
Traces of I / O - A u t o m a t a in I sabe l l e /HOLCF

Olaf Miiller* and Tobias Nipkow**

Institut fiir Informatik, Technische Universit~t Miinchen
D-80290 Miinchen, Fax +49-89-2892-8183

{mueller, nipkow}Oinf ormatik, tu-muenchen, de

A b s t r a c t . This paper presents a formalization of finite and infinite se-
quences in domain theory carried out in the theorem prover Isabelle.
The results are used to model the metatheory of I /O automata; they
are, however, applicable to any trace based model of parallelism which
distinguishes internM and external actions. We make use of the logic
HOLCF, an extension of HOL with domain theory and show how to
move between HOL and HOLCF. This allows us to restrict the use of
HOLCF to metatheoretic arguments while actual refinement proofs be-
tween I /O automata are carried out within the simpler logic HOL. In
order to evaluate the formalization we prove the correctness of a gener-
alized refinement concept in I /O automata.

1 Introduction

This paper is concerned with formal models of finite and infinite behaviours of
concurrent au toma t a in a theorem prover. The aim of this work is to provide
the formal basis for the verification of distributed systems. We believe tha t it is
not sufficient to merely use a theorem prover to discharge externMly generated
proof obligations but tha t the meta theory of the underlying formM model should
also be supported by the theorem prover. This does not only rule out potential
sources of unsoundness (like external verification condition generators). I t also
provides a greater degree of flexibility because we do not need to hardwire certain
proof methods but can derive new ones from the meta theory at any point.

This work is carried out in the context of I / O au toma ta (IOA), a popular
model of distributed systems which has been used for a number of non-trivial
applications, e.g. in the area of communication protocols [9, 4]. The results, how-
ever, apply to any trace based model of parallelism which distinguishes internal

and external actions.
The start ing point for our work is an existing formalization of I / O au toma ta

in Isabel le /HOL, the higher order logic of the theorem prover Isabelle [17]. (Un-
less noted otherwise, HOL will refer to Isabel le /HOL rather than Gordon's HOL
system [7].) The capabilities of this formalization have been illustrated with two
protocol verifications [13, 12] where Isabelle was also combined with a model

* Research supported by BMBF, KorSys.
** Research supported by ESPRIT BRA 6453, Types.

581

checker. However, moving to more sophisticated examples we realized some in-
adequacies of our formalizatiori which are caused by the fact that we model
traces as functions from time to actions. In particular, this formalization was
restricted to a rather limited refinement notion.

The purpose of this paper is to provide I /O automata with a new and more
powerful model of traces based on lazy lists as in functional programming. Logi-
cally this means we leave the HOL world of total functions and enter into domain
theory, i.e. the world of partial functions and undefined and infinite objects. This
step should not be taken lightly because partiality complicates the logic and the
proofs. Fortunately, Isabelle also supports HOLCF, an extension of HOL with
the notions of domain theory. Hence we can work in HOL as long as possible
and only move into HOLCF if really required. Par t of this paper provides a
methodology for moving between the two levels. This allows to use HOLCF for
the more sophisticated metatheory, whereas normal refinement proofs can still
be done in the simpler logic HOL. The main benefit of our new model of traces is
a generalized refinement concept which the simpler HOL model does not permit.

The overall aim of our work is to provide a tool environment for the analysis
of I /O automata, including the Isabelle formalization described in this paper, a
model checker and an appropiate abstraction methodology.

The structure of the paper is as follows. After a brief introduction to the
existing model of I /O automata in HOL (Section 2), we point out the problem
with its weak refinement concept (Section 3). Then we introduce HOLCF and
the means for moving from HOL to HOLCF (Section 4). Finally we recast trace
theory in HOLCF (Section 5) and generalize the refinement concept (Section 6).

1.1 R e l a t e d W o r k

Infinite sequences are part of many trace based specification formalisms. Never-
theless there is not as much related work as one might expect, as the underlying
metatheory is not always formalized. Often the theorem prover is only used to
prove refinements, but the refinement notion itself is not semantically embedded.
This is particularly true for a couple of case studies within the I /O automata
model - for example Fischer's protocol [9] and an audio control protocol provided
by Philips Laboratories [4] - carried out in the Larch prover and Coq.

Closely related to our work are the papers of Chou and Peled [3] and Loewen-
stein I8]. Chou and Peled model infinite and finite sequences as a prerequisite
for the formal verification of a partial-order reduction technique in the theorem
prover HOL [7]. Their formalization models sequences as the disjoint union of
finite lists and the type nat=~a which represents infinite sequences. Whereas we
can build on top of a logic describing domain theory in general, they provide
such concepts as prefix ordering or limits of ascending chains in a more ad hoc
fashion tailored for their specific dataypes. Loewenstein develops a formal the-
ory of simulations between infinite automata in the theorem prover HOL. His
sequences are functions of type nat=~cL Finite sequences are just seen as prefixes
of infinite sequences; they are not explicitly used to describe system behaviour,

582

but to facilitate the proofs, and therefore less requirements than in our setting
are imposed on them.

Besides domain theory there are other logical frameworks that apply to the
modelling of finite and infinite sequences. Feferman [5] develops a generalized
recursion theory which does not need continuity for fixed point recursion and
applies it to potentially infinite sequences. This approach has not been formalized
in a theorem prover until now. Coinduction [15] provides another computation
scheme based on bisimulations, but deals only with infinite or finite terminat-
ing sequences, and it is not obvious how to extend this approach to deal with
computation on finite nonterminating sequences.

2 I / O - A u t o m a t a i n H O L

H O L n o t a t i o n . All formulas have been taken directly from the Isabelle input
and translated automatically into NTEX, thanks to a version of Isabetle/HOL
that allows the use of mathematical symbols like 3 or V.

Set comprehension has the shape {e. P}, where e is an expression and P a
predicate. The projection functions on pairs are called fst and snd. ~ p l e s are
pairs nested to the right, e.g. (s,a,t) represents (s,(a,t)). All functions in HOL are
total and the type constructor is 0 . If f is a function of type p::~a::~-, application
is written f x y. If there is only one argument we sometimes write rather f(x)
than f x. Function composition is defined as (f o g)(x) = f(g(x)). Conditional
expressions are written if A then B else C.

2.1 I / O A u t o m a t a

I /O automata are finite or infinite state automata with labelled transitions and
were initially introduced by Lynch and Tuttle [10]. The formalization in HOL
sketched in this section represents only a fragment of the theory one can find in
recent papers [6]. For example, we do not deal with fairness or time constraints.
The details of the formalization can be found in a previous paper [13]. Here we
focus on how to model traces and the refinement concept.

In the HOL model, an action signature is described by the type

c~ signature ---- (a set * c~ set * ~ set)

The first, second and third component of an action signature S is extracted with
inputs, outputs, and internals. Furthermore we have

actions(S) --- inputs(S) U outputs(S) U internals(S)
externals(S) --- inputs(S) U outputs(S).

Action signatures have to satisfy the following disjointness condition:

is_asig(triple) ~ (inputs(tr iple) n outputs(tr iple) = { }) A
(outputs(tr iple) n internals(triple) = { }) A
(inputs(tr iple) N internals(triple) = { })

583

An IOA is a triple of type

(a,a)ioa = a signature �9 ~ set �9 (~ * a * or) set

(where the parameters a and ~ represent the type of actions and states) subject
to the following predicate:

IOA (asig,starts,trans) -- is_asig(asig) A starts ~ { } A state_trans asig trans

Predicate state_trans requires in particular tha t the transit ion relationship is
input-enabled:

state_trans asig R - (V(s,a,t)(ER. a(Eactions(asig)) A
(Va(Einputs(asig). Vs. 3t. (s,a,t)CR)

The components of an IOA are extracted by asig_of, starts_of, and trans_of. The
actions of an]OA are defined acts - actions o asig_of.

2.2 E x e c u t i o n s a n d T r a c e s in H O L

An e x e c u t i o n - f r a g m e n t of an IOA A is a finite or infinite sequence that consists
of al ternating states and actions. In HOL it is represented as a pair of sequences:
an infinite s t a t e s e q u e n c e of type nat :~ state and an a c t i o n s e q u e n c e of type nat
=~ (action)option where

datatype (c~)option -- None I Some(a)

using an ML-like notation. A finite sequence in this representation ends with
an infinite number of consecutive Nones. Using this representation, a step of an
execution-fragment (as,ss) is (ss(i),a,ss(i+l)) if as(i) = Some(a). Formally:

is-execution_fragment A (as,ss)
Vn a. (as(n)=None - -+ ss(Suc(n))=ss(n)) A

(as(n)--Some(a) ~ (ss(n),a,ss(Suc(n)))etrans_of(A))

Note that there is no requirement that None be followed only by None. Nones
may occur at arbi t rary points in the sequence, indicating tha t no action has been
performed. In the trade this is known as "invariance under stuttering" [1]. An
example execution-fragment is shown below.

as: Some(a1) Some(a2) None Some(a3) None . . .
SS: 81 82 83 83 84 . . .

An e x e c u t i o n of A is an execution-fragment of A beginning in a s tar t s ta te of A:

executions(A) -- {(as,ss) . ss(0)Estarts_of(A) Ais-execution_fragment A (as,ss)}

If we filter the action sequence of an execution of A so that it has only external
actions, we obtain a t r a c e of A. The traces of A are defined by

traces(A) -- {filter(Aa.aEexternals(asig_of(A)) as. 3ss. (as,ss)Eexecutions(A)}

where fi lter P replaces Some(a) by None if P(a) does not hold:

filter P as - Ai. case as(i) of

None ==> None
I Some(a) =r if P(a) then Some(a) else None

584

specification level o

weak refinment mapping

implementation level o

ext
im o

ID 0 I~ 0

ext int

Fig. 1. Simulation by a weak refinement: ext external action, int internal action

2.3 R e f i n e m e n t M a p p i n g s in H O L

A refinement mapping f maps the states of a concrete automaton C (the imple-
mentation) to those of an abstract automaton A (the specification). The IOA
formalization in HOL supports a weak concept of refinement mappings defined
as follows (see also Fig. 1):

is_weak_refrnap f C A =
(V sEstarts_of(C), f(s)Estarts_of(A)) A
(V s t a. reachable C s A (s,a,t)Etrans_of(C)

if aEexternals(asig_of(A)) then (f(s), a,f(t))Etrans_of(A)
else f(s) ---- f(t))

The following theorem proved in HOL states that the existence of a weak refine-
ment mapping implies that the traces of C are contained in those of A:

IOA(C) A IOA(A) A
externals(asig_of(C)) ---- externals(asig_of(A)) A
is_weak_refmap f C A
---~ traces(C) c_ traces(A)

This notion of a refinement mapping is weaker than the ones usually used
in the literature [11] because it does not allow internal actions in the abstract
automaton. In particular, is_weak_refmap ()~x.x) C C does not hold for all C.

3 P r o b l e m s w i t h t h e H O L M o d e l

3.1 E x a m p l e for N e c e s s i t y o f N o r m a l F o r m s

Unfortunately the I /O automata model using the datatype option has some
drawbacks. Informally speaking, None stands for nothing, but it is not really
nothing. Therefore traces differ only because of a different number of Nones in
them, although they are semantically equivalent. This leads to an inadequate
representation of the notion of refinement, as the following example shows.

Let A and C be the two automata in Fig. 2, where act and int are an external
and internal action respectively. In HOL this becomes

585

A

int

C

Fig. 2. Observably equal I /O-Automata

act

A ~ (({ } , {act} , { int}) , {s} , { (s,act , t) , (t , int ,s)})
C = (({},{act},{}),{s'},{(s' ,act,s ')})

These are observably identical au tomata , as int is internal. Therefore we
would expect traces(C) c traces(A). Now consider the action sequence as -
Ai.Some(act). We have as E traces(C) but as ~ traces(A). In our representation
a s is not a legal trace of A, because every infinite execution of A has also infinitely
many internal actions in t and filtering internal actions yields Nones, which cannot
be eliminated further. Therefore A cannot produce a s but only some sequence
like

as' = Ai.if even(i) then Some(act) else None

Notice tha t as' is also a possible trace of C, because our formalization allows the
insertion of a finite number of Nones: our au toma ta allow "stuttering", but they
do not allow "mumbling" [2], i.e. the removal of None-steps which should not be
observable.

Within this representation it is generally not possible to establish a refine-
ment, if the abstract au tomaton has internal actions. In other words, the weak
refinement mappings defined in Section 2.3 are already the most general refine-
ment notion we could prove in this representation. This is a severe restriction
we will now t ry to lift.

3.2 R e q u i r e m e n t s for a D a t a t y p e o f S e q u e n c e s

What we really need are normal forms of traces, where Nones are not allowed
within a trace, but only at the end to indicate infinity. Such a normal form can
be defined by demanding a monotone function f between traces tha t serves as
an index transformation:

NF(tr) _= enf. 3f. mono(f) A (Vi. nf(i)=tr(f(i))) A
(Vj. j ~ range(f) ; t r (j)= None) A
(Vi. nf(i)=None ~ (nf(Suc i)) = None)

Here cx.P(x) denotes Hilbert 's description operator which stands for some a
satisfying P(a). But the definition of NF shows already tha t such index trans-
formations are very awkward to handle. Another complication is the definition

586

of infinite concatenation which will be necessary in a more general refinement
proof.

Therefore we investigated different models of executions. The starting point
was a collection of requirements for an abstract datatype of executions. These
requirements are extracted from the proof outlines of IOA metatheory and will
become clear in later sections when the proofs are described. Firstly, we need
finite and infinite sequences. Secondly, operations on them should include hd, tl,
map and filter. Thirdly, a predicate finite should exist and infinite concatenation
must be expressible. All the above requirements are fulfilled very naturally by the
well-known notion of "lazy lists" from functional programming. HOLCF directly
supports the definition of lazy lists. Therefore we decided to model traces and

executions in HOLCF.

4 H O L C F

4.1 I n t r o d u c t i o n

HOLCF [18] extends HOL with concepts of domain theory such as complete
partial orders, continuous functions and a fixed point operator. As a result, the
logic LCF [16] constitutes a proper sublanguage of HOLCF.

In HOLCF there is a special type for continuous functions. Elements of this
type are called operations, the type constructor is denoted by -~ in contrast to
the standard function type constructor 3 . For abstractions and applications of
operations a specific syntax is introduced. The term Ax.t denotes an abstraction
of type a-+T, and the term f'• denotes an application with f of type a-+v-.

HOLCF uses Isabelle's type classes to distinguish HOL and LCF types. More
precisely, it introduces a type class pcpo of pointed complete partial orders, which
becomes the default type class of HOLCF. It is a subclass of term, the default
type class of HOL. The function space constructor --+ has arity (pcpo,pcpo)pcpo,
i.e. a--+T is of class pcpo provided both cr and ~- are.

HOLCF comes with several standard domains, tr, the t ru th values, which
are HOLCF's counterpart to HOL's bool, is a flat domain with the elements TT,
FF and _L. Operations on them include andaIso, orelse and neg, which are strict

extensions of the standard predicates A,V and -~ on bool.
HOLCF also provides a datatype package [14] that allows to introduce pcpo

datatypes as simple recursive domain equations. The package proves a number
of theorems concerning the constructors, discriminators, and selectors of the
datatype, as well as induction and co-induction principles. For example, the

following equation

domain (a)sequence =ni l l (a)~(lazy (a)sequence) (1)

defines the domain of finite and infinite sequences that are built by the construc-
tors nil and # . The "cons"-operator ~ is strict in its first argument and lazy in

the second.

587

4.2 L i f t i n g

Such domain definitions as (a)sequence above require tha t the argument type
a has to be a domain type, too. However, for the application we have in mind
- - executions and traces of au toma ta - - this is ra ther inconvenient. Actions
and states are more natural ly modelled as HOL data types without dragging
undefined elements and partial orders into it. In general we prefer to stay on the
level of HOL types as long as possible and switch to pcpo types only if really
required. In our context the advantage would be tha t meta theory (in HOLCF
which offers more expressiveness and flexibility) can be hidden from the normal
refinement proofs (in HOL which is easier to use).

To achieve this goal we introduce a type constructor lift of ari ty (term)pcpo
which lifts every HOL-da ta type to a pcpo type:

datatype (c01ift = Under I Def(a)

The least element and the approximation ordering are defined very easily:

_L = Undef
x E Y = (x=y) I x=Undef

This is known as a flat domain. Note tha t _k and F are overloaded and this
definition only fixes their meaning at type (a)lift.

If in an operation on a lifted da ta type (a)lift a total function on a is involved,
it is necessary to lift also this total function to a partial operation. Therefore
we introduce a number of functionals that t ransform HOL functions to HOLCF
operations using lift. The type variables a,C~l and c~2 are of class term, whereas
/~ is of class pcpo.

bool_lift bool ::~ tr
pred_lift (c~ ::~ bool) =~ ((c01ift --~ tr)
fun_li~_l (a ~ ~) ~ ((a)li~ ~ ~)
fun_lift_2 (cq :=~ a2) =~((c~1)lift -~ (c~2)lift)

The functional bool_lift lifts booleans to t ru th values, pred_lift lifts predicates,
and fun_lift_l resp. fun Jilt_2 lift functions, the first only the argument type, the
second also the result type. Formally:

boolJift b =- if b then TT else FF
funJift_l f = Ax. case x of

Under ~ J_
I Def(y) ~ f(y)

fun Jilt_2 f = Ax. case x of
Undef =~ _L

I Def(y) =~ Def(f(y))
pred_lift p _ Ax. fun_lift_1 (Ab. bool_lift (p b)) x

Had tr been defined as (bool)l i ft, which, for histor ical reasons, i t has not been,
then bool_lift would be superfluous and pred_lift would reduce to a special case
of fun_lift_2. This shows tha t in principle two functionals would suffice.

588

Using the above lifting functions has the following advantages: Firstly, these
concepts are frequently used, and abbreviating them increases readability. Sec-
ondly, continuity proofs are facilitated and automated. In HOLCF the/~-reduction
on domains is subject to the continuity restriction cont(t) - -+ (Ax.t(x))'u = t(u)
where cont(t) means that t is continuous. These continuity proof obligations are
solved automatically for all terms of the LCF sublanguage (A-abstractions and
'-applications). But for normal HOL terms these proof obligations have to be
discharged manually. Therefore the lifting functionals can serve as a "continuity
interface" to HOL. By proving them to be continuous and adding these theorems
to the automatic proof tactic, we get automatic continuity proofs also for the
combination of HOL and LCF terms.

5 IOA in H O L C F

Most parts of the I /O automata model remain unchanged. Only the notions of
executions and traces are modelled in HOLCF domains. Therefore we restrict
the description of the HOLCF automata model to them. The last section laid
the foundation for such a hybrid description, as the type (a)lift allows sequences
to contain elements of HOL datatypes.

5.1 A p p r o p r i a t e M o d e l l i n g o f S e q u e n c e s

Executions and traces are finite or infinite sequences that we decided to model by
the domain equation (1) of section 4. This means that elements of type sequence

come in 3 flavours:

- Finite total sequences: a l # . . . # a ~ # n i l . They are generated by processes
which terminate after a finite number of output actions.

- Finite partial sequences: a t e . . . ~ a ~ # _ k . They are generated by processes
which do not terminate but produce no more output after some point, e.g.
by filter. Having this type of sequences at hand allows us to distinguish
between automata that terminate and those that do not terminate but go

on producing only internal steps.
- Infinite sequences: a1~...~au~ They are generated by processes which

do not terminate but keep on producing output.

All the operations known from functional programming with lazy lists, e.g.
hd, tl, map, filter and the concatenation operator @, are easily defined. 3

5.2 A p p r o p r i a t e M o d e l l i n g o f E x e c u t i o n s

There are several ways to model executions by the sequences described above.
Indeed, we spent a lot of time to find the most appropriate one.

3 The actual implementation uses different names for these operations because the
above ones are already used in HOL's theory of finite lists.

589

- First, it is inconvenient to use a pair of sequences, one for actions and one
for states

(action,state)execution ---- ((state)lift)sequence * ((action)lift)sequence

because this allows them to be of different length, which we then have to
rule out explicitly.

- Second, one could imagine a sequence of transit ion triples:

(act ion,state)execut ion = ((state * action �9 s tate) l i f t)sequence

The advantage is that (state * action * state) triples are already par t of the
au tomaton definition. But an impor tant drawback is the redundancy of the
representation. I t has to be guaranteed tha t the transitions coincide on the
intermediate states: a sequence . . . #Some(s l , a l , s2)#Some(s3 , a2 , s4)# . . . is
an execution only if s2 = s3.

- Finally, a pair of a s tar t s tate and a sequence of ac t ion/s ta te pairs turned
out to be most appropriate:

(act ion,state)execut ion = state �9 ((action �9 state) l i f t)sequence

In the sequel exec stands for variables of type execution, whereas s denotes
the s tar t s tate and ex the sequence of ac t ion/s ta te pairs. The additional
s tar t s ta te is necessary because otherwise the first transit ion starts from
an unknown state. However, this additional s tar t s ta te would have been
necessary for a sequence of transition triples as well, in order to associate a
state with the empty execution. This is necessary for simulation steps, where
the empty execution is used to simulate a step of the implementation. Here
it would be very complicated with an empty execution without state (nil) to
keep track of the connection to the s tate of the preceding simulation step.

5.3 H O L C F F o r m a l i z a t i o n o f E x e c u t i o n s a n d T r a c e s

The predicate is_execution_fragment is realized by an operation is_ex_fr tha t "runs
down" a sequence checking if all of its transitions are transit ion of the au tomaton
A. The predicate is true if the operation terminates and returns TT (for finite
executions) or if the search does not terminate (_L - - for infinite executions).

is-execution_fragment A (s,ex) _= is_ex_fr A'ex s ~ FF

The operation is_ex_fr is defined as a fixpoint. The following rewriting rules can
be deduced immediately from the definition.

is_ex_fr A'_L s : _L
is_ex_fr A'ni l s = T T
is_ex_fr A ' (De f (a , t)#ex) s =

bool_lift ((s,a,t) Etra ns_of(A))
andalso is_ex_fr A'ex t

Executions are execution fragments tha t begin in a s tar t state:

590

specification level o

refinement mapping

implementation level o

ext

ext

�9 0 ID 0 / ,
p, o ~ o

Ik 0 �9 0

I. o

Fig. 3. Simulation by a refinement mapping: ext external action, int's are omitted

execut ions(A) = {(s,ex) . sEstarts_of(A) A is_execution_fragment A (s,ex)}

To obtain the traces of A, a mapping operation fi lter_act is defined that
projects every pair in the execution sequence onto the action component:

f i l ter_act'ex = map'(fun_lift_2 fst) 'ex

Afterwards every non-external action of A is filtered out:

mk_trace A'ex = f i l ter '(pred_li f t(~a.aEexternals(asig_of A))) ' (f i l ter_act ex)

The traces of A are the results of applying ink_trace to the executions of A:

tracesiA) _ {mk_trace A'ex. 3s . (s,ex)eexecutions(A)}

As the definitions show, the formalization makes heavy use of the lifting
functionals fun_lift_i, pred_lift and bool_lift.

6 Ref inement Mappings in H O L C F

In order to demonstrate the advantages of our formalization, this section shows
the proof of a more general refinement notion than weak refinement mappings.

6.1 R e f i n e m e n t M a p p i n g s

The notion of a refinement mapping is illustrated in Fig. 3. A refinement mapping
f allows to simulate a step (s,a,t) of an concrete automaton C not only by another
step of the abstract automaton A, but by a complete move of A.

is_refmap f C A =--
(VsEstarts_ofiC). f(s) Estarts_of(A)) A
(Vs t a. reachable C s A (s,a,t)Etrans_of(C)

---+ =lex. move A ex (f s) a (f t))

591

Moves are finite execution-fragments that begin in state f(s), end in state f(t),
and perform only internal actions, except the action a, if that is external. This
implies in particular tha t a single internal actions can be simulated by a finite
number of internal actions.

move A ex s a t _~
is_execution_fragment A (s,ex) A f ini te(ex) A
laststate(s,ex)=t A
ink_trace A'ex = (i f aEexternals(asig_of(A)) then Def (a)#n i l else nil)

The predicate f ini te characterizes only the finite sequences that explicitly
terminate with nil and excludes partial sequences. The precise definition will
be given later on in the context of induction principles. The function l a s t s t a t e

extracts the last state of an execution:

laststate (s,_L) = s
laststate (s,nil) = s
laststate (s ,ne f (a , t)#ex) = laststate (t,ex)

6.2 P r o o f S k e t c h o f C o r r e c t n e s s

In Isabelle we proved the following correctness theorem:

IOA(C) A IOA(A) A
extemals(asig_of(C)) ---- externals(asig_of(A)) A
is_refmap f C A

traces(C) _c traces(A)

By the way, this theorem shows how to use HOLCF only for metatheory: Whereas
the conclusion traces(C) C_ traces(A) is formalized using HOLCF, the premises,
which have to be fulfilled for refinement proofs, can in most cases be proved in
HOL only. Let us now analyze the proof in a backwards direction. By elementary
set equalities the claim reduces to

IOA(C) A IOA(A) A

externals(asig_of(C)) = externals(asig_of(A)) A
is_refmap f C A A execleexecut ions(C)

qexec2eexecut ions(A) . ink_trace C'(snd exed)=mk_ t race A'(snd exec2)

That is, for every execution execl of C we have to show the existence of a
state/sequence pair exec2 that has

- S u b g o a l 1: the same trace as execl and
- S u b g o a l 2: is an execution of A.

This "corresponding" execution exee2 can be constructed (in the spirit of the
Execution Correspondence Theorem of [6]) by concatenating all the finite moves
of A that simulate the single steps of C. The function corresp_ex simply takes
care of the start state, whereas corresp_ex2 does all the work by running down
the concrete execution:

592

corresp_ex A f (s,ex) -- (f(s),corresp_ex2 A f'ex (f(s)))

corresp_ex2 A f ' l s = _L
corresp_ex2 A f'nil s = nil
corresp_ex2 A f ' (Def(a, t)#ex) s --

snd(sexec, move A exec s a t) @ corresp_ex2 A f'ex t

Here c again denotes Hilbert 's description operator. Note tha t ~exec always exists
because the definition of is_refmap exactly states the existence of a simulation
move for every reachable s tate of C.

Note tha t corrsp_ex2 constructs an infinite concatenation, which would have
been more complicated to define in pure HOL.

S u b g o a l 1. To prove trace equality we mainly need distributivity of trace gen-
eration over concatenation:

L e m m a l
ink_trace A'(exl@ex2) = (mk_trace A 'ex l) @ (mk_trace A'ex2)

Whereas the move proper ty guarantees trace equality already for every move of
A and its simulated step of C, l emma 1 extends these stepwise equalities to the
global equality of the whole traces of exl and ex2.

S u b g o a l 2. Just as before, the move proper ty yields already the proper ty of
being an execution-fragment for every simulation move. To prove the proper ty
for the whole corresponding execution, we need a lemma that propagates it from
single executions exl and ex12 to their concatenation exl@ex2. Of course, exl
and ex2 have to be related in such a way tha t the last s ta te of exl is at the same

t ime first s ta te of ex2.

Lemma2
f in i te(exl)

is_execution_fragment A'(s,exl) A is_execution_fragment A'(t,ex2)
At=laststate(s,exl)

> is_execution_fragment A (s,exl@ex2)

Notice tha t the assumption f in i te(exl) is not necessary, as the proof goal of
Lemma 2 is_execution_fragment A (s,exl@e• reduces to is_executionAragment
A'(s,exl) if exl is partial finite or infinite. But in our context we need the lemma
only under this assumption, as we argue about moves, and the move proper ty
includes the finiteness requirement~ We use the finiteness assumption because it
facilitates the proof, as we will see in the next section.

6.3 Structural Induction Principles

This section shows two different induction principles tha t were used in the proof.
For Lemma 1 and most of the other lemmas not mentioned here a structural
induction rule can be used tha t is automatical ly generated by the da ta type

package of HOLCF:

593

adm(P) A P(nil) A P(• A (Vx xs. x~-_L A P(xs) --~ P(x#xs)) > Vy.P(y)

Here adm(P) denotes the admissibility of the predicate P, that is P has to hold
for the least upper bound of every chain satisfying P. Often the proof of adrn(P)
can be reduced to the continuity of all functions occuring in P.

Exactly this continuity condition cannot be fulfilled for Lemma 2, as the
function laststate is not continous in exl. Nevertheless Lemma 2 is admissible,
so we could prove it using the admissibility definition directly. But an easier and
smarter way is to generate a .weaker induction principle that takes advantage of
the fact that we need Lemma 2 only for finite exl.

To get such a principle we define the predicate finite inductively as the least
set satisfying the rules finite(nil) and finite(xs) A x e /) finite(x#xs). In this
case the inductive datatype package of HOL generates an induction rule of the
following shape (which has been used for Lemma 2):

P(nil) A (Vx xs. x?~_L A P(xs) A finite(xs)
>(Vy. finite(y) > P(y))

> P(x#xs))

6.4 P r o o f S t a t i s t i c s

The formalization of I /O automata in HOLCF turns out to be rather compact:
There are about 40 definitions on 8 pages including sequences, automata, traces
and refinement. The correctness proof of the refinment mapping includes 180
proof commands on 7 pages and therefore seems to be very concise compared to
the handwrit ten formal proof of [6] of about 5 pages (only counting the relevant
parts, as a more general refinement notion is proved there). We argue that this
is an advantage of our formalization of sequences as lazy lists. For example,
an infinite concatenation in our context is easily defined as done for corresp_ex,
whereas in [6] a limit construction of intervals given by indexes is needed.

7 C o n c l u s i o n

We formalized the metatheory of I /O automata in Isabel le/HOLCF and proved
the correctness of refinement mappings within this model. The proof appears to
be rather concise compared to handwrit ten proofs which is due to our formaliza-
tion of potentially infinite sequences in domain theory. This sequence formaliza-
tion applies to every trace based model of distributed systems that distinguishes
between internal and external actions. We argue that an alternative modelling
in a setting of total function would be more complicated and less natural.

Furthermore, we provide a methodology to move between HOL, a logic of
total functions, and HOLCF, a logic of partial functions. In our context this
permits to use the more adequate logic for metatheory and for refinement proofs,
respectively. Besides, this allows for the automation of continuity proofs in such a
combination of HOL and HOLCF, which compensates the drawback of continuity
and admissibility proofs in domain theory.

594

R e f e r e n c e s

1. M. Abadi and L. Lamport. The existence of refinement mappings. In Proc. 3rd
IEEE Symp. LICS, pages 165-177. IEEE Computer Society Press, 1988.

2. S. Brooks. Full abstraction for a shared variable parallel language. In Proe. 8th
IEEE Symp. Logic in Computer Science, pages 98-109, 1993.

3. C.-T. Chou and D. Peled. Formal verification of a partial-order reduction technique
for model checking. In T. Margaria and B. Steffen, editors, Proc. 2nd TACAS,
volume 1055 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

4. I. P. D.J.B. Bosscher and F. Vaandrager. Verification of an audio control protocol.
In W. d. R. H. Langmaack and J. Vytopil, editors, Proc. 3rd Int. School and
Symposium FTRTFT'g~, volume 863 of Lecture Notes in Computer Science, pages
170-192. Springer, 1994.

5. S. Feferman. Computation on abstract data types, the extensional approach, with
an application to streams. Annals of Pure and Applied Logic, 81:75-113, 1996.

6. R. Gawlick, R. Segala, J. Sogaard-Andersen, and N. Lynch. Liveness in timed
and untimed systems. Technical Report MIT/LCS/TR-587, Laboratory for Com-
puter Science, MIT, Cambridge, MA., 1993. Extended abstract in Proceedings
ICALP'94.

7. M. Gordon and T. Melham. Introduction to HOL: a theorem-proving environment
for higher-order logic. Cambridge University Press, 1993.

8. P. Loewenstein. A formal theory of simulations between infinite automata. Fo~raal
Methods in System Design, 3(1):117-149, 1993.

9. V. Luchangco, E. SSylemez, S. Garland, and N. Lynch. Verifying timing properties
of concurrent algorithms. In Proc. 7th Int. Conf. Formal Description Techniques,
pages 259-273. IFIP WG6.1, Chapman and Hall, 1994.

10. N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI Quar-
terly, 2(3):219-246, 1989.

11. N. Lynch and F. Vaandrager. Forward and backward simulations - part I: Untimed
systems. Information and Computation, 121(2):214-233, 1995.

12. O. Miiller and T. Nipkow. Combining model checking and deduction for I/O-
automata. In Proc. 1st Workshop Tools and Algorithms for the Construction and
Analysis of Systems, volume 1019 of Lecture Notes in Computer Science, pages
1-16. Springer-Verlag, 1995.

13. T. Nipkow and K. Slind. I /O automata in Isabelle/HOL. In P. Dybjer,
B. NordstrSm, and J. Smith, editors, Types for Proofs and Programs, volume 996
of Lecture Notes in Computer Science, pages 101-119. Springer-Verlag~ 1995.

14. D. v. Oheimb. Datentypspezifikationen in Higher-Order LCF. Master's thesis,
Computer Science Department, Technical University Munich, 1995.

15. L. Paulson. Co-induction and co-recursion in higher-order logic. Technical Report
TR-334, Univ. of Cambridge, Computer Lab., 1994.

16. L. C. Paulson. Logic and Computation. Cambridge University Press, 1987.
17. L. C. Paulson. IsabelIe: A Generic Theorem Prover, volume 828 of Lecture Notes

in Computer Science. Springer-Verlag, 1994.
18. F. Regensburger. HOLCF: Higher Order Logic of Computable Functions. In

E. Schubert, P. Windley, and J. Alves-Foss, editors, Higher Order Logic Theorem
Proving and its Applications~ volume 971 of Lecture Notes in Computer Science,
pages 293-307. Springer-Verlag, 1995.

