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Abs t r ac t .  Message sequence charts are hecoming a popular low-level 
design tool for communication systems. When applied to systems of non- 
trivial size, organizing and manipulating them become a challenge. We 
present a methodology for specifying and verifying message sequence 
charts. Specification is given using templates, namely charts with only 
partial information about the participating events and their interrelated 
order. "Verification is done by a search whose aim is to match templates 
against charts. The result of such a search either reports that no match- 
ing chart exists, or returns examples of charts that satisfy the constraints 
that appear in such a template. ~hre describe the a~goritilm ~nd an im- 
plementation. 

1 I n t r o d u c t i o n  

Message sequence charts are becoming more and more popular  in the design of 
communicat ion systems [5]. They allow a low level description of features the 
designed sys tem ought to haxe. Description of a system via message sequence 
charts  refers to scenarios of executions. An MSC specification contains usually 
a description of some typical executions of the system (sometimes called sunny 
day scenarios), and also some particular unusual executions (sometimes called 
rainy da~ scenarios) to which the system developer must  pa T ext ra  attention. 

The  simplicity of the MSC model s tem from its simple graphical represen- 
tation, and from the correspondence between one MSC and a single execution 
of the designed system. However, to be useful, various groupings of scenarios 
need to be considered. When specifying a system of non-trivial size, orgemizing 
the different scenarios in a useful way becomes a problem. Another reason for 
grouping scenarios is tha t  typically many  scenarios reflect very similar execu- 
tions, motivat ing the need to combine scenarios from smaller building blocks. 

In this paper  we suggest a methodology, an a~gorithm and a tool for orga- 
nizing and manipulat ing families of MSC scenarios. We suggest a notat ion for 
describing a system of message sequence charts, which allows expressing con- 
catenat ion and alternation between charts. Then, we introduce the notion of 
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an M S C  template, which allows denoting a partially specified execution. Such a 
template can be conceived as a specification of a desired or a forbidden feature, 
and can be checked against a system of MSCs. We show an algorithm for check- 
ing whether a template matches against a system of MSC scenarios. We discuss 
an implementation of the algorithm using the COSPAN [7] verifyer. 

Our MSCs template search can serve for various purposes: 

System validation. The template represents a specification of the system. It 
describes it in the 'negative', in the sense that  no legal execution of the 
system can match the specification. If during a search a match is made, the 
specification does not hold for the system. The charts that  match, and hence 
violate the specification, are detected and need to be re-examined. 

Features update. The template is used to keep track of provided charts and 
features. A template represents a chart or a feature that  needs to be rep- 
resented. During updating of the MSCs, one can search the existing library 
of MSCs to check whether a chart that  covers the case described by a given 
template already exists. 

Creating system views~ With a considerably big system, containing many charts, 
it is important  to be able to provide the capability of observing different 
'views' of the system. One way to obtain views is by using database queries. 
For example, viewing only the charts that  contain a certain phrase in their 
title. Using template search, one can generate views that  correspond to the 
semant ic  contents of the charts. Namely, displaying all charts that  contain 
a certain interaction between the processes. 

2 C h a r t s  a n d  T e m p l a t e s  

2.1 T h e  s y n t a x  a n d  s e m a n t i c s  o f  m e s s a g e  s e q u e n c e  c h a r t s  

Let R* be the transitive closure of a binary relation R. Let o be the relation 
composition symbol. A relation R is called reduced if (R o R o R*) n R = r i.e., 
if there is a sequence e l R e 2 R . . .  Ren  with n > 2, then (el, en) r R. R is cycle 
free if R o R* is nonreflexive. 

S y n t a x :  M S C  scena r io s  MSC diagrams are graphical representations of sce- 
narios or executions of communication systems. The representation is formally 
defined in [5]. Examples of MSC diagrams appear in Figures 1, and 2. 

An MSC A~ is a fivetuple (E, <, L, T, 7)), where E is a set of events, <C _ 
E • E is a cycle free relation, 7) is a set of processes, L : E ~ 7) is a mapping 
that  assigns each event with a process, and T : E ~ {s, r} maps each event to 
its type, i.e., send or receive. 

The relation < is called the visual order between events. It reflects the relative 
appearance of events in a graphical representation of the MSC. Thus, e < f if 
either 
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- e and f are the send and receive events, respectively, of the same message, 
in this case, the events e and f are said to be a matching pair. 

- e and f belong to the same process, with e appearing above f in the process 
line. 

Let Ep~ = {e[e E E A L(e) = P~}. Denote the local visual order of process P~ by 
<p~=< N(Ep~ • Ep~), and the communication visual order between sends and 
receives by <c= {(e, e')[e < e 'A L(e) 7 ~ L(e')}. Thus, < = < c  UUp~c p <P~. 

Consider the MSC of Figure 1. We have E = {Sl, r l ,  s2, r2}, 5 ~ = {P1, P2, Pa}, 
<c=  {(sl, r l) ,  (s2, r2)}, < P l • < p a  = r and < p 2  • {(rl, r2)}. The visual order 
< is depicted on the lower left side of the figure. This order is termed 'visual', 
since it reflects the way the MSC is depicted, but may differ from the actual 
execution order between events as explained below. 
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V>7  
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r2 " 82 

S1 " P1 81 : /)1 82 i /)3 
1 82:P3 [ 

rl " P 2 ~ 2  :P2 r l  " P 2  r2 :P2 

Visual order Causal order 

Fig.  1. A chart, its visual and precedence order 

Seman t i c s :  C a us a l  S t r u c t u r e s  Causal structures, akin to pomsets [11], event 
structures [10] and traces [9], are obtained from a message sequence charts and a 
selected semantics [1]. It represents one possible execution of a communication 
system. It contains information about the executed events, and the precedence 

order between them. 
A causal structure (_9 is represented by a fivetuple (E, -~, L, T, P>, where the 

only component that  differs here from the definition of an MSC is the cycle free 



655 

relation -<. This relation is called the precedence order. Tha t  is, if el -4 e2, event 
el must  have terminated before event e2 started. The transit ive closure 4"  of -< 
is a part ial  order called also the causal order. Notice tha t  two events tha t  are 
unordered by -<* can occur independently or concurrently with each other. 

Considering again the MSC of Figure 1, the 'precedence'  order, which appears  
on the lower right of the figure, reflects the execution order. The distinction 
between the visual order and the precedence order often reflects the shortcomings 
of a two dimensional representation of the MSC. For example, in the example 
of Figure 1 it is arguable whether the receive event r l  actually precedes r2, as 
these messages were sent independently from different processes. Placing them 
in a part icular  order can merely stem from the fact tha t  the MSC representat ion 
forces some arbi t rary visual order, rather  than  an explicit intent to assert tha t  
they actually arrive at this particular order. 

The translat ion between the visual order and the precedence order is done via 
semantic rules [1], which select which ordered pairs of the visual order per tain at 
the precedence order. For example, one such rule asserts that  <cC-<. The arbi- 
trariness of the choice of order between rl  and r2 discussed above is reflected by 
the absence of a rule such tha t  if el < e2, T(el) = T(e2) = r, and L(el) = L(e2), 
then el -< e2. Notice that  the semantic rules depend on the system's  architec- 
ture. In a system where each process has multiple asynchronous communication 
queues, one can impose an arbi t rary order on independently received messages, 
reflecting the order of reading the messages rather  than their physical order of 
arrival. In such a system, letting r l  -~ r2 may be meaningful. 

We will assume a fixed set of semantic rules. The causal s tructure obtained 
from a given MSC N by applying these rules will be denoted by (_9 = tr(N). 

One set of semantic rules, for an architecture with fifo queues, such tha t  each 
process has one fifo message queue for all the incoming messages, sets el -4 e2 
in the following cases: 

Two sends from the same process. 

T(e l )  = sAT(e2 )  : sA L(el)  = L(e2) A el < e2 

A matching pair of send and receive. 

T(el) = s A T(e2) = r A L(el) # L(e2) A el < e2 

We will denote this condition by msg(el, e2). 

Fifo order. 

T(el) = r A T(e2) : r A el < e2 A L(el) : L(e2) A 3f13fe(rnsg(fl, el) A 
rnsg(f2, e2) A L( f l )  : L(f2) A f l  < f2) 

A receive and a later send at the same process. 

T(e l )  = r A T(e2) = s A L(el) = L(e2) A el < e2 

For a non-fifo architecture, one needs to remove the third (fifo) rule. 
Notice tha t  both  visual and precedence orders, are not necessarily transit ive 

closed or reduced. This is important  for the efficiency of the matching algorithm 
described in the sequel. Thus, in Figure 2, Sl -< s2, s2 -< s3 and sl ~ s3 hold. 
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This merely reflects the fact tha t  the local visual order is a total  order for each 
process, hence is transit ive closed. On the other hand, al though sl -~ s2 and 
s~ -~ r2, it does not hold that  sl -~ r2. 

81 

$2 

83 

r l  

T3 

F ig .  2. Another MSC 

2.2 A Calculus of Message Sequence Charts 

An impor tant  feature of a system specification is compositionality: the ability to 
construct  the description of a system from simpler and smaller building blocks. 
We first define the concatenation of MSCs. 

Suppose we want to decompose the description of a chart into two tasks A 
and B, such tha t  A occurs before B. We assume A and B agree on their sets 
of processes PA = T)B �9 Denote the visual order of events in A by <A, and in 
B by < s -  We define a syntactic concatenation. The events of each process in 
A appear  before the events of the same process in B in the visual order. Thus,  
< A B = < A  U <B U{(el, e2)lel 6 EA Ae2 E EB AL(el)  = L(e2)}. The precedence 
order of the concatenation depends on the particular semantics chosen for the 
system. It is impor tan t  to define that if the same MSC appears  more than once 
in a concatenation, we use a disjoint set of events for each occurrence I. 

This concatenation is termed 'syntactic' since it behaves as if we drew the 
MSC B below the MSC A along the same process lines. It is related to the layered 
decomposition of concurrent systems [3, 61. Denote the combination by A B ,  and 
accordingly, the precedence order of events by -~AB. The precedence order is 
obtained by applying the semantic rules to the above defined visual order <AB. 
Thus, under our fifo queue semantics, when concatenating A with B in Figure 3, 
we have tha t  r4 and r2 axe not ordered according to -'lAB. 

Once the concatenation is defined, we allow combining charts using rational 

expressions. We allow the syntax 

.4 ::= BI(A) IA*IAALA+ I  

1 Technically, one can define the concatenation of A and B using two renamed sets of 
events: EA • {1} and EB x {2}, with the order and the labeling functions relativized 

to the renamed sets of events. 
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with B denoting a variable representing an MSC. 
The semantics of these rational expressions is as follows: The empty MSC 

contains no events. Let ,4 and B range over sets of MSCs. Let A B  = { A B I A  E 
A A B  E /3}. Define A ~ = E, A ~+1 = A~A. Then, A* = U ~ o  A~' Finally, 
A + B = A u B .  

Equivalently, we can specify a system of MSCs using finite graphs, with nodes 
corresponding to MSCs [8]. A finite path corresponds to an MSC obtained by 
syntactically concatenating the charts along it. The graph in Figure 3 corre- 
sponds to the rational expression (AC)*(~ + A + AB) .  Notice that  each such 
rational expression, considered as a language, is prefix closed. The tool POGA 
supports storing and viewing graphs of MSCs [4]. 

/ 

m 2 

I ?~ ~4~~83 ~ $4 ~ ~ 

A 

Fig.  3. A graph of MSCs 

Recall that  a linearization r- of a precedence order ~ is a total  order that  
contains -~. Notice that  the language obtained by taking all the linearizations 
of an MSC rational expression may not necessarily correspond to a regular lan- 
guage. For example, consider the system described in Figure 4. It includes all 
the words (linearizations) with the same number of sends and receives such that  
any of their prefix contains no more receives than sends. This language is clearly 
not regular. 

2.3 Templates 

A template is also a chart. It has the same syntax as an MSC. Its semantics is 
similar to that  of an MSC, except that  unlike an MSC, the causal structure t r (M)  
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I 

Fig. 4. An MSC system whose set of linearizations is not regular 

corresponding to a template  M contains an order relation -<m tha t  is reduced. 
This requirement follows a subtle efficiency argument  that  will be discussed in 
the sequel. Hence, if the chart in Figure 2 is interpreted as a template,  we have 
sl -~ s2 and s2 -< s3, but Sl s s3. A template  specifies an order between events. 
Conceptually, it does not correspond to a full scenario, but  ra ther  to a subset 
thereof. The  lack of causal order (the transitive closure of -<M) between pairs of 
events in a template  means tha t  the order between the events is unimpor tant  or 
unknown. 

3 C o r r e c t n e s s  C r i t e r i o n :  T e m p l a t e s  M a t c h i n g  

3.1 M a t c h i n g  a t e m p l a t e  a g a i n s t  a n  M S C  

A templa te  matches or is embedded in an MSC, if the chart  respects the order 
on the events specified by the template.  Matching is defined with respect to a 
given semantics. 

D e f i n i t i o n  1 Under a given semantics, a template M with a causal structure 
t r ( M )  : (EM, -~M,LM,TM,T)M)  matches a chart N with a causal structure 

t r ( N )  = (EN, "~N, LN, T N , P N )  iff 

-- PM C T)N, and 

- there exists a homomorphism (called an embedding) # : EM ~-+ EN such 

that 

�9 for each e 6 EM, LN(#(e))  = LM(e)  and TN(Iz(e)) = TM(e) [preserving 
processes and types], 

�9 if  el -~M e2, then #(el)  -~N #(e2) [preserving the order relation]. 

Notice however tha t  the other direction does not have to hold, i.e., it can be 
tha t  it(t1) -~N #(t2) but  neither tl -~M t2 nor t2 "~M tl.  Consider the chart in 
Figure 1, this t ime interpreted as a template  (Figure 5). I t  specifies tha t  there 
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are at least 4 events, and that  the send event sl precedes the receive event 
r l ,  and similarly, s2 precedes re. However, the template does not impose any 
order between rl and re. This does not mean that  the template would match 
only charts where r l  and re are unordered; it merely means that  by not imposing 
such an order it would match charts regardless of any order between these events. 

81 r2* ~ r l  

Template 

D 

82 
P2 ' 

(73 

0- 4 

Pl ' 
~72 

' P3 

_i 

Scenario 

(71 

P4 

Fig.  5. A template and an MSC 

The definition of matching depends on the semantic rules used to trans- 
late an MSC into a causal structure. Consider the template M and the MSC 
N in Figure 5. The corresponding template precedence order, under the above 
semantics rules, which does not force order between r l  and re, appears in 
the lower right of Figure 1. The MSC precedence order consists of the chain 
O'1 "~N Pl  "~N 0"2 "~N P2 -~N 0"3 "~N P3 and the pairs P2 "~N 0"3, 0"3 "r 0"4, 
P2 -<N 0"4 and 0"4 "~N P4. The embedding function # of the matching consists of 
the pairs {(sl, 0"3), (rz, P3), (se, cq), (re, Pz)}. 

Consider now a different semantics, which orders receive events on the same 
process according to their appearance in the MSC. The template precedence 
order for this case, which is the same as the visual order, appears in lower left 
of Figure 1. The MSC precedence order now includes also Pz -<N P3, while the 
template precedence order includes rl  ~M r2. Under this semantics, the template 
does not match the MSC. To see this, notice that  any embedding function # must 
contain at least the pairs {(Sl, 0.3), (s2, 0"1)} in order to satisfy the process and 
type matching condition. Because of the message edges, it also has to include 
the four pairs as under the previous case. But since rz -4M re, a match must 
also satisfy that  #(rz) = P3 -<N Pz = #(re),  which does not hold. 

The following theorem is useful for developing an algorithm for matching 
templates and charts. 

T h e o r e m  1 I f  a template M matches an M S C  N then for each linearization 
KN of -<N there exists a linearization ~-M of -<M and a homomorphic mapping 
v : EM ~-+ EN such that if  el FM e2 then v(el)  EN v(e2). 
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P r o o f .  Assume that  M matches N. Let # be the embedding mapping. Choose 
a linearization EN of -~g, and let EM= {(e, f)ltt(e) EN #(f )} .  We claim that  
EM is a linearization of ~ .  To see this, assume for the contrary that  e -<M f 
but  f EM e. Then, according to Definition 1, since e -<~ f ,  it must hold that  
it(e) -~N # ( f ) .  But then, #(e) EN p ( f )  and thus, e EM f .  But since EM is a 
total  order, it cannot hold that  both e E ~  f and f EM e. | 

Thus, it is sufficient to compare a single linearization of the MSC N against 
the linearizations of the template M. To develop a matching algorithm, we ex- 
ploit the following standard definitions [2]. 

D e f i n i t i o n  2 A slice S C_ E of a causal structure 0 = (E, -<, L, T, 7 )) satisfies 
that for each pair of events el, e2 E E, such that ei -~ e2, ire2 E S then ei E S. 

A slice is often called a configuration. The set of slices of a eausM structure 
O is denoted by S(O).  The pair IS(O), c )  forms a partial order of slices. 

D e f i n i t i o n  3 A cut of a causal structure 0 = (E, -% L, T, 7 )) is a maximal set 
of edges C C-<, satisfying that there exists a slice S C E such that for each edge 
(el, e2) E C, ei E S and e2 r S. 

The set of cuts of a causal structure O is denoted by C(O). It is easy to see 
that  for each slice S E S(O) there is a unique matching cut C E C(O). A slice 
$2 is an immediate successor of a slice Si if $2 = $1 U {e} for some event e E E. 

To create a systematic search of the linearizations of a template M, one 
can apply a depth first search as follows: the states of the search are the slices 
of the template .  The search starts with the empty slice. It  progresses from a 
current slice S to its immediate successor slices. When progressing from S to 
S U {e}, the edge is marked with the event e. It is standard to show that  the 
paths generated in this search correspond to all the linearizations of the partially 
ordered causality relation ~*. Figure 6 gives the linearizations of the template 

in Figure 5. 
The graph resulting from the search can be immediately converted into an 

automaton such that  the events labeling the edges of each run form a lineariza- 
tion of the template order. Since a template needs to match only a subset of the 
events of an MSC, each node includes a self loop that  allows arbitrary additional 
events, which are not covered by the template. These edges are marked with the 
symbol ~-. The template automaton AM is a fivetuple (SM, ----*~, LM, FM, 5M), 
where SM is the set of states, - - - ~  is the transition relation, LM is the initial 
state, FM is the set of accepting states, and 5M is the labeling on the edges. 

For a chart N,  one can construct an automaton AN -~ ( S N ,  ' ~ g ,  $g ,  -FN, 5N), 
which accepts all the prefixes of one of its linearizations. For example, an au- 
tomaton for a linearization of the MSC in Figure 5 can be as follows: 

X 0 crI-~3 Xl p l . ~  X2 ~2.~ X3 p2_~i X4 X5 

(Notice that  there are other linearizations, as, e.g., p3 and a4 are not ordered 
according to the precedence order). For such an automaton, there is one initiM 
state, and all the states are accepting. 
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Fig.  6. The cuts/slices graph for the template in Figure 5 

The product automaton AM x AN consists of the Cartesian product  of states 
SM x SN, the transition relation such that  (s, t) >MxN (s', t') iff s ----~M s' 
and t ~N t', the initial state (~M, ~N), the accepting states FM x FN, and 
a labeling function 5MxN which labels a transition (s, t) ~MxN (s', t ') by 
(~M(s ~MS'),SN(t ~Nt')). 

The match product AM ~ AN defined below is a modification of the product  
automaton,  constructed for the matching algorithm. Each node (s, t, b) in the 
product,  contains also a third additional component b besides the pair of states 
s from AM and t from AN, respectively. The component b, called the bindings, 
is a set of triples of the form (el, p, e2) E EM x EN x EM. Projecting out the 
middle component from each triple, one obtains the cut that  is associated with 
the template component s. The intuitive meaning is that  the template event el 
is matched with the chart event p (while the event e2 is not matched yet). 

Certain rules dictate the transitions of AM M AN. Consider such a transition 
from a state (s, t, b} to a state (s', t', b'), where s ~M s' and t ~g t': 
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- The transit ion is labeled by a p a i r  (T, p), where p E EN. Then, the MSC 
event p does not correspond to any event in the template  (the template  
au tomaton  is doing a self loop). 

- The transit ion is labeled by a pair (e, p) C EM • EN, where the events e 
and p agree on their type and process. In this case, the following conditions 
impose the relation between the bindings b and b~: 

Adding triples. (e, p, g) E b' \ b iff g C EM and e -4M g. [The new triples 
correspond to new edges (e, g) on the cut corresponding to s ~, recording 
tha t  e was matched (with p).] 

Forgetting a tr ip le.  (f ,  a, e) E b \ b' iff ~ -~N P. [Matching e with p and 
matching f with a preserve the orders, i.e., f -~M e and a -~N P.] 

I t  is easy to see from the construction that  checking the match between 
templa te  M and an MSC N can be done by checking the emptiness of the 
au tomaton  AM ~ AN. The match product  accepts at least one sequence iff the 
templa te  M and the MSC N match. A match  between M and N can be obtained 
from any accepting run with an embedding function # such tha t  #(e) = p iff there 
exists an edge labeled by (e, p) during the run. 

I t  is simple to extend this to a family of charts embedded in a rational 
expression or a graph, respectively, as defined in Section 2.2. This relies on the 
semantic rules for interpreting an MSC to satisfy the following: 

if A and B are two charts, e E EA and f E EB, then it is not the case 

tha t  f -~ AB e. 

Under this condition we have: 

L e m m a  1 Let A, B be two message sequence charts, with precedence orders 
-~A C _ EA XEA and -~BC_ EB XEB,  respectively, where EAMEB = r Let V-A and 
F-B be linearizations of ~A and -~B, respectively. Then, F-A U V-B U{(e, f ) l e  C 
EA A f E EB} is a linearization of -'4AB. 

Thus, generating an automaton tha t  recognizes at least one linearization 
for each MSC in a system of MSCs defined using a rational expression or a 
graph (as defined in Section 2.2) can be obtained by a simple composition of the 

linearizations of the component  MSCs. 

3.2 Complexity and Efficiency 

The t ime and space complexity of the algorithm is O((n/m)'~) ,  where m is the 
size of the template,  and n is the size of the checked MSC. Thus, it is exponential  
in the size of the template,  and for a fixed template,  polynomial in the size of 
the MSC. Using a s tandard binary search argument  [12], one can obtain from 
our description an algorithm tha t  is PSPACE in the size of the template.  

We will make now a few comments  about  choices made, which were affected 

by the strive for an efficient algorithm. 
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For efficiency of the matching algorithm, the order -'~M of a templa te  M 
should be a reduced order. Thus, if el -~M e2 and e2 -~M e3, then el and e3 
should not be ordered by ~M. To see this, suppose tha t  the send events el, 
e2 and e3 are matched against a l ,  a2 and a3 in an MSC N,  respectively. The 
matching requires tha t  a l  ~Y a2, (72 ~Y 03. Thus, a l  -~N Or3 is implied, without 
enforcing an order between el -~M e3. Thus, there is one less triple, namely tha t  
of (el, a l ,  e3) to store and check. Thus, the translation of the visual order of a 
templa te  into its precedence order is somewhat different than  the translation of 
the visual order of an MSC: in the former case, when adding a pair e -~M f to 
the precedence order, one needs to check that  there can be no pairs e -~M g and 
g -~M f for some event g. 

3 .3  A d d i t i o n a l  c o n s t r u c t s  

So far, the template provided a subset of the events, to be matched against 
an MSC (or a graph of MSCs). The order corresponded to precedence order. 
However, in some cases, one might want to make a stronger assertion about the 
order. Namely, to express the fact that a pair of events are ordered and no events 
can appear in between. This case is handled by restricting the self loops on the 
nodes. Suppose there are two subsequent edges marked with events e and f of 
the same process, and the template indicates 'immediate order'. Then an edge 
labeled by ~- is not allowed between edges labeled by e and f .  

To distinguish between ' immediate '  and 'eventual '  orders, one can use usual 
process lines to indicate immediate  order, and a broken (dotted, or dashed) 
process lines to indicate eventual order. 

Another  extension is to allow annotat ing events and messages with textual  
names, and to allow the match of a named event in a template  only with an 
MSC event with the same name. 

4 A n  Implementa t ion  

We describe an implementat ion of the algorithm using the COSPAN [7] model- 
checking tool. The language S /R  (for selection/resolution) is the input interface 
to the COSPAN tool. 

The program first translates the template  in Figure 5 to the list of pairs of 
events. Each event indicates by its first letter whether the event is a send or a 
receive. The message number  appears  in square brackets (hence a message is a 
pair  of events with the same message number),  and the process where this event 
appears  follows a colon. Each line represents a pair of events in the precedence 
order. The events of the template  in Figure 5 are t ranslated into: 

s [ 1 ]  : 1 , r [ 1 ]  :2 
s[2]  : 3 , r [ 2 ]  :2 

Similarly, the translation of the MSC in Figure 5 is as follows: 

s i l l ]  : 3 , r [ 1 1 ]  :2 r [ l l ]  : 2 , s [ 1 2 ]  :2 
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s[12] :2,r[12] : 1 r[12] :l,s[13] :i 
s[13] : l,r[13] :2 r[12] : l,s[14] :I 
s[14] :l,r[14] :3 s[13] :l,s[14] :i 

Notice that we added i0 to each event index in order not to confuse between the 
template and MSC events (the implementation allows to reuse the same numbers 
for both). Hence, s [II] represents the event ~1. 

The program then generates S/R code from these two lists which represent 
precedence orders of a template and an MSC respectively. This S/R code spec- 
ifies two parallel processes where the first, called Trap, represents the template 
automaton and the other, called Dora, represents the MSC automaton. 

The S/R language allows a specification of a system of parallel processes 
which move from state to state simultaneously after a non-deterministic selection 
of current values for selection variables. A state is interpreted in COSPAN as a 
vector of values of state variables which are disjoint from the selection variables. 
A transit ion from a state to another state is implemented by a set of assignments 
to the state variables. Each process may have one s tandard selection variable # 
and one s tandard state variable $. The former is linked to the lat ter  as follows: 
each value of $ is explicitly supplied with a permit ted range of currently possible 
values for #. The values of variable $ may often be thought  of as ' s ta te  positions'.  

The states of the template  and MSC au tomata  described in Section 3 (see 
Figures 6 and Formula 1), are mapped  one-to-one into state positions of S / R  
processes Trap and Dora, respectively. The coordination of these two S / R  processes 
models the match  of a template  au tomaton  against MSC as explained next: In 
each of the two processes, at each of the state positions, the permit ted range of 
the selection variable # is the set of the next send/receive events tha t  generate a 
successor for the current slice. The process Dora implements an au tomaton  tha t  
recognizes a linearization of the MSC, and therefore deterministically progresses 
from one state position to another, keeping the executed event as a value of 
variable Dom. #. Below is the transition structure of Dora process for the MSC 

automaton:  

trams 
NoEvent{sll} -> sll: true; 

sll{rll} -> rll: true; 

s14{r14} -> r14: true; 

r14{r13} -> r13: true; 
rl3{NoEvent} -> $: true; 

Note that the value of selection variable Dora. # placed in braces follows the 
current state position. The state position is named after the most recent event 
encountered. For example, the state sll indicates that the last event was sll 

(which represents (~1). 
The process Trap whose state positions correspond to the template automaton 

slices may either self-loop at a current state position or non-deterministically 
progress to the next state position N. The latter case is accomplished if[ the 
selected event E fits the matching condition described in section 3. This guarded 

transition is expressed in S/R as follows: 
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->N: (#=E)*MatchCond~ 

where MatchCond_E is an S /R predicate that  expresses the matching condition 
and the symbol �9 stands for logical and (A). If there is no such event E, the 
process Tmp self-loops, thus waiting for the process Dom to execute an appropriate 
event. As an example, consider the transitions corresponding to the middle slice 
{sl, s2}, with the cut {(sl, r l) ,  (s2, r2)}, appearing in Figure 6: 

4{Tau,rl,r2} 
-> 2:(#=rl)*MatchCond_rl 
-> l:(#=r2)*MatchCond_r2 
-> $: else; 

Process Imp allows three selections out of this state position (named 4): one 
is an attempt for matching the event rl (translated into r [i] :2 and then into 
rl), another for matching r2 (r[2] :4, then r2), and the third is a 7 move, 
hence remaining in the same state, i.e. looping back to the state position $. The 
self-looping also executes if a selection for matching an event (rl or r2) does 
not fit the corresponding matching predicate (MatchCond_rl or MatchCond_r2, 
respectively). The matching predicates are defined as S/R macros. For example, 

macro MatchCond_rl := 
(Dom. NxtStProc=2) * (Dom. NxtStType=r) * 

(Dom. CntrpPro c= i ) * ( Img_ s 1 _predsNxtDomSt ) 

This checks that the MSC event currently executed agrees with the selected 
template event r I on the process (Dora. NxtStProc=2) (which is P2 for both), and 
on the type (Dora. NxtStType=r). Furthermore, the process of the corresponding 
send event in the MSC matches the process of the corresponding send event in 
the template (Dora. CntrpProc=l) (process/'I). In addition, all the predecessors 
of the selected template event must have matched with the MSC events, which 
are related by the MSC precedence order with the MSC event currently executed. 
This is checked by the predicate Img_sl_predsNxtDomSt. The latter is defined 
via straightforward application of the MSC precedence order to variables Img_s 1, 
described below, and Dom.#. 

The same matching conditions that  allow the process Trap to move from the 
above slice by matching the event r l ,  are used to bind the currently executed 
MSC event, which is accessible as value of Dora. #, to the state variable Img__rl. 
This is done using the first line in the following assignment which is a part of 
Trap process: 

asgn Img_rl -> Dom.# ? (#=rl)*MatchCond_rl l 
NoDomEvent ? ~(Event_rl_inCut) I Img_rl 

The syntax of this assignment statement is as follows: the variable to be assigned 
appears before the arrow. Then we have pairs of value ? 9uard, separated by the 
alternative (I) symbol. Such an assignment is global, thus it is tested and exe- 
cuted in every transition. The second alternative of the assignment corresponds 
to 'forgetting' a match (by storing the special value NoDomEvent). The symbol 
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is the negation symbol. The condition Event_vl_inCut  is true exactly in the 
cases where r l  is in the cut (it is identically false in our example). 

In COSPAN, au toma ta  are defined over infinite sequences. COSPAN detects 
an accepting sequence by searching for cycles tha t  satisfy its acceptance condi- 
tions in the s tate  space generated for the coordinating processes. Such a cycle 
is repor ted as a "bad cycle". For model-checking, it means the existence of a 
counter example for the checked property. The checked proper ty  which is em- 
bedded into the generated S / R  code is "the process Trap never reaches its final 
s tate  position (i.e. the final slice)", and the implementat ion forces an artificial 
self-loop at  this s tate position. So, the corresponding "bad cycle" means a match.  
The matching pairs appear  in the COSPAN report  for such a bad cycle as the 
values of the variables Dora. # and Trap. #, when Trap. # is not Tau (corresponding 
to a ~- move). The program extracts these values and outputs  a matching table. 
For the above example, we obtain: 

s[2] -> s[11] s[l] -> s[13] r[1] -> r[13] r[2] -> rill] 
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