
An Applicative Module Calculus*

Judica~'l Courant
Laboratoire d ' Informatique du Parall~lisme

CNRS URA 1398
46, all6e d ' I tal ie

69364 Lyon cedex 07
France

Judicael. CourantOens-lyon. fr
tel. (+33) 4 72 72 85 82
fax (+33) 4 72 72 80 80

LIP
46, all6e d'Italie

69364 Lyon eedex 07
FRANCE

Abstract. The SML-like module systems are small typed languages of their
own. As is, one would expect a proof of their soundness following from a proof of
subject reduction. Unfortunately, the subject-reduction property and the preserva-
tion of type abstraction seem to be incompatible.
As a consequence, in relevant module systems, the theoretical study of reduc-
tions is meaningless, and for instance, the question of norma "kzation of module
expressions can not even be considered.
In this paper, we analyze this problem as a misunderstanding of the notion of
module definition. We build a variant of the SML module system - - inspired
from recent works by Leroy, Harper, and Lillibridge - - which enjoys the subject
reduction property. Type abstraction - - achieved through an explicit declaration
of the signature of a module at ks definition - - is preserved. This was the initial
motivation. Besides our system enjoys other type-theoretic properties: the calcu-
lus is strongly normalizing, there are no syntactic restrictions on module paths,
it enjoys a purely applicative semantics, every module has a principal type, and
type inference is deoidable. Neither Leroy's system nor Harper and Lillibridge's

system has all of them,

1 Introduction

The ability to build a program f rom a collection of pieces of code is essential for soft-
ware programming and reuse. M o d e m programming languages provide the programmer
a way to decompose any program into modules of code that are small and as indepen-

dent as possible.

* This research was partiaUy supported by the ESPRIT Basic Research Action Types and by the
GDR Programmation eofinanced by MRE-FRC and CNRS.

623

However, these modules can not be completely independent since they have to in-
teract within the whole program. Therefore, each module may have an associated de-
scription in the form of an interface file. This file should give the properties that the
module intends to export.

These interface files help linking together the information about the modules. Thus,
they should allow separate compilation of the whole program: one should be able to
compile any given unit, provided that the interface files of the other units are present,
even if some modules are not yet implemented.

On the contrary, a compiler should consider that any property of the module that
is not described in this file is irrelevant, in the sense that it could be lost after a reim-
plementatlon of the given module. Therefore, it helps isolating modules one from each
other.

1.1 Standard ML

The Standard ML language is particularly interesting, with respect to the modularity
concerns because of the power of its module system [HMT87,HM'Ig0]. Indeed, this
system allows the definition and use of parameterized modules. This notion of parame-
terized modules allows to plug a module into another one. For instance, a module defin-
ing balanced trees over an ordered type can be parametedzed by a module defining a
type and a comparison function over dements of this type.

In the SML terminology, a non-parameterized module is called a structure, and a
parameterized module is called afunctor. Recent works about SML allow modules to
be parametedzed by a fimctor (that can itself be a module parameterized by a ftmctor...).
The interface of a structure is called a signature. In fact, a module type can be associ-
ated to each module, and signatures are particular cases of module types. Actually, the
module system is a small typed language of its own.

Let us study a little example. The structure declaration

structure OrdInt = struct

type t = int

val compare = fn (x : int)

end
(y : int) => x - y

binds the variable OrdInt tO a structure with a type component OrdInt. t and
a value component O r d I n t . compare of type i n t -> i n t -> i n t . Therefore
O r d I n t is said to have the following signature

s i g
type t

val compare : t -> t -> int
end

Here is another example: the signature of a module defining polymorphic associa-
tion tables could be

624

sig

type key (* type of keys *)

type 'a t (* type of tables *)

val empty: 'a t (* an empty table *)

val add: key -> 'a -> "a t -> "a t (* add a binding *)

val find: key -> 'a t -> "a (* look for a binding *)

val remove: key -> "a t -> "a t (* remove a binding *)

end

One could implement such a table in the form of a balanced tree. A comparison
function of type k e y - > k e y - > i n t is needed to store elements in the tree. The
natural way to do this is writing the following functor definition:

functor MakeTable (structure Ord:

sig

type t
val compare : t -> t -> int

end) = struct

type key = Ord.t

type "a t = Empty

l Node of key * "a * "a t * "a t

val find = ...

val add = ...

val remove = ...

end

Then a table over integers can be implemented as follows:

structure Table :sig type key

type "a t

val empty: "a t

val add: key -> "a -> "a t -> "a t

val find: key-> 'a t -> 'a

val remove: key -> 'a t -> 'a t

end
= MakeTable (OrdInt)

It happens that a functor should take two structures $1 and $2 as arguments, and
some relations between these structures are required for typechecking the ftmctor. In
that case, SML has a way to express that these structures share a common type; that is,
one can declare that each time the functor will apply to actual structures, $1 .t and S~ .u
will be the same. Such a declaration is called a sharing constraint.

1.2 Motivations and Aims

The ability to compose code through the module system of SML appears as a powerful
and fi'uitful approach. But, to our knowledge, small-step operational semantics of SML-
like module systems have been little studied. However, such a study would be very

625

Type-Theoretical Motivations Studying the reductions in module systems would im-
prove the theoretical understanding of modules. In particular, it seems that no sound-
ness proof of module systems exists yet: such a proof for a call-by-value semantics is
claimed to be an important direction for future research in [I-IL94], and it is clear that
their module system does not enjoy the subject-reduction property for an arbitrary re-
duction strategy. This is very unsatisfactory from a theoretical point of view. And it
is well-known that a dear understanding of the semantics of a programming language
helps the casual programmer in writing program~ in this language; on the contrary, writ-
ing programs in a language with an intricate semantics is often a difficult task (did you
ever try to write some complex TEX macro?).

Adaptation to Proof Systems The module system of SML is quite independent from
the base programming language. Therefore, one could imagine to adapt it to other lan-
guages. But the absence of subject-reduction property for a lazy reduction strategy in
existing module systems does not allow their adaptation to pure functional languages
such as lazy ML or I-Iaskell. Also the adaptation of existing module systems to proof
languages or logical frameworks could be interesting. But, the absence of soundness
proof could prevent us from such an adaptation. For instance in Elf [HP92] which has
an SML-like module system, it has been chosen not to implement the sharing specifi-
cation of SML, in order to retain only theoretically well-established features. Indeed,
having some strange features in a programming language might not be too dangerous,
but this can make a proof system inconsistent.

Mobile Code Security The study of small-step sem0ntics of a language is also very
interesting with respect to security concerns about mobile code. Indeed, it has been
proposed recenfly[NL96] that any mobile code could be provided with a formal proof
of its safety with respect to a given security policy, so that clients only need to have a
proof-checker verify this proof in order to trust the mobile code. It would be possible to
build a compiler producing efficient code from SML programs together with a proof of
their safety if we had a formal proof that well-typed programs have a safe behavior.

Goals Therefore, our aim in this paper is to study module reductions in an SML-like
module system, and to prove the subject-reduction property. However, the SML module
system suffers several limitations; therefore studying from a type-theoretic point of
view is difficult. We expose these limitations in section 2. Fortunately, some recent
works propose SML-like module systems that are better suited for this study; we shall
briefly expose them, then expose their limitations. Then we propose a new variant of
the SML module system. In section 3, we expose the m0in theoretical results about this
system. Finally, we conclude in section 4, and draw possible future directions. It should
be noticed that we can't give any detailed proofin this paper because of size restrictions.

626

2 Informal Design of a Module System Enjoying the
Subject-Reduction Property

2.1 SML Limitations

The SML module system was designed for use at the interactive toplevel, and there-
fore separate compilation issues were not addressed. For instance, in the example of the
previous section, the type checker knows that Table.key is equal to int whereas
this property is not stated in the signature of Tab le . In other words, some knowledge
of the underlying implementation of the module T a b l e is needed to type-check some
expressions involving it. This forbids a true separate compilation facility in the style
of Modula2. Moreover, this problem is complicated by the problem of sharing con-
straints. Some works tried to address the issue of separate compilation of SML but
gave only partial solutions that are merely of engineering nature [HLPR94,AM94].

Moreover, side-effects were at the core of the initial SML module language. Type
abstraction was implemented through a mechanism of stamp generation: each time a
ftmctor was applied, new stamps corresponding to the definition of new types were
generated. As module language constructs could generate new types, studying the se-
ran, tics of the module language was rather difficult.

2.2 Translucent Sums and Manifest Types

A solution to these problems are the formalisms of translucent sum~ [HL94], or man-
ifest types [Ler94J.er95]. These approaches are variants of the SML module system.
They both share the same idea: the implementation of types that can be seen outside a
given module must appear in the module type; there is no possibility for knowing the
implementation of the type component of a module if it does not appear in its type.
In these approaches, sharing constraints are not needed since they can be replaced by
judicious manifest type declarations [Ler96b].

For instance, the Ordmnt structure of the previous subsection would have the fol-
lowing signature:

sig

type t = int

val compare : t -> t -> int

end

The MakeTab i e functor could be given the following signature:

functor(Ord : sig
type t

val compare

end)

sig
type key = Ord.t

type "a t
val empty: "a t

: t -> t -> int

627

val add: key -> 'a -> "a t -> "a t

val find: key -> "a t -> "a

val remove: key -> "a t -> "a t

end

If the functor MakeTable is declared with this signature, then the type of tables is
abstract since it does not appear in the signature, but the type of key is manifestly equal
to Ord. t, so that MakeTable (OrdInt) has signature

s i g
type key = OrdInt.t

type ' a t

val empty: "a t

val add: key -> "a -> 'a t -> 'a t

val find: key -> "a t -> "a

val remove: key -> "a t -> "a t

end

and actual elements of type OrdInt. t, namely int, can be added to the table or
retrieved from it.

In the manifest types approach [Ix~4], a module definition is given together with
a signature, and the type-checking of declarations that come after this definition relies
only on the signature and can forget the actual implementation of the module. This
allows true separate compilation: one needs only to dec/are the types of the modules
needed by another one at compile time. Then separate compilation ~ la Modula2 can
be achieved: a compiler such as Objective Carol recognizes signature files and module
implementation files; the compilation of a module implementation file needs only the
other module signature files to be compiled.

In [I - IL94~5] , a module expression m can be coerced to a module type M so
that the most general type of the coerced expression (m : M) is M. Therefore, if every
module definition is a coerced expression, compilation can be done separately.

But, as the generative way for understanding type abstraction is a too low-level point
of view, generativity stopped being considered a key notion in these works. In [I-IL94],
there is no such notion, and in [Ler95], the generative behavior of functor application
is replaced by an applicative one. Thus, module languages look more and more like
functional languages (at least as soon as no side-effect is present in the base language).

2.3 Informal Requirements

In this subsection, we informally address the issue arising in the design of a module sys-
tem in the manifest types/translucent snrns style enjoying the subject-reduction prop-
erty.

Syntax Letusconsider ~e~llowmgmod~eexpr~sion:

(functor(Ord : sig type t val compare :
struct

t -> t -> int)

628

type key = Ord.t

end) (struct

type t = int

val compare =

fn (x : int) (y : int)

end)

One would like to say this expression reduces to

struct

type

=> x-y

key = (struct

type t = int

val compare =

fn (x : int) (y : int) => x-y

end) .t

end

Unfortunately, in the SML module system, as well as in [Ler94] and [Ler95] for-
malisms, this expression is not even syntactically well-formed. Therefore, these sys-
tems do not enjoy the subject-reduction property. Indeed, in these module systems as
in SML, access to module components is only allowed through expressions of the form
p.n where n is a name of a field and p an ~ s path, access paths being a syntactic
fragment of module expressions:

- in SML and in the system of [Ler94], paths are of the form x l . x ~ x ~ , where
xl , x 2 , . . . , x~ are identifiers;

- in [Lea95], they may also contain simple functor application pl (p J of paths to
paths.

Thus the structure struct type key : rn.t end is syntactically well-formed if
and only if m is indeed a path.

Therefore, we shouldn't have any restriction on access paths. We should choose a
calculus in which access paths and module expressions are the same notions.

Type Abstraction This extension adds considerable expressive power but raises a del-
icate issues: the possible loss of type abstraction.

Indeed, one needs a typing rule which transforms abstract types into types mani-
festly equal to themselves. This typing rule is generally called the "self ' rule or the
"strength~ing" rule. Such a rule merely says that if a module x defines an abstract type
t , tha t i sx : sig type t e n d then x also defines a type t which is equal to x . t ,
that is x : s i g t y p e t = x . t end. This rule is useful when one want to type
the application of a ftmctor needing an argument of type s i g t y p e t = x . t e n d

tox .
But if abstraction is achieved through a coercion operator as in [Ler95] and [HL94],

we have the following problem. Let us define a module x defining an abstract type
t : we define x as a module expression coerced to the signature s i g t y p e t end.
Formally, we introduce the definition

module x = (m : sig type t end)

629

Let us define another module y defining also an abstract type t :

module y = (m' : sig type t end)

It might be that m = m', so that the implementation of x . t would accidentally be
the same that the one of y . t . Because of the "self ' rule, we would then have

x.t = (m : sig type t end).t = y.t

Whereas we wished the implementation of x . t and y . t were irrelevant: type ab-
straction has been lost t

In order to prevent this, [HL94] restricts the use of the self rule so that it only
applies to values, and [Ler95] restricts module paths to a syntactic fragment of module
expressions.

We think that the authors of the aforementioned papers missed the following point:
the coercion operation is a non-applicative notion coming from a too operational point
of view since it generates new types; instead, module definitions should be thought of
as abstractions in nature.

That is, when we bind an identifier z to a module expression m, we just want to
define a module z having a given signature, but we do not need the addition of this
definition to make z be convertible with m. So, the definition of a module identifier
z should be a module expression m plus a signature M such that m has module type
M. After the addition of this definition to the environment, the module expression m is
forgotten by the type system, even if its most general type is more precise than M. That
is, from the type system point of view, the definition of z is equivalent to the declaration
of a module variable ac of type M.

As we express module type restriction at module definition, we do not need a co-
ercion operator. This way for defining a module also gives a simple status to type ab-
straction: outside the scope of its definition, a type is abstract if and only if it has been
hidden at the time of the definition of its enclosing structure. In other words, type ab-
straction and type definition are two distinct concerns, and therefore, one only need one
way for defining a type (on the contrary there are two constructs for defining a new
type in SML). Hence, type abstraction is no longer achieved through the generation of
a unique new type at declaration time but through type abstraction at module definition
time. In fact, this point of view is not really new: thus, in Modula2 [Wir83], a module
is equal to a compilation unit, and there is only one way to define a new type; whether
the definition has to be exported is specified in an interface file.

3 The Module Calculus

Let us synthesize the main features of our proposition.

- As in [lx~5] , our module calculus is stratified, and is therefore quite independent
of the base language;

- as in [HL94], our calculus should not have any syntactic restrictions on access
paths;

630

- contrarily to [HL94] and [I_ea95], there is no coercion operator for modules;

- when defining a module, one must give the signature the defined module should
export (though an effective implementation could infer the principal type of the
module, and take it as the default signature if the user gives none). 1

It is to be noticed that the base language of our calculus is left mostly unspecified,
as in [Ler94J.er95]. That is, few assumptions are made about it, and therefore, it is not
dependent of a particular language. We only need a language distinguishing types and
values where functions are first-dass. Our calculus does not account for concrete type
definitions nor for recursive definitions of ML. In fact, an ML concrete type definition
has also a generative behavior that our calculus can not account for. However, if concrete
types were given a first-class status and a non-generative semnntics, 2 our calculus could
perfectly account for them. As usual, recursive definitions can be accounted for via the
use of a fixpoint operator.

3.1 Syntax

The Variable Clashes Problem First, we would like to point out a subtle problem that
happens when instantiating a f-unctor type: as in A-calculus, (Ay.z z){z +-- y} is not
(Ay.y z), if

f : functor(x : �9 �9 .)sig type y : �9 �9 �9 type z : x.n end

then (f y) is not of type

sig type y type z : ff.n end

The usual solution in A-calculus is capture-avoiding substitutions that rename binders
if necessary. Here, a field of a structure can not be renamed since we want to be able
to access components of a structure by their names. In fact, the problem is a confusion
between the notion of component name and binder. Therefore, we modify the syntax
of declarations and specifications: declarations and specifications shall be of the form
z a s Y = . - - (o r z a s y : . . . or x a s y : . . . = . . .) , the first identifier being
the name of the component and the second one its binder (this syntax has been pro-
posed in [HL94]). From inside a structure or signature, the component is referred by
its binder, and from outside, it is referred by its name. Then, we avoid name dashes
through renAmings of binders. The old syntax z = t should be only a syntactic sugar
for x a s x = t. For instance, the following module definition:

1 The reader may notice that this in fact was done in [Ler94]; unfortunately, it seems that Leroy
did not realize this point ensured type abstraction without any syntactic restriction on projec-

tions.
2 As far as we know, giving a non-generative semantics to concrete type definitions only com-

plicates type inference a little bit.

631

module X = module X =

struct struct

module Y = module Y as Y"

struct struct

type t = int couldbewritten: type t as t"

type u = t -> t type u = t"

end end

type v = Y.u -> Y.t type v =

end end

= int

-> t"

Y'.u -> Y'.t

Reductions As we want to study the reductions of the module calculus, we have to
distinguish fl-reductions at the level of the base-language calculus and at the level of
the module calculus. In order not to confuse both of them. we call/z-reduction the/~-
reduction at the level of module system.

That is./z-reduction is the least relation on module expressions such that

(f u n c t o r (x : M) m l) (m2) --+, ml{x +-- m2]

ml -% = -+, ms)

= m9

m "+um' ==~ f u n c t o r (z : M) m --+~ f u n c t o r (x : M)m'

We define/z-equivalence as the least equivalence relation including the p-reduction.

3.2 Typing Rules

We assume given base-language dependent rules defining typing judgments E }- e : 7-
and E F- 7- : t y p e . We make use of the following judgments:

E F ok the context E is well-formed
E t- M modtype module type M is well-formed
E F m : M
E P s : S
E [- M1 <: M2
E ~ - v ~ r '

We define the last four figure 1.

module expression m has type M
structure body s has type S

module type M1 is a subtype of M2
type 7- is convertible to ~-'

In these rules we make use of four auxiliary definitions. Firstly, as in [I-IL94] the
overline function (9) merely strips off the field name of a signature component D.
Secondly, the function Names gives the set of fields appearing in a signature body.
Thirdly, the B V function gives the set of couples (names,identifier) appearing in a given
signature body, and the set of binders appearing in a given environment. Fourthly, as
in [Let94Jxx95], one of the rules for typing modules makes use of the strengthening
M / m of a module type M by a module expression m: merely, the strengthening M/m
of M replaces every abstract type t of M by a manifest type t equal to re.t; this rule is
a way to express the "self" rule saying that every type is manifestly equal to itself.

632

Module expressions (E b- m : M) a n d structures (E }- s : S):

E b ok E k m : siq S1;module x as y : M;S2 end

E;modulex:M;E'}-x:M Ef-m.x:M{n+-m.n'[(n',n) EBV(S1)}

E k M mod~pe x ~ BV(E) E; module x : M ~ m : M'

E k functor (x : M)m : functor (x : M)M'

E ~ ml : functor (x : M)M' E b- m2 : M
E b" ml (m2) : M ' { x +-- m2}

E { - m : M ' E I " M ' < : M E I - m : M

E I - m : M E l - m : M / m

E I - s : S E ~ o k

E b (struct s end) : (sig S end) E ~ e : e

E F" e : r E; v a l v : r [-- s : S %v ~ N a m e s (S)
E I- (v a l w a s v = e; s) : (v a l w a s v : r ; S)

E I- r t y p e u ~ N a m e s (S) E; t y p e t = z I- s : S
E ~ (type u as t = r; s) : (type u as t = r; S)

E ~ m : M y ~ Names(S) E; module x : M ~ s : S

E b (module y as x : M = m; s) : (module y as x : M; S)

Module types subtyping (E F- M1 <: M2):

E ~- s i g D ~ ; . . . ; D " e n d modtype E F- z i g D ~ ; . . . ; D,~ e n d modtype
~r: { 1 , . . . , m } - - + { 1 , . . . , n } Vi 6 { 1 , . . . , m } E ; D 1 ; . . . ; D , ~ [- D , ; (i) < : D ,

E b s i g D1;. . . ;D,~ e n d < : s i g D ~ ; . . . ; D " e n d

E b M2 <: M1 E ; m o d u l e x : M2 k M~ <: M~

E b f u n c t o r (x : M1)M~ <: f u n c t o r (x : M2)M~

E b M <: M '

E ~ module x as y : M <: module x as y : M'

E~7~T'

E~valzv as v :r <:val w as v :r ~

E b ' M < : M '

E b m o d u l e y a s x : M < : m o d u l e y a s x : M '

Eb0k E~'t~r'
E ~ type ~ as t[= r] <: type u as t E ~ type u as ~[-- r] <: type u as ~ ---- r'

Type equivalence (E ~ r ,~ r ') :

m =~ m' E b- m.t type E [- m'.t type
E ~- m. t ,,~ m' . t

El ; type t=r; E2 ~- ok
El ; type t=r; E2 ~ t ~ r

E ~ m : sig Sl;type t as u=r;S2 end

E ~- m . t ~ ~'{. ~ m.n' I (n', '~) 6 B V (S ~) i

(base-language dependent rules, congruence, reflexivity, symmegy and transitivity rules omitcd)

Fig. 1. Typing roles

633

3.3 Module Reductions

We have the foUowing results:

Theorem 1 (Confluence of p-reduction). The p-reduction is confluent

Proof. The standard Tait and Martin-I_ff's method applies.

Theorem 2 (Subject reduction for p-reduction). I f E ~- m : M, and m -+ ~ m', then
E F m ' : M .

Proof. The proof is done the usual way, that is we prove a substitution lemma, and
study the possible types of functors.

Theorem 3 (Strong normalization for p-reduction). The p-reduction is strongly nor-
malizing.

Proof. In fact, the proof is quite easy through a translation of module expressions to
simply-typed lambda-calculus extended with records and records subtyping.

Notice that this theorem does not rely on any assumption about normalization with
respect to reductions of the base language. Indeed, this result only means that a module
expression can be reduced until no module reduction can take place; independently, the
base language reductions may or may not terminate.

3.4 /~p-Reductions

However, p-reduction in itself is not very interesting. Indeed, module expressions are
very often in p-normal form. Instead, we can study what happens when we replace
a module by its definition, that is, what happens when we add to p-reduction the p-
reduction defined as the least context-stable relation such that

struct Si;type~ as t' = r;S~ end.t -+p
T{n' +-- struet Sl;typet as t' : r;S2 end.n l (n,n') e BV(Si)}

struct Si;valv as v' = e;S2 end.v --}p

e{n'+-struct Sl;Valvas v':e;S2 end.nl(n,n')EBV(Sl)}
struct Si;module m as x' : M : re;S2 end.z--}p
m{n' +- struct Sl;modulexas x':M:m;S2 end.n l (n,n') 6 BV(S1)]

A program being of the form struct s end.result in an empty environment,
#p-reducing it is an easy way to transform it into a single base-language expression
where no module construct appear, provided that the reduction process terminates.

Then we have the following results:

Theorem 4 (Subject reduction forpp reduction). I f E ~- m : M, and m - ~ p m',
then E F m' : M.

Theorem 5 (Confluence of pp-reduction). The #p-reduction is confluent

Theorem 6 (Strong normalization for pp-reduction). The pp-reduction is strongly nor-
malizing.

634

Theorem 6 means we can transform every modular program into one involving only
base-language constructs. This result shows that the extension of the base language
with modules is "conservative". Indeed, in a proof language, this result implies that
every inhabited type in the empty environment for the module language is inhabited
in the base language, that is that every proposition provable within the module system
is provable in the base proof language. In the following subsection, we address the
question to know whether the modular program and the base-language program have
the same semantics.

3.5 Denotational Semantics

Following ~ 5] , the denotational semantics of the calculus (for the functional frag-
ment of the base language) is obtained by erasing all type information, mapping struc-
tures to records and ftmctors to functions. We easily have the following result:

Theorem 7. The #p-reduction preserves the denotational semantics. More precisely, if
e is a well-typed expression of the base language involving module expressions, then
the semantics of e is not wrong, and if e #p-reduces to e' then e and e' have the same
semantics.

As a corollary, the above transformation of a modular program into a monolithic one
preserves its semantics.

3.6 Type Inference

In order to obtain a type inference algodthm~ we define an inference system b.4 which
runs in a deterministic way for a given module expression. A notion of 5-reduction
of a type is defined in order to compare terms through/z~-normalization. We give in
figure 2 the rule for application, which replaces the previous one and the previous rule
for strengthening, plus the rules for type comparison and type reduction.

Because of size limitation, we have to summarize in few words the main results
about our type inference system: it is sound, complete, and leads to a type inference
algorithm; also every well-typed expression has a principal type which whereas the
system of [Ler95] does not enjoys the principal type property [Ler96a].

4 Conclusion

Our module system is close to those of [I_e~5,I-IL94]. However, to our knowledge, it
is the first SML-like module system whose subject reduction property is proven. This
allows the theoretical study of reductions, leading to the strong normalization proofs,
and allows the design of a well-understood module system for lazy ML or Haskell. Also,
we establish that our module system is "conservative": a modular functional program
can be expanded to a monolithic non-modular one.

In the system of [HL94], type inference is tmdecidable. In that of [Let95] syntactic
restrictions on access paths make some modules lack a principal type and complicate

635

Application rule

E ~A ml : func tor (x : M) M ' E b.a rn2 : M " E F.z M " / m 2 <: M
E I-~ rnl (rn2) : M ' { z +- rn~}

Type equiva l~ (E F r ~ r'):

m =. m' E ~-A m.t type E ~-A m'.t type E ~A r -+~ r'

E ~- m . t ~ m ' . t E F- r ~ r'

(base-language dependent rules, congruence, reflexivity and transitivity rules ornited)
Typereduetion (E F-~ r --+~ r'):

El; type t=r; E2 I-.4 t ~ r

E ~ . m : s ig S~ ; type t as u=r; S= end m i.q in ~-normal form
E I-.a m . t --+~ r{n +- m . n ' l (n ' , n) e B V (&) }

Fig. 2. Type inference

type inference [Ler96a]. On the contrary, in our system, every module expression enjoys
a principal type, and type inference is decidable.

The replacement of type generativity by abstraction at definition gives a less oper-
ational account for type abstraction. Moreover type abstraction is preserved (the repre-
sentation independence proof of [Ler95] is adaptable to our system). In Jones's proposal
for modular programming [Jon96], some type safety brought by the type system is lost
since two modules are considered equal by the type system provided they declare the
same types, independently of the implementation of the functions they declare. For in-
stance two modules that export a type together with an ordering shall be equal provided
the same type is exported. On the contrary, our proposal does not suffer this problem,
since module comparison is done through #-reduction.

We think our system improves the type-theoretical understanding of modules. The
study of module reductions in the system itself helps bringing the study of module
systems back to the study of typed lambda-calculi. Moreover, it seems to provide a firm
basis for its use in proofs systems.

In this respect, we are currently working on its adaptation to the Calculus of Con-
stmctions [CH88], which is quite easy, in spite of the interaction of/?-reduction with
typing, in order to have a modular proof language well-suited to proving modular pro-
grams [Cou97]. Since the Calculus of Construction is both a programming language
and a proof language, this have the advantage to provide a unified framework, simpler
than the Extended ML approach [San90] because of the inherent complexity of the se-
mantics of the SML module system. We also believe our system may help in desir ing
a safe and powerful module system for Elf.

A c k n o w l e d g e m e n t s

We would like to thank Philippe Audebaud and Xavier Leroy for their comments on
this work.

636

References

[AM94] Andrew W. Appel and David B. MacQueen. Separate compilation for Standard ML. In
Programming Language Design and Implementation 1994, pages 13-23. ACM Press,
1994.

[CH88] T. Coquand and G. Huet. The Calculus of Constructions. Inf. Comp., 76:95-120,
1988.

[Cou97] ludica~l Courant. A module calculus for pure type systems. In TypedLambda Calculi
and Applications 97, LNCS. Springer-Verlag, 1997.

[HL94] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In 21st Symposium on Principles of Programming Languages, pages 123-
137. ACM Press, 1994.

[HLPR94] Robert Harper, Peter Lee, Frank Pfenning, and Eugene Rollins. Incremental recompi-
lation for Standard ML of New Jersey. TechnicalReport CMU-CS-94-116, Carnegie-
Mellon University, 1994.

[HMT87] R. Harper, R. Milner, and M. Tofte. A type discipline for program modules. In TAP-
SOFT 87, volume 250 of LNCS, pages 308-319. Springer-Verlag, 1987.

[HMT90] R. Harper, R. Milner, and M. Torte. The definition of StandardML. The M1T Press,
1990.

[HP92] Robert Harper and Frank Pfenning. A module system for a programming language
based on the LF logical framework. Technical Report CMU-CS-92-191, Carnegie
Mellon University, Pittsburgh, Pennsylvania, september 1992.

[Ion96] Mark P. Jones. Using parameterized signatures to express modular structures. In 23rd
Symposium on Principles of Programming Languages. ACM Press, 1996. To appear.

[Ler94] Xavier Leroy. Manifest types, modules, and separate compilation. In 21st symp.
Principles of Progr. Lang., pages 109-122. ACM Press, 1994.

[Ler95] Xavier Leroy. Applicative funetors and fully transparent higher-order modules. In
22nd Symposium on Principles of Programming Languages, pages 142-153. ACM
Press, 1995.

[Ler96a] Xavier Leroy, 1996. Private Communication.
[Ler96b] Xavier Leroy. A syntactic theory of type generativity and sharing. To appear in Journal

of FunctionaI Programming, 1996.
[NL96] George C Necula and Peter Lee. Safe kernel extensions without run-time checking. In

second symposium on Operating Systems Design and Implementation, 1996.
[San90] Don Sannella. Formal program development in Extended ML for the working pro-

grammer. In Proc. 3rd BCS/FACS Workshop on Refinement, pages 99-130. Springer
Workshops in Computing, 1990.

[Wir83] N. Wirth. Programming in Modula-2. Texts and Monographs in Computer Science.
Springer-Verlag, 1983.

