
Verification of Message Sequence Charts via Template
Matching

V l a d i m i r Lev in a n d D o r o n Peled
Bell L a b o r a t o r i e s

Lucen t Technologies
700 M o u n t a i n Avenue
M u r r a y H i l l N J 07974

Abs t r ac t . Message sequence charts are hecoming a popular low-level
design tool for communication systems. When applied to systems of non-
trivial size, organizing and manipulating them become a challenge. We
present a methodology for specifying and verifying message sequence
charts. Specification is given using templates, namely charts with only
partial information about the participating events and their interrelated
order. "Verification is done by a search whose aim is to match templates
against charts. The result of such a search either reports that no match-
ing chart exists, or returns examples of charts that satisfy the constraints
that appear in such a template. ~hre describe the a~goritilm ~nd an im-
plementation.

1 I n t r o d u c t i o n

Message sequence charts are becoming more and more popular in the design of
communicat ion systems [5]. They allow a low level description of features the
designed sys tem ought to haxe. Description of a system via message sequence
charts refers to scenarios of executions. An MSC specification contains usually
a description of some typical executions of the system (sometimes called sunny
day scenarios), and also some particular unusual executions (sometimes called
rainy da~ scenarios) to which the system developer must pa T ext ra attention.

The simplicity of the MSC model s tem from its simple graphical represen-
tation, and from the correspondence between one MSC and a single execution
of the designed system. However, to be useful, various groupings of scenarios
need to be considered. When specifying a system of non-trivial size, orgemizing
the different scenarios in a useful way becomes a problem. Another reason for
grouping scenarios is tha t typically many scenarios reflect very similar execu-
tions, motivat ing the need to combine scenarios from smaller building blocks.

In this paper we suggest a methodology, an a~gorithm and a tool for orga-
nizing and manipulat ing families of MSC scenarios. We suggest a notat ion for
describing a system of message sequence charts, which allows expressing con-
catenat ion and alternation between charts. Then, we introduce the notion of

653

an M S C template, which allows denoting a partially specified execution. Such a
template can be conceived as a specification of a desired or a forbidden feature,
and can be checked against a system of MSCs. We show an algorithm for check-
ing whether a template matches against a system of MSC scenarios. We discuss
an implementation of the algorithm using the COSPAN [7] verifyer.

Our MSCs template search can serve for various purposes:

System validation. The template represents a specification of the system. It
describes it in the 'negative', in the sense that no legal execution of the
system can match the specification. If during a search a match is made, the
specification does not hold for the system. The charts that match, and hence
violate the specification, are detected and need to be re-examined.

Features update. The template is used to keep track of provided charts and
features. A template represents a chart or a feature that needs to be rep-
resented. During updating of the MSCs, one can search the existing library
of MSCs to check whether a chart that covers the case described by a given
template already exists.

Creating system views~ With a considerably big system, containing many charts,
it is important to be able to provide the capability of observing different
'views' of the system. One way to obtain views is by using database queries.
For example, viewing only the charts that contain a certain phrase in their
title. Using template search, one can generate views that correspond to the
semant ic contents of the charts. Namely, displaying all charts that contain
a certain interaction between the processes.

2 C h a r t s a n d T e m p l a t e s

2.1 T h e s y n t a x a n d s e m a n t i c s o f m e s s a g e s e q u e n c e c h a r t s

Let R* be the transitive closure of a binary relation R. Let o be the relation
composition symbol. A relation R is called reduced if (R o R o R*) n R = r i.e.,
if there is a sequence e l R e 2 R . . . Ren with n > 2, then (el, en) r R. R is cycle
free if R o R* is nonreflexive.

S y n t a x : M S C scena r io s MSC diagrams are graphical representations of sce-
narios or executions of communication systems. The representation is formally
defined in [5]. Examples of MSC diagrams appear in Figures 1, and 2.

An MSC A~ is a fivetuple (E, <, L, T, 7)), where E is a set of events, <C _
E • E is a cycle free relation, 7) is a set of processes, L : E ~ 7) is a mapping
that assigns each event with a process, and T : E ~ {s, r} maps each event to
its type, i.e., send or receive.

The relation < is called the visual order between events. It reflects the relative
appearance of events in a graphical representation of the MSC. Thus, e < f if
either

654

- e and f are the send and receive events, respectively, of the same message,
in this case, the events e and f are said to be a matching pair.

- e and f belong to the same process, with e appearing above f in the process
line.

Let Ep~ = {e[e E E A L(e) = P~}. Denote the local visual order of process P~ by
<p~=< N(Ep~ • Ep~), and the communication visual order between sends and
receives by <c= {(e, e')[e < e 'A L(e) 7 ~ L(e')}. Thus, < = < c UUp~c p <P~.

Consider the MSC of Figure 1. We have E = {Sl, r l , s2, r2}, 5 ~ = {P1, P2, Pa},
<c= {(sl, r l) , (s2, r2)}, < P l • < p a = r and < p 2 • {(rl, r2)}. The visual order
< is depicted on the lower left side of the figure. This order is termed 'visual',
since it reflects the way the MSC is depicted, but may differ from the actual
execution order between events as explained below.

?577
81

V>7
*[?~1

r2 " 82

S1 " P1 81 : /)1 82 i /)3
1 82:P3 [

rl " P 2 ~ 2 :P2 r l " P 2 r2 :P2

Visual order Causal order

Fig. 1. A chart, its visual and precedence order

Seman t i c s : C a us a l S t r u c t u r e s Causal structures, akin to pomsets [11], event
structures [10] and traces [9], are obtained from a message sequence charts and a
selected semantics [1]. It represents one possible execution of a communication
system. It contains information about the executed events, and the precedence

order between them.
A causal structure (_9 is represented by a fivetuple (E, -~, L, T, P>, where the

only component that differs here from the definition of an MSC is the cycle free

655

relation -<. This relation is called the precedence order. Tha t is, if el -4 e2, event
el must have terminated before event e2 started. The transit ive closure 4" of -<
is a part ial order called also the causal order. Notice tha t two events tha t are
unordered by -<* can occur independently or concurrently with each other.

Considering again the MSC of Figure 1, the 'precedence' order, which appears
on the lower right of the figure, reflects the execution order. The distinction
between the visual order and the precedence order often reflects the shortcomings
of a two dimensional representation of the MSC. For example, in the example
of Figure 1 it is arguable whether the receive event r l actually precedes r2, as
these messages were sent independently from different processes. Placing them
in a part icular order can merely stem from the fact tha t the MSC representat ion
forces some arbi t rary visual order, rather than an explicit intent to assert tha t
they actually arrive at this particular order.

The translat ion between the visual order and the precedence order is done via
semantic rules [1], which select which ordered pairs of the visual order per tain at
the precedence order. For example, one such rule asserts that <cC-<. The arbi-
trariness of the choice of order between rl and r2 discussed above is reflected by
the absence of a rule such tha t if el < e2, T(el) = T(e2) = r, and L(el) = L(e2),
then el -< e2. Notice that the semantic rules depend on the system's architec-
ture. In a system where each process has multiple asynchronous communication
queues, one can impose an arbi t rary order on independently received messages,
reflecting the order of reading the messages rather than their physical order of
arrival. In such a system, letting r l -~ r2 may be meaningful.

We will assume a fixed set of semantic rules. The causal s tructure obtained
from a given MSC N by applying these rules will be denoted by (_9 = tr(N).

One set of semantic rules, for an architecture with fifo queues, such tha t each
process has one fifo message queue for all the incoming messages, sets el -4 e2
in the following cases:

Two sends from the same process.

T(e l) = sAT(e2) : sA L(el) = L(e2) A el < e2

A matching pair of send and receive.

T(el) = s A T(e2) = r A L(el) # L(e2) A el < e2

We will denote this condition by msg(el, e2).

Fifo order.

T(el) = r A T(e2) : r A el < e2 A L(el) : L(e2) A 3f13fe(rnsg(fl, el) A
rnsg(f2, e2) A L(f l) : L(f2) A f l < f2)

A receive and a later send at the same process.

T(e l) = r A T(e2) = s A L(el) = L(e2) A el < e2

For a non-fifo architecture, one needs to remove the third (fifo) rule.
Notice tha t both visual and precedence orders, are not necessarily transit ive

closed or reduced. This is important for the efficiency of the matching algorithm
described in the sequel. Thus, in Figure 2, Sl -< s2, s2 -< s3 and sl ~ s3 hold.

656

This merely reflects the fact tha t the local visual order is a total order for each
process, hence is transit ive closed. On the other hand, al though sl -~ s2 and
s~ -~ r2, it does not hold that sl -~ r2.

81

$2

83

r l

T3

F ig . 2. Another MSC

2.2 A Calculus of Message Sequence Charts

An impor tant feature of a system specification is compositionality: the ability to
construct the description of a system from simpler and smaller building blocks.
We first define the concatenation of MSCs.

Suppose we want to decompose the description of a chart into two tasks A
and B, such tha t A occurs before B. We assume A and B agree on their sets
of processes PA = T)B �9 Denote the visual order of events in A by <A, and in
B by < s - We define a syntactic concatenation. The events of each process in
A appear before the events of the same process in B in the visual order. Thus,
< A B = < A U <B U{(el, e2)lel 6 EA Ae2 E EB AL(el) = L(e2)}. The precedence
order of the concatenation depends on the particular semantics chosen for the
system. It is impor tan t to define that if the same MSC appears more than once
in a concatenation, we use a disjoint set of events for each occurrence I.

This concatenation is termed 'syntactic' since it behaves as if we drew the
MSC B below the MSC A along the same process lines. It is related to the layered
decomposition of concurrent systems [3, 61. Denote the combination by A B , and
accordingly, the precedence order of events by -~AB. The precedence order is
obtained by applying the semantic rules to the above defined visual order <AB.
Thus, under our fifo queue semantics, when concatenating A with B in Figure 3,
we have tha t r4 and r2 axe not ordered according to -'lAB.

Once the concatenation is defined, we allow combining charts using rational

expressions. We allow the syntax

.4 ::= BI(A) IA*IAALA+ I

1 Technically, one can define the concatenation of A and B using two renamed sets of
events: EA • {1} and EB x {2}, with the order and the labeling functions relativized

to the renamed sets of events.

657

with B denoting a variable representing an MSC.
The semantics of these rational expressions is as follows: The empty MSC

contains no events. Let ,4 and B range over sets of MSCs. Let A B = { A B I A E
A A B E /3}. Define A ~ = E, A ~+1 = A~A. Then, A* = U ~ o A~' Finally,
A + B = A u B .

Equivalently, we can specify a system of MSCs using finite graphs, with nodes
corresponding to MSCs [8]. A finite path corresponds to an MSC obtained by
syntactically concatenating the charts along it. The graph in Figure 3 corre-
sponds to the rational expression (AC)*(~ + A + AB) . Notice that each such
rational expression, considered as a language, is prefix closed. The tool POGA
supports storing and viewing graphs of MSCs [4].

/

m 2

I ?~ ~4~~83 ~ $4 ~ ~

A

Fig. 3. A graph of MSCs

Recall that a linearization r- of a precedence order ~ is a total order that
contains -~. Notice that the language obtained by taking all the linearizations
of an MSC rational expression may not necessarily correspond to a regular lan-
guage. For example, consider the system described in Figure 4. It includes all
the words (linearizations) with the same number of sends and receives such that
any of their prefix contains no more receives than sends. This language is clearly
not regular.

2.3 Templates

A template is also a chart. It has the same syntax as an MSC. Its semantics is
similar to that of an MSC, except that unlike an MSC, the causal structure t r (M)

658

I

Fig. 4. An MSC system whose set of linearizations is not regular

corresponding to a template M contains an order relation -<m tha t is reduced.
This requirement follows a subtle efficiency argument that will be discussed in
the sequel. Hence, if the chart in Figure 2 is interpreted as a template, we have
sl -~ s2 and s2 -< s3, but Sl s s3. A template specifies an order between events.
Conceptually, it does not correspond to a full scenario, but ra ther to a subset
thereof. The lack of causal order (the transitive closure of -<M) between pairs of
events in a template means tha t the order between the events is unimpor tant or
unknown.

3 C o r r e c t n e s s C r i t e r i o n : T e m p l a t e s M a t c h i n g

3.1 M a t c h i n g a t e m p l a t e a g a i n s t a n M S C

A templa te matches or is embedded in an MSC, if the chart respects the order
on the events specified by the template. Matching is defined with respect to a
given semantics.

D e f i n i t i o n 1 Under a given semantics, a template M with a causal structure
t r (M) : (EM, -~M,LM,TM,T)M) matches a chart N with a causal structure

t r (N) = (EN, "~N, LN, T N , P N) iff

-- PM C T)N, and

- there exists a homomorphism (called an embedding) # : EM ~-+ EN such

that

�9 for each e 6 EM, LN(#(e)) = LM(e) and TN(Iz(e)) = TM(e) [preserving
processes and types],

�9 if el -~M e2, then #(el) -~N #(e2) [preserving the order relation].

Notice however tha t the other direction does not have to hold, i.e., it can be
tha t it(t1) -~N #(t2) but neither tl -~M t2 nor t2 "~M tl. Consider the chart in
Figure 1, this t ime interpreted as a template (Figure 5). I t specifies tha t there

659

are at least 4 events, and that the send event sl precedes the receive event
r l , and similarly, s2 precedes re. However, the template does not impose any
order between rl and re. This does not mean that the template would match
only charts where r l and re are unordered; it merely means that by not imposing
such an order it would match charts regardless of any order between these events.

81 r2* ~ r l

Template

D

82
P2 '

(73

0- 4

Pl '
~72

' P3

_i

Scenario

(71

P4

Fig. 5. A template and an MSC

The definition of matching depends on the semantic rules used to trans-
late an MSC into a causal structure. Consider the template M and the MSC
N in Figure 5. The corresponding template precedence order, under the above
semantics rules, which does not force order between r l and re, appears in
the lower right of Figure 1. The MSC precedence order consists of the chain
O'1 "~N Pl "~N 0"2 "~N P2 -~N 0"3 "~N P3 and the pairs P2 "~N 0"3, 0"3 "r 0"4,
P2 -<N 0"4 and 0"4 "~N P4. The embedding function # of the matching consists of
the pairs {(sl, 0"3), (rz, P3), (se, cq), (re, Pz)}.

Consider now a different semantics, which orders receive events on the same
process according to their appearance in the MSC. The template precedence
order for this case, which is the same as the visual order, appears in lower left
of Figure 1. The MSC precedence order now includes also Pz -<N P3, while the
template precedence order includes rl ~M r2. Under this semantics, the template
does not match the MSC. To see this, notice that any embedding function # must
contain at least the pairs {(Sl, 0.3), (s2, 0"1)} in order to satisfy the process and
type matching condition. Because of the message edges, it also has to include
the four pairs as under the previous case. But since rz -4M re, a match must
also satisfy that #(rz) = P3 -<N Pz = #(re), which does not hold.

The following theorem is useful for developing an algorithm for matching
templates and charts.

T h e o r e m 1 I f a template M matches an M S C N then for each linearization
KN of -<N there exists a linearization ~-M of -<M and a homomorphic mapping
v : EM ~-+ EN such that if el FM e2 then v(el) EN v(e2).

660

P r o o f . Assume that M matches N. Let # be the embedding mapping. Choose
a linearization EN of -~g, and let EM= {(e, f)ltt(e) EN #(f)} . We claim that
EM is a linearization of ~ . To see this, assume for the contrary that e -<M f
but f EM e. Then, according to Definition 1, since e -<~ f , it must hold that
it(e) -~N # (f) . But then, #(e) EN p (f) and thus, e EM f . But since EM is a
total order, it cannot hold that both e E ~ f and f EM e. |

Thus, it is sufficient to compare a single linearization of the MSC N against
the linearizations of the template M. To develop a matching algorithm, we ex-
ploit the following standard definitions [2].

D e f i n i t i o n 2 A slice S C_ E of a causal structure 0 = (E, -<, L, T, 7)) satisfies
that for each pair of events el, e2 E E, such that ei -~ e2, ire2 E S then ei E S.

A slice is often called a configuration. The set of slices of a eausM structure
O is denoted by S(O). The pair IS(O), c) forms a partial order of slices.

D e f i n i t i o n 3 A cut of a causal structure 0 = (E, -% L, T, 7)) is a maximal set
of edges C C-<, satisfying that there exists a slice S C E such that for each edge
(el, e2) E C, ei E S and e2 r S.

The set of cuts of a causal structure O is denoted by C(O). It is easy to see
that for each slice S E S(O) there is a unique matching cut C E C(O). A slice
$2 is an immediate successor of a slice Si if $2 = $1 U {e} for some event e E E.

To create a systematic search of the linearizations of a template M, one
can apply a depth first search as follows: the states of the search are the slices
of the template . The search starts with the empty slice. It progresses from a
current slice S to its immediate successor slices. When progressing from S to
S U {e}, the edge is marked with the event e. It is standard to show that the
paths generated in this search correspond to all the linearizations of the partially
ordered causality relation ~*. Figure 6 gives the linearizations of the template

in Figure 5.
The graph resulting from the search can be immediately converted into an

automaton such that the events labeling the edges of each run form a lineariza-
tion of the template order. Since a template needs to match only a subset of the
events of an MSC, each node includes a self loop that allows arbitrary additional
events, which are not covered by the template. These edges are marked with the
symbol ~-. The template automaton AM is a fivetuple (SM, ----*~, LM, FM, 5M),
where SM is the set of states, - - - ~ is the transition relation, LM is the initial
state, FM is the set of accepting states, and 5M is the labeling on the edges.

For a chart N, one can construct an automaton AN -~ (S N , ' ~ g , $g , -FN, 5N),
which accepts all the prefixes of one of its linearizations. For example, an au-
tomaton for a linearization of the MSC in Figure 5 can be as follows:

X 0 crI-~3 Xl p l . ~ X2 ~2.~ X3 p2_~i X4 X5

(Notice that there are other linearizations, as, e.g., p3 and a4 are not ordered
according to the precedence order). For such an automaton, there is one initiM
state, and all the states are accepting.

661

r
r

.1;y \.,
{.1} {.,}

{(.1,.1)} {(.,,.,)}

Pl\
{81,/~1} {81,82} {82, •2}

r (..,.,)} r

S2 ; P3~7"1y x~P2~81~P1

{81, rl, 82, P2}
r

Fig. 6. The cuts/slices graph for the template in Figure 5

The product automaton AM x AN consists of the Cartesian product of states
SM x SN, the transition relation such that (s, t) >MxN (s', t') iff s ----~M s'
and t ~N t', the initial state (~M, ~N), the accepting states FM x FN, and
a labeling function 5MxN which labels a transition (s, t) ~MxN (s', t ') by
(~M(s ~MS'),SN(t ~Nt')).

The match product AM ~ AN defined below is a modification of the product
automaton, constructed for the matching algorithm. Each node (s, t, b) in the
product, contains also a third additional component b besides the pair of states
s from AM and t from AN, respectively. The component b, called the bindings,
is a set of triples of the form (el, p, e2) E EM x EN x EM. Projecting out the
middle component from each triple, one obtains the cut that is associated with
the template component s. The intuitive meaning is that the template event el
is matched with the chart event p (while the event e2 is not matched yet).

Certain rules dictate the transitions of AM M AN. Consider such a transition
from a state (s, t, b} to a state (s', t', b'), where s ~M s' and t ~g t':

662

- The transit ion is labeled by a p a i r (T, p), where p E EN. Then, the MSC
event p does not correspond to any event in the template (the template
au tomaton is doing a self loop).

- The transit ion is labeled by a pair (e, p) C EM • EN, where the events e
and p agree on their type and process. In this case, the following conditions
impose the relation between the bindings b and b~:

Adding triples. (e, p, g) E b' \ b iff g C EM and e -4M g. [The new triples
correspond to new edges (e, g) on the cut corresponding to s ~, recording
tha t e was matched (with p).]

Forgetting a tr ip le. (f , a, e) E b \ b' iff ~ -~N P. [Matching e with p and
matching f with a preserve the orders, i.e., f -~M e and a -~N P.]

I t is easy to see from the construction that checking the match between
templa te M and an MSC N can be done by checking the emptiness of the
au tomaton AM ~ AN. The match product accepts at least one sequence iff the
templa te M and the MSC N match. A match between M and N can be obtained
from any accepting run with an embedding function # such tha t #(e) = p iff there
exists an edge labeled by (e, p) during the run.

I t is simple to extend this to a family of charts embedded in a rational
expression or a graph, respectively, as defined in Section 2.2. This relies on the
semantic rules for interpreting an MSC to satisfy the following:

if A and B are two charts, e E EA and f E EB, then it is not the case

tha t f -~ AB e.

Under this condition we have:

L e m m a 1 Let A, B be two message sequence charts, with precedence orders
-~A C _ EA XEA and -~BC_ EB XEB, respectively, where EAMEB = r Let V-A and
F-B be linearizations of ~A and -~B, respectively. Then, F-A U V-B U{(e, f) l e C
EA A f E EB} is a linearization of -'4AB.

Thus, generating an automaton tha t recognizes at least one linearization
for each MSC in a system of MSCs defined using a rational expression or a
graph (as defined in Section 2.2) can be obtained by a simple composition of the

linearizations of the component MSCs.

3.2 Complexity and Efficiency

The t ime and space complexity of the algorithm is O((n/m)'~) , where m is the
size of the template, and n is the size of the checked MSC. Thus, it is exponential
in the size of the template, and for a fixed template, polynomial in the size of
the MSC. Using a s tandard binary search argument [12], one can obtain from
our description an algorithm tha t is PSPACE in the size of the template.

We will make now a few comments about choices made, which were affected

by the strive for an efficient algorithm.

663

For efficiency of the matching algorithm, the order -'~M of a templa te M
should be a reduced order. Thus, if el -~M e2 and e2 -~M e3, then el and e3
should not be ordered by ~M. To see this, suppose tha t the send events el,
e2 and e3 are matched against a l , a2 and a3 in an MSC N, respectively. The
matching requires tha t a l ~Y a2, (72 ~Y 03. Thus, a l -~N Or3 is implied, without
enforcing an order between el -~M e3. Thus, there is one less triple, namely tha t
of (el, a l , e3) to store and check. Thus, the translation of the visual order of a
templa te into its precedence order is somewhat different than the translation of
the visual order of an MSC: in the former case, when adding a pair e -~M f to
the precedence order, one needs to check that there can be no pairs e -~M g and
g -~M f for some event g.

3 .3 A d d i t i o n a l c o n s t r u c t s

So far, the template provided a subset of the events, to be matched against
an MSC (or a graph of MSCs). The order corresponded to precedence order.
However, in some cases, one might want to make a stronger assertion about the
order. Namely, to express the fact that a pair of events are ordered and no events
can appear in between. This case is handled by restricting the self loops on the
nodes. Suppose there are two subsequent edges marked with events e and f of
the same process, and the template indicates 'immediate order'. Then an edge
labeled by ~- is not allowed between edges labeled by e and f .

To distinguish between ' immediate ' and 'eventual ' orders, one can use usual
process lines to indicate immediate order, and a broken (dotted, or dashed)
process lines to indicate eventual order.

Another extension is to allow annotat ing events and messages with textual
names, and to allow the match of a named event in a template only with an
MSC event with the same name.

4 A n Implementa t ion

We describe an implementat ion of the algorithm using the COSPAN [7] model-
checking tool. The language S /R (for selection/resolution) is the input interface
to the COSPAN tool.

The program first translates the template in Figure 5 to the list of pairs of
events. Each event indicates by its first letter whether the event is a send or a
receive. The message number appears in square brackets (hence a message is a
pair of events with the same message number), and the process where this event
appears follows a colon. Each line represents a pair of events in the precedence
order. The events of the template in Figure 5 are t ranslated into:

s [1] : 1 , r [1] :2
s[2] : 3 , r [2] :2

Similarly, the translation of the MSC in Figure 5 is as follows:

s i l l] : 3 , r [1 1] :2 r [l l] : 2 , s [1 2] :2

664

s[12] :2,r[12] : 1 r[12] :l,s[13] :i
s[13] : l,r[13] :2 r[12] : l,s[14] :I
s[14] :l,r[14] :3 s[13] :l,s[14] :i

Notice that we added i0 to each event index in order not to confuse between the
template and MSC events (the implementation allows to reuse the same numbers
for both). Hence, s [II] represents the event ~1.

The program then generates S/R code from these two lists which represent
precedence orders of a template and an MSC respectively. This S/R code spec-
ifies two parallel processes where the first, called Trap, represents the template
automaton and the other, called Dora, represents the MSC automaton.

The S/R language allows a specification of a system of parallel processes
which move from state to state simultaneously after a non-deterministic selection
of current values for selection variables. A state is interpreted in COSPAN as a
vector of values of state variables which are disjoint from the selection variables.
A transit ion from a state to another state is implemented by a set of assignments
to the state variables. Each process may have one s tandard selection variable #
and one s tandard state variable $. The former is linked to the lat ter as follows:
each value of $ is explicitly supplied with a permit ted range of currently possible
values for #. The values of variable $ may often be thought of as ' s ta te positions'.

The states of the template and MSC au tomata described in Section 3 (see
Figures 6 and Formula 1), are mapped one-to-one into state positions of S / R
processes Trap and Dora, respectively. The coordination of these two S / R processes
models the match of a template au tomaton against MSC as explained next: In
each of the two processes, at each of the state positions, the permit ted range of
the selection variable # is the set of the next send/receive events tha t generate a
successor for the current slice. The process Dora implements an au tomaton tha t
recognizes a linearization of the MSC, and therefore deterministically progresses
from one state position to another, keeping the executed event as a value of
variable Dom. #. Below is the transition structure of Dora process for the MSC

automaton:

trams
NoEvent{sll} -> sll: true;

sll{rll} -> rll: true;

s14{r14} -> r14: true;

r14{r13} -> r13: true;
rl3{NoEvent} -> $: true;

Note that the value of selection variable Dora. # placed in braces follows the
current state position. The state position is named after the most recent event
encountered. For example, the state sll indicates that the last event was sll

(which represents (~1).
The process Trap whose state positions correspond to the template automaton

slices may either self-loop at a current state position or non-deterministically
progress to the next state position N. The latter case is accomplished if[the
selected event E fits the matching condition described in section 3. This guarded

transition is expressed in S/R as follows:

665

->N: (#=E)*MatchCond~

where MatchCond_E is an S /R predicate that expresses the matching condition
and the symbol �9 stands for logical and (A). If there is no such event E, the
process Tmp self-loops, thus waiting for the process Dom to execute an appropriate
event. As an example, consider the transitions corresponding to the middle slice
{sl, s2}, with the cut {(sl, r l) , (s2, r2)}, appearing in Figure 6:

4{Tau,rl,r2}
-> 2:(#=rl)*MatchCond_rl
-> l:(#=r2)*MatchCond_r2
-> $: else;

Process Imp allows three selections out of this state position (named 4): one
is an attempt for matching the event rl (translated into r [i] :2 and then into
rl), another for matching r2 (r[2] :4, then r2), and the third is a 7 move,
hence remaining in the same state, i.e. looping back to the state position $. The
self-looping also executes if a selection for matching an event (rl or r2) does
not fit the corresponding matching predicate (MatchCond_rl or MatchCond_r2,
respectively). The matching predicates are defined as S/R macros. For example,

macro MatchCond_rl :=
(Dom. NxtStProc=2) * (Dom. NxtStType=r) *

(Dom. CntrpPro c= i) * (Img_ s 1 _predsNxtDomSt)

This checks that the MSC event currently executed agrees with the selected
template event r I on the process (Dora. NxtStProc=2) (which is P2 for both), and
on the type (Dora. NxtStType=r). Furthermore, the process of the corresponding
send event in the MSC matches the process of the corresponding send event in
the template (Dora. CntrpProc=l) (process/'I). In addition, all the predecessors
of the selected template event must have matched with the MSC events, which
are related by the MSC precedence order with the MSC event currently executed.
This is checked by the predicate Img_sl_predsNxtDomSt. The latter is defined
via straightforward application of the MSC precedence order to variables Img_s 1,
described below, and Dom.#.

The same matching conditions that allow the process Trap to move from the
above slice by matching the event r l , are used to bind the currently executed
MSC event, which is accessible as value of Dora. #, to the state variable Img__rl.
This is done using the first line in the following assignment which is a part of
Trap process:

asgn Img_rl -> Dom.# ? (#=rl)*MatchCond_rl l
NoDomEvent ? ~(Event_rl_inCut) I Img_rl

The syntax of this assignment statement is as follows: the variable to be assigned
appears before the arrow. Then we have pairs of value ? 9uard, separated by the
alternative (I) symbol. Such an assignment is global, thus it is tested and exe-
cuted in every transition. The second alternative of the assignment corresponds
to 'forgetting' a match (by storing the special value NoDomEvent). The symbol

666

is the negation symbol. The condition Event_vl_inCut is true exactly in the
cases where r l is in the cut (it is identically false in our example).

In COSPAN, au toma ta are defined over infinite sequences. COSPAN detects
an accepting sequence by searching for cycles tha t satisfy its acceptance condi-
tions in the s tate space generated for the coordinating processes. Such a cycle
is repor ted as a "bad cycle". For model-checking, it means the existence of a
counter example for the checked property. The checked proper ty which is em-
bedded into the generated S / R code is "the process Trap never reaches its final
s tate position (i.e. the final slice)", and the implementat ion forces an artificial
self-loop at this s tate position. So, the corresponding "bad cycle" means a match.
The matching pairs appear in the COSPAN report for such a bad cycle as the
values of the variables Dora. # and Trap. #, when Trap. # is not Tau (corresponding
to a ~- move). The program extracts these values and outputs a matching table.
For the above example, we obtain:

s[2] -> s[11] s[l] -> s[13] r[1] -> r[13] r[2] -> rill]

Acknowledgement
The authors would like to thank Bob Kurshan and Mihalis Yannakakis for many
illuminating discussions on the subject.

R e f e r e n c e s

1. R. Alur, G.J. Holzmann, D. Peled, An Analyzer for Message Sequence Charts~
Software Concepts and Tools, Vol. 17, No. 2, 1996, pp 70-77.

2. E. Best, R. Devillers, Sequential and concurrent behaviour in Petri Net theory,
Theoretical Computer Science 55 (1987), 87-136.

3. Tz. Elrad, N. Francez, Decomposition of distributed programs into communica-
tion closed layers, Science of Computer Programming 2 (1982), 155-173.

4. G.J. Holzmann Early Fault Detection Tools, Software Concepts and Tools, Vol.
17, No. 2, 1996, 63-69.

5. ITU-T Recommendation Z.120, Message Sequence Chart (MSC), March 1993.
6. W. Janssen, J. Zwiers, Protocol design by layered decomposition, a compositional

approach, Proceedings of formal techniques in real-time and fault-tolerance sys-
tems 1992, LNCS 571, Springer, 307-326.

7. R.P. Kurshan, Computer-Aided Verification, Princeton University Press, 1994.
8. S.C. Kleene, Representation of events in nerve nets and finite automata, Automata

Studies, annals of math studies 34, Princeton University Press, 1956.
9. A. Mazurkiewicz, Trace theory, Advanced course on Petri nets, Bad Honnef, Ger-

many, 1987, LNCS 254, 269-324.
10. M. Nielsen, G. Plotkin, G. Winskel, Petri Nets, Event Structures and Domains,

Part I, Theoretical Computer Science 13(1981), 85-108.
11. V. Pratt, Modeling concurrency with partial orders, International Journal of Par-

allel Programming 15 (1986), 33-71.
12. W. J. Savitch. Relationship between nondeterministic and deterministic tape com-

plexities. J. on Computer and System Sciences, 4 (1970), 177-192.

