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A b s t r a c t .  This paper presents a formalization of finite and infinite se- 
quences in domain theory carried out in the theorem prover Isabelle. 
The results are used to model the metatheory of I /O automata; they 
are, however, applicable to any trace based model of parallelism which 
distinguishes internM and external actions. We make use of the logic 
HOLCF, an extension of HOL with domain theory and show how to 
move between HOL and HOLCF. This allows us to restrict the use of 
HOLCF to metatheoretic arguments while actual refinement proofs be- 
tween I /O automata are carried out within the simpler logic HOL. In 
order to evaluate the formalization we prove the correctness of a gener- 
alized refinement concept in I /O automata. 

1 Introduction 

This paper  is concerned with formal models of finite and infinite behaviours of 
concurrent au toma t a  in a theorem prover. The  aim of this work is to provide 
the formal basis for the verification of distributed systems. We believe tha t  it is 
not sufficient to merely use a theorem prover to discharge externMly generated 
proof obligations but  tha t  the meta theory  of the underlying formM model should 
also be supported by the theorem prover. This does not only rule out potential  
sources of unsoundness (like external verification condition generators).  I t  also 
provides a greater degree of flexibility because we do not need to hardwire certain 
proof methods but can derive new ones from the meta theory  at any point. 

This work is carried out in the context of I / O  au toma ta  (IOA), a popular  
model of distributed systems which has been used for a number  of non-trivial 
applications, e.g. in the area of communication protocols [9, 4]. The results, how- 
ever, apply to any trace based model of parallelism which distinguishes internal 

and external actions. 
The  start ing point for our work is an existing formalization of I / O  au toma ta  

in Isabel le /HOL, the higher order logic of the theorem prover Isabelle [17]. (Un- 
less noted otherwise, HOL will refer to Isabel le /HOL rather  than  Gordon's  HOL 
system [7].) The capabilities of this formalization have been illustrated with two 
protocol verifications [13, 12] where Isabelle was also combined with a model 

* Research supported by BMBF, KorSys. 
** Research supported by ESPRIT BRA 6453, Types. 



581 

checker. However, moving to more sophisticated examples we realized some in- 
adequacies of our formalizatiori which are caused by the fact that  we model 
traces as functions from time to actions. In particular, this formalization was 
restricted to a rather limited refinement notion. 

The purpose of this paper is to provide I /O automata  with a new and more 
powerful model of traces based on lazy lists as in functional programming. Logi- 
cally this means we leave the HOL world of total  functions and enter into domain 
theory, i.e. the world of partial functions and undefined and infinite objects. This 
step should not be taken lightly because partiality complicates the logic and the 
proofs. Fortunately, Isabelle also supports HOLCF, an extension of HOL with 
the notions of domain theory. Hence we can work in HOL as long as possible 
and only move into HOLCF if really required. Par t  of this paper provides a 
methodology for moving between the two levels. This allows to use HOLCF for 
the more sophisticated metatheory, whereas normal refinement proofs can still 
be done in the simpler logic HOL. The main benefit of our new model of traces is 
a generalized refinement concept which the simpler HOL model does not permit. 

The overall aim of our work is to provide a tool environment for the analysis 
of I /O automata,  including the Isabelle formalization described in this paper, a 
model checker and an appropiate abstraction methodology. 

The structure of the paper is as follows. After a brief introduction to the 
existing model of I /O automata  in HOL (Section 2), we point out the problem 
with its weak refinement concept (Section 3). Then we introduce HOLCF and 
the means for moving from HOL to HOLCF (Section 4). Finally we recast trace 
theory in HOLCF (Section 5) and generalize the refinement concept (Section 6). 

1.1 R e l a t e d  W o r k  

Infinite sequences are part  of many trace based specification formalisms. Never- 
theless there is not as much related work as one might expect, as the underlying 
metatheory is not always formalized. Often the theorem prover is only used to 
prove refinements, but the refinement notion itself is not semantically embedded. 
This is particularly true for a couple of case studies within the I /O automata  
model - for example Fischer's protocol [9] and an audio control protocol provided 
by Philips Laboratories [4] - carried out in the Larch prover and Coq. 

Closely related to our work are the papers of Chou and Peled [3] and Loewen- 
stein I8]. Chou and Peled model infinite and finite sequences as a prerequisite 
for the formal verification of a partial-order reduction technique in the theorem 
prover HOL [7]. Their formalization models sequences as the disjoint union of 
finite lists and the type nat=~a which represents infinite sequences. Whereas we 
can build on top of a logic describing domain theory in general, they provide 
such concepts as prefix ordering or limits of ascending chains in a more ad hoc 
fashion tailored for their specific dataypes. Loewenstein develops a formal the- 
ory of simulations between infinite automata  in the theorem prover HOL. His 
sequences are functions of type nat=~cL Finite sequences are just seen as prefixes 
of infinite sequences; they are not explicitly used to describe system behaviour, 
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but to facilitate the proofs, and therefore less requirements than in our setting 
are imposed on them. 

Besides domain theory there are other logical frameworks that  apply to the 
modelling of finite and infinite sequences. Feferman [5] develops a generalized 
recursion theory which does not need continuity for fixed point recursion and 
applies it to potentially infinite sequences. This approach has not been formalized 
in a theorem prover until now. Coinduction [15] provides another computation 
scheme based on bisimulations, but  deals only with infinite or finite terminat- 
ing sequences, and it is not obvious how to extend this approach to deal with 
computation on finite nonterminating sequences. 

2 I / O - A u t o m a t a  i n  H O L  

H O L  n o t a t i o n .  All formulas have been taken directly from the Isabelle input 
and translated automatically into NTEX, thanks to a version of Isabetle/HOL 
that  allows the use of mathematical symbols like 3 or V. 

Set comprehension has the shape {e. P}, where e is an expression and P a 
predicate. The projection functions on pairs are called fst and snd. ~ p l e s  are 
pairs nested to the right, e.g. (s,a,t) represents (s,(a,t)). All functions in HOL are 
total  and the type constructor is 0 .  If f is a function of type p::~a::~-, application 
is written f x y. If there is only one argument we sometimes write rather f(x) 
than f x. Function composition is defined as (f o g)(x) = f(g(x)). Conditional 
expressions are written if A then B else C. 

2.1 I / O  A u t o m a t a  

I /O  automata  are finite or infinite state automata  with labelled transitions and 
were initially introduced by Lynch and Tuttle [10]. The formalization in HOL 
sketched in this section represents only a fragment of the theory one can find in 
recent papers [6]. For example, we do not deal with fairness or time constraints. 
The details of the formalization can be found in a previous paper [13]. Here we 
focus on how to model traces and the refinement concept. 

In the HOL model, an action signature is described by the type 

c~ signature ---- (a set * c~ set * ~ set) 

The first, second and third component of an action signature S is extracted with 
inputs, outputs, and internals. Furthermore we have 

actions(S) --- inputs(S) U outputs(S) U internals(S) 
externals(S) --- inputs(S) U outputs(S). 

Action signatures have to satisfy the following disjointness condition: 

is_asig(triple) ~ (inputs(tr iple) n outputs(tr iple) = { } )  A 
(outputs(tr iple) n internals(triple) = { } )  A 
(inputs(tr iple) N internals(triple) = { } )  
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An IOA is a triple of type 

(a,a)ioa = a signature �9 ~ set �9 (~ * a * or) set 

(where the parameters  a and ~ represent the type of actions and states) subject 
to the following predicate: 

IOA (asig,starts,trans) -- is_asig(asig) A starts ~ { }  A state_trans asig trans 

Predicate state_trans requires in particular tha t  the transit ion relationship is 
input-enabled: 

state_trans asig R - (V(s,a,t)(ER. a(Eactions(asig)) A 
(Va(Einputs(asig). Vs. 3t. (s,a,t)CR) 

The components of an IOA are extracted by asig_of, starts_of, and trans_of. The 
actions of an ]OA are defined acts - actions o asig_of. 

2.2 E x e c u t i o n s  a n d  T r a c e s  in H O L  

An e x e c u t i o n - f r a g m e n t  of an IOA A is a finite or infinite sequence that  consists 
of al ternating states and actions. In HOL it is represented as a pair of sequences: 
an infinite s t a t e  s e q u e n c e  of type nat :~ state and an a c t i o n  s e q u e n c e  of type nat 
=~ (action)option where 

datatype (c~)option -- None I Some(a) 

using an ML-like notation. A finite sequence in this representation ends with 
an infinite number  of consecutive Nones. Using this representation, a step of an 
execution-fragment (as,ss) is (ss(i),a,ss(i+l)) if as(i) = Some(a). Formally: 

is-execution_fragment A (as,ss) 
Vn a. (as(n)=None - -+  ss(Suc(n))=ss(n)) A 

(as(n)--Some(a) ~ (ss(n),a,ss(Suc(n)))etrans_of(A)) 

Note that  there is no requirement that  None be followed only by None. Nones 
may occur at arbi t rary points in the sequence, indicating tha t  no action has been 
performed. In the trade this is known as "invariance under stuttering" [1]. An 
example execution-fragment is shown below. 

as: Some(a1) Some(a2) None Some(a3) None . . .  
SS: 81 82 83 83 84 . . .  

An e x e c u t i o n  of A is an execution-fragment of A beginning in a s tar t  s ta te  of A: 

executions(A) -- {(as,ss) . ss(0)Estarts_of(A) Ais-execution_fragment A (as,ss)} 

If  we filter the action sequence of an execution of A so that  it has only external 
actions, we obtain a t r a c e  of A. The traces of A are defined by 

traces(A) -- {filter(Aa.aEexternals(asig_of(A)) as. 3ss. (as,ss)Eexecutions(A)} 

where fi lter P replaces Some(a) by None if P(a) does not hold: 

filter P as - Ai. case as(i) of 

None ==> None 
I Some(a) =r if P(a) then Some(a) else None 
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Fig. 1. Simulation by a weak refinement: ext external action, int internal action 

2.3 R e f i n e m e n t  M a p p i n g s  in H O L  

A refinement mapping f maps the states of a concrete automaton C (the imple- 
mentation) to those of an abstract automaton A (the specification). The IOA 
formalization in HOL supports a weak concept of refinement mappings defined 
as follows (see also Fig. 1): 

is_weak_refrnap f C A = 
(V sEstarts_of(C), f(s)Estarts_of(A)) A 
(V s t a. reachable C s A (s,a,t)Etrans_of(C) 

if aEexternals(asig_of(A)) then (f(s), a,f(t))Etrans_of(A) 
else f(s) ---- f( t)) 

The following theorem proved in HOL states that  the existence of a weak refine- 
ment mapping implies that  the traces of C are contained in those of A: 

IOA(C) A IOA(A) A 
externals(asig_of(C)) ---- externals(asig_of(A)) A 
is_weak_refmap f C A 
---~ traces(C) c_ traces(A) 

This notion of a refinement mapping is weaker than the ones usually used 
in the literature [11] because it does not allow internal actions in the abstract 
automaton.  In particular, is_weak_refmap ()~x.x) C C does not hold for all C. 

3 P r o b l e m s  w i t h  t h e  H O L  M o d e l  

3.1 E x a m p l e  for  N e c e s s i t y  o f  N o r m a l  F o r m s  

Unfortunately the I /O automata  model using the datatype option has some 
drawbacks. Informally speaking, None stands for nothing, but it is not really 
nothing. Therefore traces differ only because of a different number of Nones in 
them, although they are semantically equivalent. This leads to an inadequate 
representation of the notion of refinement, as the following example shows. 

Let A and C be the two automata  in Fig. 2, where act and int are an external 
and internal action respectively. In HOL this becomes 
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A 

int 

C 

Fig. 2. Observably equal I /O-Automata 

act 

A ~ (({ } , {act} , { int} ) , {s} , { (s,act , t ) , ( t , int ,s)})  
C = (({},{act},{}),{s'},{(s' ,act,s ')}) 

These are observably identical au tomata ,  as int is internal. Therefore we 
would expect traces(C) c traces(A). Now consider the action sequence as - 
Ai.Some(act). We have as  E traces(C) but as  ~ traces(A). In our representation 
a s  is not a legal trace of A, because every infinite execution of A has also infinitely 
many internal actions in t  and filtering internal actions yields Nones, which cannot 
be eliminated further. Therefore A cannot produce a s  but  only some sequence 
like 

as' = Ai.if even(i) then Some(act) else None 

Notice tha t  as'  is also a possible trace of C, because our formalization allows the 
insertion of a finite number of Nones: our au toma ta  allow "stuttering",  but they 
do not allow "mumbling" [2], i.e. the removal of None-steps which should not be 
observable. 

Within this representation it is generally not possible to establish a refine- 
ment,  if the abstract  au tomaton  has internal actions. In other words, the weak 
refinement mappings defined in Section 2.3 are already the most  general refine- 
ment notion we could prove in this representation. This is a severe restriction 
we will now t ry  to lift. 

3.2 R e q u i r e m e n t s  for  a D a t a t y p e  o f  S e q u e n c e s  

What  we really need are normal forms of traces, where Nones are not allowed 
within a trace, but only at the end to indicate infinity. Such a normal  form can 
be defined by demanding a monotone function f between traces tha t  serves as 
an index transformation:  

NF(tr) _= enf. 3f. mono(f) A (Vi. nf( i)=tr(f( i )))  A 
(Vj. j ~ range(f) ; t r ( j )=  None) A 
(Vi. nf(i)=None ~ (nf(Suc i)) = None) 

Here cx.P(x) denotes Hilbert 's  description operator  which stands for some a 
satisfying P(a). But the definition of NF shows already tha t  such index trans- 
formations are very awkward to handle. Another complication is the definition 
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of infinite concatenation which will be necessary in a more general refinement 
proof. 

Therefore we investigated different models of executions. The starting point 
was a collection of requirements for an abstract datatype of executions. These 
requirements are extracted from the proof outlines of IOA metatheory and will 
become clear in later sections when the proofs are described. Firstly, we need 
finite and infinite sequences. Secondly, operations on them should include hd, tl, 
map and filter. Thirdly, a predicate finite should exist and infinite concatenation 
must be expressible. All the above requirements are fulfilled very naturally by the 
well-known notion of "lazy lists" from functional programming. HOLCF directly 
supports the definition of lazy lists. Therefore we decided to model traces and 

executions in HOLCF. 

4 H O L C F  

4.1 I n t r o d u c t i o n  

HOLCF [18] extends HOL with concepts of domain theory such as complete 
partial orders, continuous functions and a fixed point operator.  As a result, the 
logic LCF [16] constitutes a proper sublanguage of HOLCF. 

In HOLCF there is a special type for continuous functions. Elements of this 
type are called operations, the type constructor is denoted by -~ in contrast to 
the standard function type constructor 3 .  For abstractions and applications of 
operations a specific syntax is introduced. The term Ax.t denotes an abstraction 
of type a-+T, and the term f'• denotes an application with f of type a-+v-. 

HOLCF uses Isabelle's type classes to distinguish HOL and LCF types. More 
precisely, it introduces a type class pcpo of pointed complete partial orders, which 
becomes the default type class of HOLCF. It is a subclass of term, the default 
type class of HOL. The function space constructor --+ has arity (pcpo,pcpo)pcpo, 
i.e. a--+T is of class pcpo provided both cr and ~- are. 

HOLCF comes with several standard domains, tr, the t ru th  values, which 
are HOLCF's  counterpart  to HOL's bool, is a flat domain with the elements TT,  
FF and _L. Operations on them include andaIso, orelse and neg, which are strict 

extensions of the standard predicates A,V and -~ on bool. 
HOLCF also provides a datatype package [14] that  allows to introduce pcpo 

datatypes as simple recursive domain equations. The package proves a number 
of theorems concerning the constructors, discriminators, and selectors of the 
datatype,  as well as induction and co-induction principles. For example, the 

following equation 

domain (a)sequence =ni l l  (a)~(lazy (a)sequence) (1) 

defines the domain of finite and infinite sequences that  are built by the construc- 
tors nil and # .  The "cons"-operator ~ is strict in its first argument and lazy in 

the second. 
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4.2 L i f t i n g  

Such domain definitions as (a)sequence above require tha t  the argument  type 
a has to be a domain type, too. However, for the application we have in mind 
- -  executions and traces of au toma ta  - -  this is ra ther  inconvenient. Actions 
and states are more natural ly modelled as HOL data types  without dragging 
undefined elements and partial  orders into it. In general we prefer to stay on the 
level of HOL types as long as possible and switch to pcpo types only if really 
required. In our context the advantage would be tha t  meta theory  (in HOLCF 
which offers more expressiveness and flexibility) can be hidden from the normal 
refinement proofs (in HOL which is easier to use). 

To achieve this goal we introduce a type constructor lift of ari ty (term)pcpo 
which lifts every HOL-da ta type  to a pcpo type: 

datatype (c01ift = Under I Def(a) 

The least element and the approximation ordering are defined very easily: 

_L = Undef 
x E Y = (x=y)  I x=Undef  

This is known as a flat domain. Note tha t  _k and F are overloaded and this 
definition only fixes their meaning at type (a)lift. 

If  in an operation on a lifted da ta type  (a)lift a total  function on a is involved, 
it is necessary to lift also this total  function to a partial  operation. Therefore 
we introduce a number  of functionals that  t ransform HOL functions to HOLCF 
operations using lift. The type variables a,C~l and c~2 are of class term, whereas 
/~ is of class pcpo. 

bool_lift bool ::~ tr 
pred_lift (c~ ::~ bool) =~ ((c01ift --~ tr) 
fun_li~_l (a ~ ~) ~ ((a)li~ ~ ~) 
fun_lift_2 (cq :=~ a2) =~((c~1)lift -~ (c~2)lift) 

The functional bool_lift lifts booleans to t ru th  values, pred_lift lifts predicates, 
and fun_lift_l resp. fun Jilt_2 lift functions, the first only the argument  type, the 
second also the result type. Formally: 

boolJift b =- if b then TT else FF 
funJift_l f = Ax. case x of 

Under ~ J_ 
I Def(y) ~ f(y) 

fun Jilt_2 f = Ax. case x of 
Undef =~ _L 

I Def(y) =~ Def(f(y)) 
pred_lift p _ Ax. fun_lift_1 (Ab. bool_lift (p b)) x 

Had tr been defined as (bool)l i ft, which, for histor ical  reasons, i t  has not been, 
then bool_lift would be superfluous and pred_lift would reduce to a special case 
of fun_lift_2. This shows tha t  in principle two functionals would suffice. 



588 

Using the above lifting functions has the following advantages: Firstly, these 
concepts are frequently used, and abbreviating them increases readability. Sec- 
ondly, continuity proofs are facilitated and automated. In HOLCF the/~-reduction 
on domains is subject to the continuity restriction cont(t) - -+  (Ax.t(x))'u = t(u) 
where cont(t) means that  t is continuous. These continuity proof obligations are 
solved automatically for all terms of the LCF sublanguage (A-abstractions and 
'-applications). But for normal HOL terms these proof obligations have to be 
discharged manually. Therefore the lifting functionals can serve as a "continuity 
interface" to HOL. By proving them to be continuous and adding these theorems 
to the automatic proof tactic, we get automatic continuity proofs also for the 
combination of HOL and LCF terms. 

5 IOA in H O L C F  

Most parts of the I /O  automata  model remain unchanged. Only the notions of 
executions and traces are modelled in HOLCF domains. Therefore we restrict 
the description of the HOLCF automata  model to them. The last section laid 
the foundation for such a hybrid description, as the type (a)lift allows sequences 
to contain elements of HOL datatypes. 

5.1 A p p r o p r i a t e  M o d e l l i n g  o f  S e q u e n c e s  

Executions and traces are finite or infinite sequences that  we decided to model by 
the domain equation (1) of section 4. This means that  elements of type sequence 

come in 3 flavours: 

- Finite total sequences: a l # . . . # a ~ # n i l .  They are generated by processes 
which terminate after a finite number of output  actions. 

- Finite partial sequences: a t e . . . ~ a ~ # _ k .  They are generated by processes 
which do not terminate but  produce no more output  after some point, e.g. 
by filter. Having this type of sequences at hand allows us to distinguish 
between automata that terminate and those that do not terminate but go 

on producing only internal steps. 
- Infinite sequences: a1~...~au~ .... They are generated by processes which 

do not terminate but keep on producing output. 

All the operations known from functional programming with lazy lists, e.g. 
hd, tl, map, filter and the concatenation operator @, are easily defined. 3 

5.2 A p p r o p r i a t e  M o d e l l i n g  o f  E x e c u t i o n s  

There are several ways to model executions by the sequences described above. 
Indeed, we spent a lot of time to find the most appropriate one. 

3 The actual implementation uses different names for these operations because the 
above ones are already used in HOL's theory of finite lists. 
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- First, it is inconvenient to use a pair of sequences, one for actions and one 
for states 

(action,state)execution ---- ((state)lift)sequence * ((action)lift)sequence 

because this allows them to be of different length, which we then have to 
rule out explicitly. 

- Second, one could imagine a sequence of transit ion triples: 

(act ion,state)execut ion = ( (state  * action �9 s tate) l i f t )sequence 

The advantage is that  (state * action * state) triples are already par t  of the 
au tomaton  definition. But an impor tant  drawback is the redundancy of the 
representation. I t  has to be guaranteed tha t  the transitions coincide on the 
intermediate states: a sequence . . . #Some( s l , a l , s2 )#Some( s3 , a2 , s4 )# . . .  is 
an execution only if s2 = s3. 

- Finally, a pair of a s tar t  s tate and a sequence of ac t ion/s ta te  pairs turned 
out to be most appropriate:  

(act ion,state)execut ion = state  �9 ((action �9 state) l i f t )sequence 

In the sequel exec stands for variables of type execution, whereas s denotes 
the s tar t  s tate and ex the sequence of ac t ion/s ta te  pairs. The additional 
s tar t  s ta te  is necessary because otherwise the first transit ion starts  from 
an unknown state. However, this additional s tar t  s ta te  would have been 
necessary for a sequence of transition triples as well, in order to associate a 
state with the empty execution. This is necessary for simulation steps, where 
the empty  execution is used to simulate a step of the implementation.  Here 
it would be very complicated with an empty  execution without state (nil) to 
keep track of the connection to the s tate  of the preceding simulation step. 

5.3 H O L C F  F o r m a l i z a t i o n  o f  E x e c u t i o n s  a n d  T r a c e s  

The predicate is_execution_fragment is realized by an operation is_ex_fr tha t  "runs 
down" a sequence checking if all of its transitions are transit ion of the au tomaton  
A. The predicate is true if the operation terminates and returns TT  (for finite 
executions) or if the search does not terminate  (_L - -  for infinite executions). 

is-execution_fragment A (s,ex) _= is_ex_fr A'ex s ~ FF 

The operation is_ex_fr is defined as a fixpoint. The following rewriting rules can 
be deduced immediately from the definition. 

is_ex_fr A'_L s : _L 
is_ex_fr A'ni l  s = T T  
is_ex_fr A ' (De f (a , t )#ex )  s = 

bool_lift ((s,a,t) Etra ns_of(A)) 
andalso is_ex_fr A'ex t 

Executions are execution fragments tha t  begin in a s tar t  state: 
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Fig. 3. Simulation by a refinement mapping: ext external action, int's are omitted 

execut ions(A) = {(s,ex) . sEstarts_of(A) A is_execution_fragment A (s,ex)} 

To obtain the traces of A, a mapping operation fi lter_act is defined that  
projects every pair in the execution sequence onto the action component: 

f i l ter_act'ex = map'(fun_lift_2 fst) 'ex 

Afterwards every non-external action of A is filtered out: 

mk_trace A'ex = f i l ter '(pred_li f t(~a.aEexternals(asig_of A))) ' ( f i l ter_act ex) 

The traces of A are the results of applying ink_trace to the executions of A: 

tracesiA ) _ {mk_trace A'ex. 3s . (s,ex)eexecutions(A)} 

As the definitions show, the formalization makes heavy use of the lifting 
functionals fun_lift_i, pred_lift and bool_lift. 

6 Ref inement  Mappings  in H O L C F  

In order to demonstrate the advantages of our formalization, this section shows 
the proof of a more general refinement notion than weak refinement mappings. 

6.1 R e f i n e m e n t  M a p p i n g s  

The notion of a refinement mapping is illustrated in Fig. 3. A refinement mapping 
f allows to simulate a step (s,a,t) of an concrete automaton C not only by another 
step of the abstract automaton A, but  by a complete move of A. 

is_refmap f C A =-- 
(VsEstarts_ofiC). f(s) Estarts_of(A)) A 
(Vs t a. reachable C s A (s,a,t)Etrans_of(C) 

---+ =lex. move A ex ( f s) a ( f t )  ) 
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Moves are finite execution-fragments that  begin in state f(s), end in state f(t), 
and perform only internal actions, except the action a, if that  is external. This 
implies in particular tha t  a single internal actions can be simulated by a finite 
number of internal actions. 

move A ex s a t _~ 
is_execution_fragment A (s,ex) A f ini te(ex) A 
laststate(s,ex)=t A 
ink_trace A'ex = ( i f  aEexternals(asig_of(A)) then Def (a )#n i l  else nil) 

The predicate f ini te characterizes only the finite sequences that  explicitly 
terminate with nil and excludes partial sequences. The precise definition will 
be given later on in the context of induction principles. The function l a s t s t a t e  

extracts the last state of an execution: 

laststate (s,_L) = s 
laststate (s,nil) = s 
laststate (s ,ne f (a , t )#ex)  = laststate (t,ex) 

6.2 P r o o f  S k e t c h  o f  C o r r e c t n e s s  

In Isabelle we proved the following correctness theorem: 

IOA(C) A IOA(A) A 
extemals(asig_of(C)) ---- externals(asig_of(A)) A 
is_refmap f C A 

traces(C) _c traces(A) 

By the way, this theorem shows how to use HOLCF only for metatheory: Whereas 
the conclusion traces(C) C_ traces(A) is formalized using HOLCF, the premises, 
which have to be fulfilled for refinement proofs, can in most cases be proved in 
HOL only. Let us now analyze the proof in a backwards direction. By elementary 
set equalities the claim reduces to 

IOA(C) A IOA(A) A 

externals(asig_of(C)) = externals(asig_of(A)) A 
is_refmap f C A A execleexecut ions(C) 

qexec2eexecut ions(A) . ink_trace C'(snd exed)=mk_ t race  A'(snd exec2) 

That  is, for every execution execl of C we have to show the existence of a 
state/sequence pair exec2 that  has 

- S u b g o a l  1: the same trace as execl and 
- S u b g o a l  2: is an execution of A. 

This "corresponding" execution exee2 can be constructed (in the spirit of the 
Execution Correspondence Theorem of [6]) by concatenating all the finite moves 
of A that  simulate the single steps of C. The function corresp_ex simply takes 
care of the start  state, whereas corresp_ex2 does all the work by running down 
the concrete execution: 
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corresp_ex A f (s,ex) -- (f(s),corresp_ex2 A f'ex (f(s))) 

corresp_ex2 A f ' l  s = _L 
corresp_ex2 A f'nil s = nil 
corresp_ex2 A f ' (Def(a, t )#ex)  s -- 

snd(sexec, move A exec s a t)  @ corresp_ex2 A f'ex t 

Here c again denotes Hilbert 's  description operator.  Note tha t  ~exec always exists 
because the definition of is_refmap exactly states the existence of a simulation 
move for every reachable s tate  of C. 

Note tha t  corrsp_ex2 constructs an infinite concatenation, which would have 
been more complicated to define in pure HOL. 

S u b g o a l  1. To prove trace equality we mainly need distributivity of trace gen- 
eration over concatenation: 

L e m m a l  
ink_trace A'(exl@ex2) = (mk_trace A 'ex l )  @ (mk_trace A'ex2) 

Whereas the move proper ty  guarantees trace equality already for every move of 
A and its simulated step of C, l emma 1 extends these stepwise equalities to the 
global equality of the whole traces of exl and ex2. 

S u b g o a l  2. Just  as before, the move proper ty  yields already the proper ty  of 
being an execution-fragment for every simulation move. To prove the proper ty  
for the whole corresponding execution, we need a lemma that  propagates  it from 
single executions exl and ex12 to their concatenation exl@ex2. Of course, exl 
and ex2 have to be related in such a way tha t  the last s ta te  of exl is at the same 

t ime first s ta te  of ex2. 

Lemma2 
f in i te(exl)  

is_execution_fragment A'(s,exl)  A is_execution_fragment A'(t,ex2) 
At=laststate(s,exl)  

> is_execution_fragment A (s,exl@ex2) 

Notice tha t  the assumption f in i te(exl)  is not necessary, as the proof goal of 
Lemma 2 is_execution_fragment A (s,exl@e• reduces to is_executionAragment 
A'(s,exl) if exl is partial  finite or infinite. But  in our context we need the lemma 
only under this assumption, as we argue about  moves, and the move proper ty  
includes the finiteness requirement~ We use the finiteness assumption because it 
facilitates the proof, as we will see in the next section. 

6.3 Structural Induction Principles 

This section shows two different induction principles tha t  were used in the proof. 
For Lemma  1 and most  of the other lemmas not mentioned here a structural  
induction rule can be used tha t  is automatical ly generated by the da ta type  

package of HOLCF: 
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adm(P) A P(nil) A P(• A (Vx xs. x~-_L A P(xs) --~ P(x#xs)) > Vy.P(y) 

Here adm(P) denotes the admissibility of the predicate P, that  is P has to hold 
for the least upper bound of every chain satisfying P. Often the proof of adrn(P) 
can be reduced to the continuity of all functions occuring in P. 

Exactly this continuity condition cannot be fulfilled for Lemma 2, as the 
function laststate is not continous in exl. Nevertheless Lemma 2 is admissible, 
so we could prove it using the admissibility definition directly. But an easier and 
smarter way is to generate a .weaker induction principle that  takes advantage of 
the fact that  we need Lemma 2 only for finite exl. 

To get such a principle we define the predicate finite inductively as the least 
set satisfying the rules finite(nil) and finite(xs) A x e /  ) finite(x#xs). In this 
case the inductive datatype package of HOL generates an induction rule of the 
following shape (which has been used for Lemma 2): 

P(nil) A (Vx xs. x?~_L A P(xs) A finite(xs) 
>(Vy. finite(y) > P(y)) 

> P(x#xs)) 

6.4 P r o o f  S t a t i s t i c s  

The formalization of I /O automata  in HOLCF turns out to be rather compact: 
There are about 40 definitions on 8 pages including sequences, automata,  traces 
and refinement. The correctness proof of the refinment mapping includes 180 
proof commands on 7 pages and therefore seems to be very concise compared to 
the handwrit ten formal proof of [6] of about  5 pages (only counting the relevant 
parts, as a more general refinement notion is proved there). We argue that  this 
is an advantage of our formalization of sequences as lazy lists. For example, 
an infinite concatenation in our context is easily defined as done for corresp_ex, 
whereas in [6] a limit construction of intervals given by indexes is needed. 

7 C o n c l u s i o n  

We formalized the metatheory of I /O  automata  in Isabel le/HOLCF and proved 
the correctness of refinement mappings within this model. The proof appears to 
be rather concise compared to handwrit ten proofs which is due to our formaliza- 
tion of potentially infinite sequences in domain theory. This sequence formaliza- 
tion applies to every trace based model of distributed systems that  distinguishes 
between internal and external actions. We argue that  an alternative modelling 
in a setting of total function would be more complicated and less natural.  

Furthermore, we provide a methodology to move between HOL, a logic of 
total functions, and HOLCF, a logic of partial functions. In our context this 
permits to use the more adequate logic for metatheory and for refinement proofs, 
respectively. Besides, this allows for the automation of continuity proofs in such a 
combination of HOL and HOLCF, which compensates the drawback of continuity 
and admissibility proofs in domain theory. 
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