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Abst rac t .  In this paper, we apply a compositional proof technique to  

an automatic verification of the correctness of Fischer's mutual exclusion 
protocol. It is demonstrated that the technique may avoid the state- 
explosion problem. Our compositional technique has recently been im- 
plemented in a tool CMC ~, which verifies the protocol for 50 processes 
within 172.3 seconds and using only 32MB main memory. In contrast all 
existing verification tools for timed systems will suffer from the state- 
explosion problem, and no tool has to our knowledge succeeded in veri- 
fying the protocol for more than 11 processes. 

1 I n t r o d u c t i o n  

It is well-known that  the major problem in applying automatic verification tech- 
niques to analyze finite-state concurrent systems is the potential combinatorial 
explosion of the state space arising from parallel composition. In the last few 
years, there has been a number of automatic verification tools for real-t ime 
systems [4, 12, 8]. Experiences with these tools show that  the state-explosion 
problem is even more serious in verifying timed systems. As such a system must 
satisfy certain timing constraints on its behaviour, a model-checker must keep 
track of not only the part  of state-space explored, but  also timing information 
associated with each state (i.e. possible clock values), which is both time and 
space-consuming. 

During the last decade, various techniques have been developed to avoid 
the state-explosion problem in verifying finite-state systems, either by symbolic 
representation of the states space using BDDs [5], by application of partial order 
methods [10, 18] which suppresses unnecessary interleavings of transitions, or 
by application of abstractions and symmetries [6, 7, 9]. These techniques have 
been further extended to deal with timed systems, e.g. [4, 12],[17], [8]. However, 
when applying these techniques to parallel systems such as Fischer's protocol, 
a potential explosion in the global state-space remains. In [2], a compositional 
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verification technique is developed by Andersen [2] for finite-state systems. In 
[13, 15], the technique has been further extended to deal with real-time sys- 
tems modelled as networks of timed automata, which allows components of a 
real-time system to be gradually moved from the system description into the 
specification, thus avoiding any global state-space construction and even exam- 
ination. Essential to the technique is that  intermediate specifications are kept 
small using efficient minimization heuristics. 

In this paper, we apply this technique to give a compositional proof for Fis- 
chefs  mutual exclusion protocol. In particular, it is shown that  state-explosion 
is avoided in the verification of the protocol: the size of the correctness proof 
we offer only grows polynomially in the size of the number of processes in the 
protocol. A similar compositional technique has recently been implemented us- 
ing C + +  in a tool called CMC, Compositional Model Checking. This tool gives 
further experimental evidence of the potential of the technique: using only 172.3 
seconds and 32MB main memory CMC automatically verifies the mutual exclu- 
sion property for the acyclic version of Fischer's protocol with 50 processes. 

The paper is organized as follows: In the next section we briefly introduce 
our modelling and specification languages for real-time systems, and the formal 
description of Fischer's mutual exclusion protocol. Section 3 describes the com- 
positional quotienting method and simplification techniques for logical formulas. 
In section 4, we present the proof for the mutual exclusion property of Fischer's 
protocol. In section 5 we report on the experimental results obtained using the 
CMC tool and compare the performance with that  of our existing tool-suite [3]. 
Finally, in section 6 we give some concluding remarks and illustrate future work. 

2 R e a l - T i m e  S y s t e m s  

In this section, we briefly introduce our modelling and specification languages 
for real-time systems, that  have been studied previously in the literature, e.g. 
[19, 13, 15, 16]. For details, we refer to [15]. 

2.1 M o d e l s  
We use t imed  transi t ion s y s t e m s  as a basic semantic model for real-time systems. 
A timed transition system is a labelled transition system with two types of 
labels: atomic actions and delay actions (i.e. positive reals), representing discrete 
and continuous changes of real-time systems. Assume a finite set of actions A c t  
ranged over by a, b etc, and a finite set of atomic propositions P ranged over by 
p, q etc. We use R to stand for the set of non-negative real numbers, A for the 
set of delay actions {~(d) I d E R}, and L for the union Ac t  U A .  

Def in i t i on  1. A t imed  transi t ion s y s t e m  over Ac t  and 7 ) is a tuple,  S = (S, so, 
, V ) ,  where  S is a set  o f  s tates ,  so is the  ini t ial  s tate ,  ~C S x L x S is a transi- 
t ion relation,  and V : S --+ 2 p is a propos i t ion  ass ignment  func t ion  tha t  for each 

s ta te  s C S assigns a set  o f  a tomic  propos i t ions  V ( s )  t ha t  hold in s. [] 

We use synchronization functions to describe concurrency and synchronizations 
between timed transition systems. A synchroniza t ion  func t ion  f is a partial 
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funct ion (Act U {0}) x (Act U {0}) ~ Act, where 0 denotes a dist inguished no- 
act ion symbol  6. Now, let $~ = {Si, si,o, >~, V~), i = 1, 2, be two t imed t rans i t ion  
systems and let f be a synchronizat ion function. Then  the parallel composition 
81 Is $2 is the t imed t ransi t ion sys tem (S, so, >, V), where Sl Is s2 C S whenever 
sl E $1 and s2 E $2, so = sl,0 Is S2,o, > is inductively defined as follows: 

a b t 
- ' if sl >i ' s 2 - - + 2  and f ( a , b ) = c  sl It s~ -% sl b s2 sl ,  s2 

t e(d t -- 81 If 82 e (~  Sl It S~ if sx ~(dll s i a n d  s2 2 s~ 

and finally, the proposi t ion assignment  funct ion V is defined by V(s l  ]i s2) = 
Vl(Sl) u V~(s2). 
The type  of systems we are s tudying  is a par t icular  class of t imed t ransi t ion 
systems tha t  are syntact ical ly  described by networks of  timed automata [19, 13, 
15, 16]. A t imed a u t o m a t o n  [1] is a s t andard  finite-state a u t o m a t o n  extended 
with a finite collection of real-valued clocks. Let C be a finite set of real-valued 
clocks ranged over by x, y etc. We use B(C)  ranged over by g (and lat ter  D),  
to  s tand  for the set of formulas t ha t  can be an a tomic  constra int  of  t h e  form: 
x ,-~ n or x - y  ~ n for x , y  C C, ,,~E {<,  > ,  < ,  >}  and n being a na tura l  number ,  
or a conjunct ion of such formulas. B(C) are called ctock constraints or clock 
constraint systems over C. 

D e f i n i t i o n  2. A timed automaton A over actions Act, atomic propositions 7 9 
and clocks C is a tuple (N, lo, E,  V).  N is a finite set of  nodes (control-nodes), 
lo is the initial node, E C_ N x B(C) x Act  x 2 c • N corresponds to the set of 
edges, and finally, V : N -+ 2 ~' is a proposition assignment function. In the case, 
(1, g, a, r, 1') E E it is written, I g,a,[ l'. [] 

The  semantics of a t imed a u t o m a t o n  is given in terms of clock assignments. A 
clock assignment u for C is a funct ion from C to R.  Let R e denote  the set of 
clock assignments  for C. For u E R C, x C C and d C R,  u + d denotes t he ' t ime  
ass ignment  which maps  each clock x in C to  the value u(x) + d. For C ~ C C, 
[C ~ ~-~ 0]u denotes the assignment  for C which maps  each clock in C ~ to the 
value 0 and agrees with u over C\C ' .  A semantical  state of an a u t o m a t o n  A 
is a pair  ( l ,u)  where 1 is a node  of A and u a clock assignment  for C. The  
initial state of A is (lo, Uo) where Uo is the initial clock assignment mapp ing  all 
clocks in C to 0. The  semantics of A is given by the t imed t ransi t ion sys tem 
,,CA = (S, ~r0, >, V), where S is the  set of  s tates of  A, ~r 0 is the initial s tate  
(lo, Uo), ---+ is the t ransi t ion relat ion defined as follows: 

( l ,u ) - -~( l ' ,u ' )  if there  exist r,g such tha t  l > l ,  g(u) and u '  = [r --+ 0]u 

- (1,u)~(-~(l',u ') i f ( l = l ' ) ,  u' = u + d  

and V is extended to S s imply by V(l,  u) = V(l).  

6 We extend the transition relation of a timed transition system such that  s 6 s ~ 
s = J .  :' iff 



568 

(s,u)~Y/~.:::> Vd, s ':  s d - ~ s '  ::~ ( s ' , u + d ) ~ g ~  
(~, ~) ~ [a] ~ ~ V~': s --% ~' ~ (~', ~) ~ 

(s, u) ~ x in ~o ~ (s, u t) ~ ~o where u' = [{x} --+ O]u 

Table  1. Definition of satisfiability. 

Finally, for two timed au toma ta  A and B and a synchronization function 
f ,  the parallel composition AI i / 3  denotes the t imed transition system SA ls SB. 

2.2 S p e c i f i c a t i o n s  
To specify safety and bounded liveness properties of t imed systems, we use the 
t imed modal logic s  studied in [14, 15, 16]. Let K be a finite set of clocks, 
called formula clocks, and Id  a set of identifiers. The set of formulas o f / : s  over 
K,  [d, Act, and 7 ) is generated by the following syntax with ~ and r ranging 
over s 

: : =  cp l c p v ~  l ~ A O  I V~ l [a]~ l z i n w  l z 

where cp may be an atomic clock constraint c in the form of x ~ n or x - y ~ n 
for x, y E K and natural  number  n, or an atomic proposition p E 7), a c= Act 
(an action), z C K and Z E [d (an identifier). The meaning of the identifiers is 
specified by a declaration :D assigning a formula of s to each identifier. When 

:D is understood we write Z ~ f  ~ for D(Z)  = ~. 
Given a t imed transit ion system $ = (S, so, ~,V) described by a net- 

work of t imed au tomata ,  the/ :~  formulas are interpreted in terms of an extended 
s tate  (s, u} where s E S is a s tate  of a t imed transit ion system, and u is a clock 

assignment for K.  
Let D be a declaration. Formally, the satisfaction relation ~ between 

extended states and formulas is defined as the largest relation satisfying the 
implications of Table 1. For simplicity, we shall omit the index D and write 
instead of ~ D  whenever it is understood from the context. 

Finally, a network of t imed a u t o m a t a  A satisfies a formula ~ writ ten 
A ~ ~ when ((lo,uo),Vo) ~ ~ where l0 is the initial node of A, and u0 and vo 
are the assignments with uo(x) = 0 for all au tomaton  clocks x and Vo(Z) = 0 for 
all formula clocks z. Note tha t  (lo, u0) is the initial s tate of A. 

2.3 Fischer's Protoco l  Revis i ted  
As an example of networks of t imed au tomata ,  we study Fischer's mutual  

exclusion protocol. The reason for choosing this example is tha t  it is well-known 
and well-studied by researchers in the context of real - t ime verification. More 
importantly,  the size of the example can be easily scaled up by simply increasing 
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@ ~ { x ~ } > @ x ~ < l { x ~ } > ~ x i > 2 { } ~ = O  : = i  = i  

{} : = 0  

Fig .  1. Fischers Protocol for Mutual Exclusion. 

the number  of processes in the protocol, thus increasing the number  of control-  
nodes - -  causing state space explosion - -  and the number of clocks - -  causing 
region-space explosion. Thus it is part icularly well-suited for our technique. 

The protocol is to guarantee mutual  exclusion in a concurrent system 
consisting of a number of processes, using clock constraints and a shared variable. 
We shall model each of the processes as a t imed automaton,  and the protocol 
as a network of t imed automata .  Each of the processes is assumed to have a 
local clock. The idea behind the protocol is tha t  the t iming constraints on the 
local clocks are set so tha t  all processes can change the global variable to its own 
process number, then read the global variable later and if the shared variable 
is still equal to its own number,  enter the critical section. Each process Pi with 
i being its identifier, has a clock z~. Let Ak = {:= i I i = k + 1...n}, Tk = 
{= i l i = k + l...n}, F~ = {~ i l i  = k + l . . . n } ,  and S0 = Ak UTk U Fk. 
We model the shared variable as a t imed au tomaton  V over the set of atomic 
actions So U {:= 0, = 0}, where V = (N, ho, E,  V) with N = {V0...Vn}, h0 = V0, 
E = {(V~,tt, := j ,  0, Vj) l i , j  = 0...n} U {(Vi,tt, = i, 0, Vi) l i = 0...n} u { ( E , t q  # 
j, 0, V~) I i ~ j},  and we simply assume V is defined by V(V~) = 0 for all i < n. 
The au tomaton  for a typical process Pi is shown in Fig 1. 

We assume tha t  the proposition assignment function is defined in such a 
way tha t  at(l') E V(1) if l' = l and -.at(l') E V(l) if l '  ~ l for all nodes 1 and I'. 
Now, the whole protocol is described as the following network: 

FISCHER~ _= (Pxls~ (P2Is~(P3I~...II~_~Pn)...)IgV 
where [f~ and [g are the interleaving and full synchronization operators,  induced 
by synchronization functions f i  and g respectively, defined by fi  (a, 0) = a when 
a E {:= i ,= i , r  i} and fi(O,a) = a when a C Si, and g(a,a) = a. Note that  in 
P~Iy, (Py~+I ...), Pg is allowed to perform {:= i, = i, r i} and the r ighthand side is 
allowed to perform all actions with indices higher than i that  is, Si. 

Intuitively, the protocol behaves as follows: The constraints on the shared 
variable V ensure that  a process must  reach B -node  before any process reaches 
C-node;  otherwise, it will never move from A-node  to B-node .  The timing 
constraints on the clocks ensure that  all processes in C-nodes  must wait until 
all processes in B-nodes  reach C-nodes.  The last process tha t  reaches C-node  
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and sets V to its own identifier gets the right to enter its critical section. 
We need to verify that  there will never be more than one process in its 

critical section. An instance of this general requirement can be formalized as an 
invariant property:  M12 = (-,at(CS1)V -~at(CS2)) A Aaeso[a] M12 A •M12So we 
need to prove the theorem FISCHER~ ~ M12 

3 C o m p o s i t i o n a l  M o d e L - C h e c k i n g  

Model-checking of reM-t ime  systems may be carried out in a symbolic fash- 
ion e.g. [11, 19]. However, when  appl,ying these techniques to parallel networks 
such as FISCH ER~ a potential  explosions in the global symbolic s ta te-space  may 
seriously hamper  the technique. 

In [13, 15] we presented a compositional verification technique, which al- 
lows components  of a rea l - t ime system to be gradually moved from the system 
description into the specification, thus avoiding any global s ta te-space  construc- 
tion and even examination ~. Essential to the technique is tha t  intermediate spec- 
ifications are kept smal l  using efficient minimization heuristics. Our technique 
may be seen as a real=time extension of the compositional technique presented 
and experimentally apptied~by Andersen [2] for ordinary f ini te-state systems. In 
this section we give a brief review of the technique in [13, 15]. 

3.1 Quotient ConstRuction 
The main ingredient in our compositional verification technique is the so-called 
quotient construction, which allows components of a network to be moved into 
the specification. More precisely, given a formula 9~, and two t imed au toma ta  A 
and B we may  construct  a formula (called the quotient) ~/i B such tha t  

A I j B  ~99 if and only if A ~ / s B  (1) 

The bi- implicat ion indicates tha t  we are moving parts  of the parallel system into 
the formula. Clearly, if the quotient is not much larger than the original formula, 
we have simplified the task of model-checking, as the (symbolic) semantics of 
A is significantly smaller than  tha t  of A Is B. More precisely, whenever ~ is a 
formula over K ,  B is a t imed au tomaton  over C and l is a node of /3 ,  we define 
the quotient formula ~/~ l over C U K in Table 2 on the structure of ~ 7 s. Note 

tha t  the quotient construction for identifiers introduces new identifiers of the 
form Xt. The new identifiers and their definitions are collected in the (quotient) 
declaration ~DB. We recall from [15] the following important  theorem, which 

justifies the construction: 

7 For g = cl A . . .  c,~ a clock constraint we write g =~ qo as an abbreviation for the 
formula -~cl V ... V ~cn V qo. This is an /2~-formula as atomic constraint are closed 

under negation. 
s In the rule for [a]p, we assume that all nodes 1 of a timed automaton are extended 

with a 0-edge l ~ l. 
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c / i l = c  

l) 
([~]~)/~ z=  

p/, z= { ~ ;P~ v(o 
p ;p ~ v(z) 

.u l =  X, where.Y, d---4f D ( X ) ;  / 

A 
l ~ r  it A f (b ,  c) = a 

Table 2. Definition of Quotient qo/f 1 

T h e o r e m  3. Let A and B be two timed automata and let lo be the initial node 
o ~ . .  T~en A r, B ~ v  ~ i~ and oni~ i~ A >~,~ "(~/lo~ " 

k l l  / 

3 .2  M i n i m i z a t i o n s  
It is obvious that repeated quotienting leads to an explosion in,the formula (in 
particular in the number of identifiers). The crucial observation :made: by  Ander- 
sen in the (untimed) finite-state case is that simple and effective transformations 
of the formulas in practice may lead to significant reductions. 

In presence of real-time we need, in addition to the minimization strate- 
gies of Andersen, heuristics for propagating and eliminating constraints on clocks 
in formulas and declarations. Below we describe the transformations considered: 

Reachability: When considering an initial quotient formula ~o/f ]'9 .:not all iden- 
tifiers in 7)B may be reachable. Application of an "on-the-fly'vfechnique will 
insure that only the reachable part of DB is generated. 

Boolean SimpIification Formulas may be simplified using the following simple 
boolean equations and their duals: ff A W -- f[, I/: A 9~ _---- W, x in if, ~ ft. 

Constraint Propagation: Constraints on formula clocks may be propagated using 
various distribution laws (see Table 3). In some cases, propagation will lead to 
trivial clock constraints, which may be simplified to either tt or ff and hence made 
applicable to Boolean Simplification. As can be seen in Table 3 certain operations 
are to be performed on constraints during propagation. These operations include 
the following: 

D ~ = { u + d l u e D a n d d e R }  {r}D={[r~+O]u I u e D }  
D + = { u [ 3 d E R :  u + d E D }  

It may be shown that the set of constraints B(K) is closed under the above 
operations, and that they together with inclusion- and emptyness-checking may 
be computed efficiently (in cubic time in the number of clocks) (see e.g. [15]). 
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D :=> ([a]~o) _= [a](D :=> ~o) 
D => (x in ~) --= x in ( { x } D  =:> ~o) 
D ~ (c v v)  - (D A =~) ~ 

D ~ X - D ~ / ) ( X )  

D~c==-lt  ; i f D C c  

D ~  (pV~) = - p V ( D ~ o )  
D ~ ( ~ ' ~ ) - - - V ( D  * ~ )  ; i f D  +C_D 

Table  3. Constraint Propagation 

Constant Propagation: Identifiers with identifier-free definitions (i.e. constants 
such as It or t~) may  be removed while substi tut ing their definitions in the dec- 
laration of all other identifiers. 

Trivial Equation Elimination: Equations of the form X def [a]X are easily seen 
to have X = It as solution and may  thus be removed. More generally, let S be 

the largest set of identifiers such tha t  whenever X E S and X def = qo then %o[it/S] 
9 can be simplified to tt. Then all identifiers of S can be removed provided 
the value It is propagated to all uses of identifiers from S (as under Constant  
Propagation).  The maximal  set S may be efficiently computed using standard 
fixed point computat ion algorithms. 

Equivalence Reduction: If two identifiers X and Y are semantically equivalent 
(i.e. are satisfied by the same t imed transit ion systems) we may  collapse them 
into a single identifier and thus obtain reduction. However, semantical equiv- 
alence is computat ionally very hard 10. To obtain a cost effective s trategy we 
approximate  semantical equivalence of identifiers as follows: Let 74 be an equiva- 
lence relation on identifiers. 7-4 may be extended homomorphical ly to formulas in 
the obvious manner: i.e. (~1A~2)T~(01A02) if ~IT~01 and ~2T~02, (ximz)T~(xinO) 
and [a]~7~[a]0 if ~T~0 and so on. Now let ~ be the maximal  equivalence relation 

def  def  
on identifiers such tha t  whenever X ~ Y, X = ~ and Y = 0 then ~ ~ 0. Then 
-~ provides the desired cost effective approximation: whenever X ~ Y then X 
and Y are indeed semantically equivalent. Moreover, ~ may be efficiently com- 
puted using s tandard fixed point computat ion algorithms. 

4 Fischers Protoco l  

From section 2 we recall tha t  the protocol FISCHER~ consists of n processes 
P1. - �9 Pn competing for a critical section by setting and testing a shared variable 
V, and tha t  the mutual  exclusion proper ty  we verify is tha t  P1 and P2 cannot 

be in their critical section at the same time, i.e: 

M12 = (~at(CS1)V ~at(CS2)) A Aa~s0[a] M12 A VM12 

9 ~o[lt/S] is the formula obtained by substituting all occurrences of identifiers from S 

in ~ with the formula tt. 
lo For the recursion-free, untimed part of the logic semantical equivalence is already 

NP-complete. 
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In the remainder of this section we shall apply our compositional model checking 
technique to verify the protocol. Our observation is that  by first quotienting away 
V, P1 and P2 the quotient hereby obtained simplifies to t[ under our minimiza- 
tion heuristics. Thus no examination of the components P3 , - - - ,P~  is required: 
regardless of their behaviour the mutual exclusion property M12will be satisfied. 
In other words, state space explosion is avoided as it is sufficient to explore only 
a fixed part of the system to prove the desired property. 

4.1 Constructing the Quotient 
The order by which components of a network is quotiented out may highly 
determine the success of our method (this resembles the importance of variable- 
ordering in the BDD technology). Here, we choose to first quotient out the vari- 
able V followed by the relevant processes P1 and P2, while of course constantly 
minimizing the intermediate equation systems as much as possible. 

Step 1: In the first step we remove the variable V from the network and trans- 
form M12 by quotienting it with the locations Vo, . . . ,  Vn. This will result in an 
equation system containing n + 1 identifiers X0, �9 �9 �9 Xn where X~ denotes the 
quotient M12/gV~. 

As the synchronization function g between V and the rest of the system is 
defined as g(a, a) = a for all possible action transitions a the quotient will have 
exactly same conjuncts as Mle. Further as V does in all of its locations satisfies 
neither -~at(CS1)nor ~at(CS2)we get the following family of formulae X~, where 
i = 0 , . . . , n :  

X~ -- (-~at(CS1)v -~at(CS2)) A [---- i] X i  Aj [ :  = j ]  xj A Aj#~[# J] x~ A ~fXi. 

This new equation system (i.e. the top identifier X0) constitutes the require- 
ment for the remaining components PI , .  �9 Pn. The identifier Xi expresses the 
requirement to the remaining system when the variable holds the value i. Tha t  
is, (~at(CSi)v ~at(CS2)) should still be satisfied, and as long as the variable is 
only tested upon or as long as time passes X~ should still hold. If the variable is 
set to another value j the formula defined by Xj  should hold instead. 

Step 2: As (~at(CSi)V ~at(CS2))is required by all identifiers and their definitions 
differ slightly the equation system cannot be simplified any further. Thus we 
proceed to transform the equation system with respect to removal of P1 from 
the network. The quotient operator used to do this will be subscripted with the 
synchronization function f l .  In the following we will drop the synchronization 
function as subscript to the quotient operator,  as it is obvious which one is used. 

As the equation system after step 1 contains n + 1 equations and P1 has 
four control locations the new equation system will contain 4. (n + 1) equations. 
For each j = 0 , . . . ,  n we compute Xj/1, where l C {A1, B1, C1, CS~ }. The three 
cases where j = 0, 1,2 are treated separately, while the remaining cases are 
treated together. When quotienting any of the identifiers Xi with A1, B1 or C1 
the requirement (-~at(CS1)V -,at(CS2)) disappears because ~at(CS1) is satisfied 
in all three locations. When quotienting any of the identifiers X/ with CS1, 
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(-,at(CS1)v -~at(CS2)) remains in the definition of the new identifier as neither 
-,at(CS1) nor ~at(CS2) is a satisfied by CS1. Due to lack of space we do not 
display this quotient, instead we continue the quotienting with respect to P2 
and therefore calculate Mls/Vo/A1/As.  

Step 3: The equation system of M12/Vo/A1/A2 consists of 4.4.  ( n +  1) equations, 
namely the size of the product  automaton of V, P1 and P2- The equations can 
be grouped as 16 equations resulting from Xo/P1/P2, 16 equations resulting 
from X1/P1/P2, 16 equations resulting from X2/P1/P2 and finally 1 6 - ( n  - 2) 
equations resulting from Xj/P1/P2 where j = 3 , . . .  ,n.  For a fixed choice of 
locations, ll and 12 in P1 and Ps the set of identifiers Xj/ll/ls for j = 3 , . . .  ,n  
will describe very similar properties. 

The equation system is presented as a formula graph, and part of it 
appears in Figure 2. Each node represents a formula identifier, and outgoing 
edges represents conjuncts in the definition of an identifier. For instance, the 
upper most node in the graph, reflects that:  Xo/A1/A2 = xl in (Xo/B1/As)A 
[= 0] (X0/AlIAs)  A . . . .  An atomic proposition (possibly a disjunction) labelling 
a node means that  this atomic proposition appears as a conjunct in the definition 
of the identifier the node represents. Hence, (-,at(CS1)v -,at(CS2)) is a conjunct 
in the defining equation of X2/CS1/CSs. 

In the quotient all identifiers have a conjunct which refers to the identifier 
itself through the ~-modal i ty .  That  is, For all Y the definition is on the form 
Y . . . .  A VY A . . . .  In the formula graph this would appear as self loops labelled 
with the ~r in all nodes, but in order to keep the graph simple we 
have omitted these loops. Further the quotient is symmetrical as P1 and/>2 are 
symmetrical up to names on locations and clocks, therefore we only display half 

of the quotient as a formula graph. 
To obtain a compact representation in Figure 2 we have used the the 

following abbreviations. A grey node labelled Xj/ll/I2 where 11,12 are loca- 
tions of PI and Ps abbreviates the whole family of nodes X3/ll/Is,..., Xn/ll/12. 
Similarly, edges labelled := j or = j really represents a whole family of edges 
namely one edge for each choice of j = 3,...,n. E.g. the := j labelled edge 

from Xo/AI/A2 to Xj/AI/A2 in Figure 2 represents the family Xo/A1/As :=% 

x3/A1/As,..., Xo/A1/As Xn/A /A2. 
The overall structure of the formula graph for the resulting quotient is 

shown in Figure 3. Six typical parts of the quotient can be identified, these parts 

are labelled I, 2, 3, 4, 5 and 6. 
Par t  I of the quotient results from keeping P2 fixed in its initial location 

A2 and letting/~ and the variable V vary as much as they can. Not surprisingly 
this part  of the quotient reduces to tt. We will later argue formally why this is 

actually the case. 
Par t  2 of the quotient corresponds to the behaviour part  where first P1 

assigns the variable, then P2 assigns it, where after/~ enters the critical section 
and hence P1 fails to observe the variable having the value 1 and it returns to 

its initial state A1. 
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Fig. 2. Formula (sub-)Graph for M12/Xo/A1/A2. 

Part  3 of the quotient is where P1 and P2 are in the critical section at the 
same time. The concrete manifestation of this is that  the formula identifiers of 
this part  requires (-~at(CS1)V -~at(CS2)) to be satisfied by the remaining compo- 
nents P3, �9  P~. It is essential to the proof of the correctness that  this part  of 
the quotient will not be required to hold for the network of processes P 3 , . . . ,  P~. 
The actual proof of this relies on the use of constraint propagation: We show 
that  from the initial clock constraint (all clocks having value 0) this dangerous 
part  of the quotient cannot be reached. 

Par t  4 is symmetrical to part  2 and part  5 is symmetrical to part  1. The 
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Fig. 3. Overall structure of Formula Graph 

last par t  of the quotient, the one numbered 6, consists of the before mentioned 
identifiers Xj/ll/12 where 11 is a location in P1, 12 is a location in P2 and j = 
3 , . . . , n .  This part  of the quotient is the requirement when V takes a value 
different: from 0, 1 and 2. 

4.2 Simplification 
The quotient formula M12/Vo/A1/A2 illustrated in figure 2 is according to Theo- 
rem 3 the necessary and sufficient property of the remaining components P3, �9 �9 P~ 
in order tha t  the overall system HSCHER~ satisfies M12. We may now apply our 
simplification heuristics. 

To our pleasant surprise we observe the quotient formula M12/Vo/A1/A2 
calculated above simplifies to it when first applying Constraint  Propagat ion  fol- 
lowed by Trivial Equation Elimination. Therefore we do not have to perform 
quotienting with respect to the remaining components in the protocol, and hence 
we may  conclude that  an increase in the number  of components in the protocol 
only gives rise to a polynomial growth in the size of the proof. 

Applying constraint Propagat ion  reveals the fact tha t  none of the identi- 
fiers Xj/CS1/CS2 where j = 1 , . . . ,  n can be reached from the initial constraint. 
As none of the remaining nodes in the graph contains propositions or clock con- 
straints Trivial Equation Elimination will immediately reduce all identifiers and 

especially the top identifier M12/Vo/A1/A2 to it. 
Constraint  Propagat ion  can be implemented on our formula graphs in the 

following manner: Whenever X g'~'~ Y is an edge in the graph and we consider 
an implication D ~ X,  the constraint D may be propagated using the rewrite 
rules of Table 3 to a constraint on Y represented by the implication: 

({r}(D A g))? ~ Y. (2) 

Thus constraint propagat ion in a general formula graph, where a node can have 
multiple outgoing edges will result in a conjunction of formulas of the type in (2). 
Wha t  we intend to do here, however, is to direct the propagat ion of constraints 
along a speci~c path  in the formula graph towards specific identifiers that  we 
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wish to prove unreachable. To this specific purpose we introduce the notion of 
guided Constraint  Propagation.  In a guided Constraint  Propagat ion  we simply 
focus on a specific pa th  in the formula graph and disregard all other edges. 

In the following we perform such a guided constraint propagat ion towards 
par t  3 of the quotient by following a pa th  through (Xo/A1/A2), (Xo/A1/B2), 
(Xo/B1/B2), (Xl/Cl/U2), (X1/CS1/B2), (X2/CS1/C2), (X2/CS1/CS2), see 
Figure 2, and discover tha t  (X2/CS1/C2) is hit by the empty  constraint and 
thus its reference to (X2/CS1/CS2) has no importance in practice. 

In the propagat ion we jump directly to the situation where the node 
(Xo/B1/B2) has been reached by letting t ime pass while resetting first the 
clock x2 and then xl .  In other words we consider the implication (x~ > xl)  :> 
(Xo/B1/B2). Using (2) we may propagate  with respect to the edge Xo/B1/B2 
xl<t,T,>{=l} X~/C~/B2 yielding x2 > Xl ~ X1/C1/B2. Now propagat ing this 

with respect to the edge X~/C1/B2 ~ ' 0  X2/CS~/B2 yields (x2 > x2 A 
xl > 2) ~ X2/CS1/B2. Finally propagat ing this constraint with respect to 

X2/CS1/B 2 x2<l,r,){xe} X2/CSi/C 2 we ge t  x2 in (x2 > x l  A Xl > 2 A x2 < 1) =~ 
X2/CS1/C2. Clearly the constraint (x2 > xl A Xl > 2 A x2 < 1) is empty  and 
hence the whole propagat ion simplifies to It. 

By performing this form of guided Constraint Propagat ion we can prove 
tha t  none of the formula identifiers in the quotient requiring P1 or P2 not to be 
in the critical section are reachable from the initial t ime zone. Of course we can 
also propagate  constraints to all the other parts  of the quotient, but this will 
not reduce the quotient as all other parts  really are reachable. 

Trivial Equation Elimination reduces all remaining identifiers to tt as they 
are defined by righthand sides which after Constraint Propagat ion are entirely 
built from the following connectives: tt, g 3 ,  A,u 

5 E x p e r i m e n t s  

The quotient construction together with the simplification techniques presented 
in the previous section have been implemented with C++ in a prototype tool 
called CMC (Compositional Model-Checking) u. CMC enables us to compute the 
quotient of an/~s formula with respect to a timed automaton and then to simplify 
the quotient using our simplification. In fact, CMC enables quotienting with 
respect to formulas of the richer logic/:~ [14] which allows general disjunction 
and existential modalities (~], (a}). All simplification techniques of s can be 
applied (and have been implemented in CMC) to s with the exception that no 
constraint propagation has been given for general disjunction and the existential 
modalities. 

A few new simplification strategies, which are quite useful in an actual 
verification, have been introduced. One of these is reduction with respect to 
so-called hit-zones, which essentially is an exhaustive constraint propagat ion 

n In the near future CMC will be integrated in and available through the tool suite 
UPPAAL [3]. 
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providing the automatic counterpart to the so-called guided constraint prop- 
agation used in the previous section. The idea behind this simplification is to 
precompute, for any variable, the domain (in terms of clock constraints) in which 
the variable will be considered during a given verification. Given these domains, 
called hit-zones, it is possible in several cases to simplify clock constraints to 
either 'true' or 'false' (and hence amenable to constant propagation). Another 
simplification which is performed by the program is to replace any variable X 
with the following form: X .... A y < k A ~'X by 'false'. 

In our experimental investigation we have compared the current version of 
the tool CMC with the performances of both the backward and forward reacha- 
bility checker of UPPAAL on an acyclic version of Fischer's protocol. During the 
experiment both  CMC and UPPAAL was installed on a machine running SunOS 
5.5 with 32MB of pr imary memory  and 128 of swap memory. Previously the 
backward reachability tool of UPPAAL has been demonstra ted  advantageous 
in a comparison with other verification tools [15] on this version of Fischer's 
protocol. However, as can be seen by the outcome of the present experiment in 
Table 4, UPPAAL is clearly outperformed by CMC, which manages verification 

of 50 processes. 

Itool\,-processes] 2 I 3 14 I 5 I 6 L 7 I S ]9 ]10J 20 i 30 ]40 I 50 ] 
Uppaal forwards 0.2 0.2 0.9 10.7 244.4 
Uppaal backwards 0.1 0.2 0.3 1.2 6.2 38.5 310.6 ? 
CMC 0.2 0.4 0.6 0.8 1.2 L6.  2.0 2.5 3.2 14.5 40.0 88.2 172.3 

Table  4. Test results 

6 Conclus ion 

This paper has successfully demonstrated that the compositional proof tech- 
nique of [15] may avoid the state-explosion problem. In particular, it has been 
shown that state-explosion is avoided in the verification of Fischer's protocol: 
the size of the correctness proof we offer grows only polynomially in the size of 
the number of processes in the protocol. Furthermore, this claim has been given 
experimental evidence by the tool CMC, which manages verification of 50 pro- 
cesses. In contrast all exiting verification tools will suffer from state-explosion, 
and no tools has succeeded in verifying the protocol for more than II processes. 

Immedia te  future work includes integration of the CMC implementat ion 
in the verification tool UPPAAL which will require certain extensions as UPPAAL 
allows integer variables as well as clocks with interval-bounded slopes. Also, the 
optimal  order in which components  are factored out needs a bet ter  understand- 
ing. This resembles the situation in BDDs, where the ordering of propositional 
variables strongly influences the size of the BDD. Our ambit ion for future work 
is to get a bet ter  understanding of when and how well our technique will work. 

References  
1. R. Alur and D. Dill. Automata for Modelling Real-Time Systems. 

Computer Science, 126(2):183-236, April 1994. 

Theoretical 



579 

2. H. R. Andersen. Partial Model Checking. In Proc. of LICS'95, 1995. 
3. 3ohan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. 

UPPAAL - -  A Tool Suite for Symbolic and Compositional Verification of Real- 
Time Systems. Presented at the 1st Workshop on Tools and Algorithms for the 
Construction and Analysis of Systems, May 1995. 

4. Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. 
UPPAAL in 1995. In Proc. of the 2nd Workshop on Tools and Algorithms for the 
Construction and Analysis of Systems, number 1055 in Lecture Notes in Computer 
Science, pages 431-434. Springer-Verlag, March 1996. 

5. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic 
Model Checking: 102o states and beyond. Logic in Computer Science, 1990. 

6. E. M. Clarke, T. Filkorn, and S. Jha. Exploiting Symmetry in Temporal Logic 
Model Checking. 697, 1993. In Proc. of CAV'93. 

7. E. M. Clarke, O. Grfimberg, and D. E. Long. Model Checking and Abstraction. 
Principles of Programming Languages, 1992. 

8. C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KRO- 
NOS. In Proc. of 7th International Conference on Formal Description Techniques, 
1994. 

9. E. A. Emerson and C. S. Jutla. Symmetry and Model Checking. 697, 1993. In 
Proc. of CAV'93. 

I0. P. Godefroid and P. Wolper. A Partial Approach to Model Checking. Logic in 
Computer Science, 1991. 

11. Thomas. A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Sym- 
bolic Model Checking for Real-Time Systems. Information and Computation, 
111(2):193-244, 1994. 

12. Pei-Hsin Ho and Howard Wong-Toi. Automated Analysis of an Audio Control 
Protocol. In Proc. of CAV'95, volume 939 of Lecture Notes in Computer Science. 
Springer-Verlag, 1995. 

13. F. Laroussinie and K.G. Larsen. Compositional Model Checking of Real Time 
Systems. In Proc. of CONCUR '95, Lecture Notes in Computer Science. Springer- 
Verlag, 1995. 

14. F. Laroussinie, K.G. Larsen, and C. Weise. From Timed Automata to Logic - -  
and Back. In Proc. of MFCS'95, Lecture Notes in Computer Sciencie, 1995. Also 
BRICS report series RS-95-2. 

15. Kim C. Larsen, Paul Pettersson, and Wang Yi. Compositional and Symbolic 
Model-Checking of Real-Time Systems. In Proc. of the 16th 1EEE Real-Time 
Systems Symposium, pages 76-87, December 1995. 

16. Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic Model-Checking for 
Real-Time Systems. In Proc. of the 4th DIMACS Workshop on Verification and 
Control of Hybrid Systems, Lecture Notes in Computer Science. Springer-Verlag, 
October 1995. 

17. F. Pagani. Partial orders and verification of real-time systems. Lecture Notes in 
Computer Science, (1135), 1996. 

18. A. Valmari. A Stubborn Attack on State Explosion. Theoretical Computer Sci- 
ence, 3, 1990. 

19. Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of Real-Time 
Communicating Systems By Constraint-Solving. In Proc. of the 7th International 
Conference on Formal Description Techniques, 1994. 


