20 i 30]40 I 50]
Uppaal forwards 0.2 0.2 0.9 10.7 244.4
Uppaal backwards 0.1 0.2 0.3 1.2 6.2 38.5 310.6 ?
CMC 0.2 0.4 0.6 0.8 1.2 L6. 2.0 2.5 3.2 14.5 40.0 88.2 172.3

Table 4. Test results

6 Conclus ion

This paper has successfully demonstrated that the compositional proof tech-
nique of [15] may avoid the state-explosion problem. In particular, it has been
shown that state-explosion is avoided in the verification of Fischer's protocol:
the size of the correctness proof we offer grows only polynomially in the size of
the number of processes in the protocol. Furthermore, this claim has been given
experimental evidence by the tool CMC, which manages verification of 50 pro-
cesses. In contrast all exiting verification tools will suffer from state-explosion,
and no tools has succeeded in verifying the protocol for more than II processes.

Immedia te future work includes integration of the CMC implementat ion
in the verification tool UPPAAL which will require certain extensions as UPPAAL
allows integer variables as well as clocks with interval-bounded slopes. Also, the
optimal order in which components are factored out needs a bet ter understand-
ing. This resembles the situation in BDDs, where the ordering of propositional
variables strongly influences the size of the BDD. Our ambit ion for future work
is to get a bet ter understanding of when and how well our technique will work.

References
1. R. Alur and D. Dill. Automata for Modelling Real-Time Systems.

Computer Science, 126(2):183-236, April 1994.

Theoretical

579

2. H. R. Andersen. Partial Model Checking. In Proc. of LICS'95, 1995.
3. 3ohan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.

UPPAAL - - A Tool Suite for Symbolic and Compositional Verification of Real-
Time Systems. Presented at the 1st Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, May 1995.

4. Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
UPPAAL in 1995. In Proc. of the 2nd Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, number 1055 in Lecture Notes in Computer
Science, pages 431-434. Springer-Verlag, March 1996.

5. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
Model Checking: 102o states and beyond. Logic in Computer Science, 1990.

6. E. M. Clarke, T. Filkorn, and S. Jha. Exploiting Symmetry in Temporal Logic
Model Checking. 697, 1993. In Proc. of CAV'93.

7. E. M. Clarke, O. Grfimberg, and D. E. Long. Model Checking and Abstraction.
Principles of Programming Languages, 1992.

8. C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KRO-
NOS. In Proc. of 7th International Conference on Formal Description Techniques,
1994.

9. E. A. Emerson and C. S. Jutla. Symmetry and Model Checking. 697, 1993. In
Proc. of CAV'93.

I0. P. Godefroid and P. Wolper. A Partial Approach to Model Checking. Logic in
Computer Science, 1991.

11. Thomas. A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Sym-
bolic Model Checking for Real-Time Systems. Information and Computation,
111(2):193-244, 1994.

12. Pei-Hsin Ho and Howard Wong-Toi. Automated Analysis of an Audio Control
Protocol. In Proc. of CAV'95, volume 939 of Lecture Notes in Computer Science.
Springer-Verlag, 1995.

13. F. Laroussinie and K.G. Larsen. Compositional Model Checking of Real Time
Systems. In Proc. of CONCUR '95, Lecture Notes in Computer Science. Springer-
Verlag, 1995.

14. F. Laroussinie, K.G. Larsen, and C. Weise. From Timed Automata to Logic - -
and Back. In Proc. of MFCS'95, Lecture Notes in Computer Sciencie, 1995. Also
BRICS report series RS-95-2.

15. Kim C. Larsen, Paul Pettersson, and Wang Yi. Compositional and Symbolic
Model-Checking of Real-Time Systems. In Proc. of the 16th 1EEE Real-Time
Systems Symposium, pages 76-87, December 1995.

16. Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic Model-Checking for
Real-Time Systems. In Proc. of the 4th DIMACS Workshop on Verification and
Control of Hybrid Systems, Lecture Notes in Computer Science. Springer-Verlag,
October 1995.

17. F. Pagani. Partial orders and verification of real-time systems. Lecture Notes in
Computer Science, (1135), 1996.

18. A. Valmari. A Stubborn Attack on State Explosion. Theoretical Computer Sci-
ence, 3, 1990.

19. Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of Real-Time
Communicating Systems By Constraint-Solving. In Proc. of the 7th International
Conference on Formal Description Techniques, 1994.

