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A b s t r a c t .  Consider a system of finite state machines communicating 
with each other over unbounded FIFO buffers. Such a model of compu- 
tation is, clearly, turing powerful. This mode]~ has been used as the back- 
bone of ISO protocol specification languages Estelle and SDL, as it allows 
one to abstract away from the details, such .as errors in communication, 
that occur at lower levels of the protocol stack. It  has recently been 
shown (in the hterature) that realistic models which implicitly model er- 
rors in the communication buffers are ;more tractable than models which 
assume perfect communication. In this paper, we propose to make the 
model more realistic by modeling the probability of loss in the buffers. 
Given specifications in such a model we provide algorithms for the proba- 
bilis tic reach a bility problem and the pro ba bilistic model- ch ecking (against 
linear-time PTL requirements without the next state operator) problem. 

1 I n t r o d u c t i o n  

Finite state machines which communicate  over unbounded channels have been 
used as an abstract  model of computat ion for reasoning about  communicat ion 
protocols [4, 14] and form the backbone of ISO protocol specification languages 
Estelle [8] and SDL [17]. Ever since the publication of the Alternating bit proto- 
col [3] (the first ever computer  communicat ion protocol) it has been cus tomary 
to assume, while modeling a protocol, that  the communicat ion channels between 
the processes are free of errors. Possible errors in the communicat ion channels 
are treated separately, or are completely ignored. In [10] Finkel considered a 
model of errors, called completely specified protocols, in which messages from the 
front of a queue can be lost. He showed that  the termination problem is solv- 
able for this class. In [1, 2] Abdulla and Jonsson consider a slightly more general 
notion of message lossiness: they assume that  messages from anywhere in the 
queue can be lost. They considered the reaehability problem [1] and the model- 
checking problem [2] against specifications in the linear t ime tempora l  logic PTL 
and the branching t ime temporal  logic CTL* [9]. They show that  the reachabil- 
ity problem is decidable and that  the model-checking problem for both  logics is 
undecidable. This  is in sharp contrast to finite state machines communicat ing 
over perfect channels, which are equivalent to turing machines [5]. In [6], C~c~, 
Finkel and Iyer consider other sources of errors such as deletion and duplication 

* Research supported in part by NSF grant CCR-9404619. 
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of messages. The significance of these results is that ,  by modeling errors in a 
protocol, we would be modeling real situations more closely. 

While errors are possible in a communication medium, it is generally the 
case that  the manufacturer  provided assurances, or guarantees, in the form of a 
measure of its reliability. Clearly, a sys tem/component  with out such guarantees, 
and with a high degree of unreliability is completely useless. Consequently, we 
believe that  it is more realistic to model the measure of guarantee in a protocol. 
Given a model where the probability of message losses is taken into account, 
a natural question to ask of a protocol is "Is the probability of something bad 
happening, in spite of the errors, low?" Alternatively, we could ask: "Does a 
property r hold of a protocol/system with probability greater than p?" Answers 
to such questions can conceivably be used in the context of Formal methods and 
Performance evaluation of protocols (or systems with lossiness). 

Technically, we address the probabilistic reachability and probabilistic model- 
checking questions in this paper. Given a description L: of a probabilistic lossy 
channel systems, a probability p E (0, 1] and any arbitrarily small level of tol- 
erance u > 0, the contributions of this paper are algorithmic solutions for the 
following problems: 

P r o b a b i l i s t i c  R e a c h a b i l i t y  p r o b l e m :  Is a state 7 of the system s reachable 
with probabili ty at least p, and tolerance u? 

P rob a b i l i s t l c  Mode l - check ing  p rob l em:  Given a Propositional Temporal Logic 
(PTL)  formula r (without the next state operator),  does the system s have 
the property r with probability at least p, and tolerance u? 

Both algorithms involve computing a sequence of approximations to the proba- 
bility with which a property holds. In the case of the model-checking algorithm, 
we prove a monotonici ty lemma, a consequence of the fact that  we consider 
PT L  specifications in positive normal form, which provides for the successive- 

approximation strategy to work. 
The organization of the paper is as follows: in Section 2 we provide the 

necessary definitions, in Section 3 we state and summarize the results, in Sections 
4 and 5 we provide algorithms for probabilistic teachability and probabilistic 
model-checking, respectively. In Section 6, we conclude. 

2 D e f i n i t i o n s  

The model of computat ion we will use is a probabilistic version of lossy channel 
systems [1], which consists of a finite control and multiple FIFO channels capa- 
ble of losing messages - a particular rendition of Communicating Finite State 

Machines [14] 2 
Let (m E) M be a finite set of messages and let (c e )  C be a finite set of 

channels. Let (w E) W(C, M) be the set of all string vectors over the index set 

2 A CFSM consists of a set of finite state machines interacting, &synchronously, with 
each other over unbounded FIFO buffers. 
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C and str ings (x, y e )  M*.  Given  a s t r ing vector  w let w[c := z] denote  the new 
s t r ing vector  w'  such t ha t  w'(c) = z, and  w'(d) = w(d) for d # e. We will use 
c to denote  the str ing vector  t h a t  m a p s  all e lements  of C to the e m p t y  str ing 
r We will use I x I, and I w I, to denote  the length of the s t r ing x, and  the 
sum of the lengths of  all of  the  s t r ings in the vector  w, respectively.  Finally,  
if Z is a set of proposi t ions  define B ( Z )  to be the set of  boolean  expressions 
over Z and X : 2x --+ B ( E )  as the character is t ic  funct ion with  the definit ion 

= Apex p 

D e f i n i t i o n  I P L C S .  Fix  a set (or E ) Z  of a tomic  proposi t ions .  A probabi l i s t ic  
lossy channel sys tem s is a tup le  (S, so, C, M, Act, A, P,p~, f)  where 

- (s E) S is a finite set of  control slates, and so G S is the initial control state, 
- C is a finite set of  channels, 

- M is a finite set of  messages, 
- Act =- {c!m, e?mlc E C, m C M} is a finite set of actions,  where cirri (c?m) 

denotes  an ou tpu t  ( input)  act ion of message  m on channel c. 
- (p ~) A C S x Act x S is the t rans i t ion  relat ion.  
- p : A ~ [0, 1] is a p robab i l i ty  funct ion  on t ransi t ions,  
- p~, a constant ,  denotes  the  p robab i l i t y  of  losing a message  f rom some channel 

at  any  given t ime,  

- f : 5: --~ 2 x is a labeling funct ion t ha t  indicates  which a tomic  propos i t ions  
hold at  a given state.  

Given a probabi l i s t ic  lossy channel  sys t em (PLCS)  s we formal ize  its s eman-  
tics as a (possibly infinite s ta te )  Markov  chain. The  s ta tes  of  the  Markov  chain 
(referred to, henceforth,  as global  s ta tes)  are tuples of  the fo rm (s, w) ~ Fc  = 
S x W(C, M), where s is a finite control  s ta te  and w is the buffer contents .  We 
will wri te  3' G Fz for a typica l  global  s ta te ,  and will drop the subscr ip t  s when 
the P L C S  s is clear f rom the context .  We will use 70 = (so, c} to denote  the  
ini t ial  global  s tate.  

T h e  t rans i t ions  of  the Markov  chain, associa ted with a P L C S  s  is a funct ion 
----,: F x F --* [0, 1] cap tur ing  the  p robab i l i ty  p = ~ (7 ,7 ' )  wi th  which the 
sys t em m a y  move  f rom the global  s t a te  7 to the  global  s ta te  7 ' -  In the  following 
we will wri te  7 b 7 '  ins tead of p =----+ (7, 7 ')-  A na tu ra l  condi t ion t ha t  
should satisfy is the Markov ian  condit ion:  V7 : (~-~ ,e rc  ---+ (% 7 ' )  = 1). 

A t rans i t ion  p E A is said to  be  enabled in a global  s ta te  7 p rov ided  

- p is an ou tpu t  t rans i t ion  (s, c!m, s') and 7 = (s, w), or 
- p is an input  t rans i t ion  (s, e?m, s') and 7 = (s, w[c := mx]) ,  i.e., the first 

message  in the channel c is the  message,  m, which will be removed  by the 
t rans i t ion  p. 

Let  enabled(7) = {p E Alp i8 enabled in V}. 
In assigning probabi l i ty  to a move  of  the  sys tem,  f rom a s ta te  7 to  a s ta te  7 ' ,  

the  p robab i l i ty  of  loss p~ will be d i s t r ibu ted  a m o n g  the ( implic i t )  loss t rans i t ions  
(to be  defined) and the p robab i l i t y  of  non-lossiness (1 - p t )  will be  d is t r ibuted  
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? - ' - -v 7' provided 

- Output out of empty buffers: If 7 = (s,e) and there exists a transition p = 
-P( p) 

(s, c!m, s') E A then 7 ' =  (s'.. e[c := m]) and probability p = ~p,~,~.b,.~(~) P(P')" 

- Output: If 3' = (s, w), w # e and there exists a transition p = (s, c!m, s') E A then 
(a-vr 7' = (s', w[c := w[e]m]), and the probability p = ~ ~ p , ~ b ~ ( ~ )  P(P')" 

- Input or Loss: If 7 = (s, w[c := mx]) and there exists a transition p = (s, c?m, s) E 
.4 then 7' = (s ,w[c := x]). The probability p in this case should also include 
the fact that the first message in the queue could have been lost; consequently, 

_ (1-v~)xP(p) 
P -  ~-~-p,e,~.abr~a(~)v(P') -[- Iwl" 

- Input: If 7 = (s, w[c := rex]), s r s' and there exists a transition p = (s, c?m, s') S 
(l-w) xP(p) 

/1 then 7' = (s', w[c := x]) and the probability p ---- ~,e~.ob~.a(x) P(P')' 

- Loss: If 7 = (s ,w[c := xmy]),  and either x #- e or x = e and there is no input 
transition of the form (s, c?m, s) then 7' = (s, w[c := xy]) and the probability p is 

- If none of the above conditions hold then 7' can be any arbitrary global state and 
p = 0 .  

F ig .  1. Definition of -----~p 

a m o n g  the  t r a n s i t i o n s  enab led  in a g loba l  s t a t e  7 (in accordance  wi th  the  re la t ive  

p r o b a b i l i t y  ass igned by  P to  the  t r an s i t i on  on local  s t a t e ) .  
T h e  def in i t ion  of  ~v is shown in F igure  1. T h e  first two clauses in the  defini- 

t ion  given above  charac te r ize  when an o u t p u t  can t ake  place,  and  the  p r o b a b i l i t y  
of  an o u t p u t  ac t ion .  Note  t h a t  the  first c lause dea ls  wi th  a g loba l  s t a t e  in which 
there  are  no messages  in the  buffer; in th is  case the  p r o b a b i l i t y  of  loss p~ has  no 
effect on the  p r o b a b i l i t y  of  the  t r ans i t i on .  T h e  t h i r d  and the  four th  clause dea l  
wi th  i n p u t  ac t ions .  T h e  t h i r d  clause deals  w i th  the  r emova l  of  a message  f rom 
the  f ront  of  a buffer where  the  local  s t a t e  does no t  change;  since the  r emova l  of  
the  message  could  be  e i ther  due to  a loss or  due to  an i n p u t  ac t ion  of  the  P L C S ,  
the re  are two t e r m s  in the  ca lcu la t ion  of  the  t r a n s i t i o n  p robab i l i t y .  F ina l l y  no te  
t h a t  when a message  is lost  f rom the  buffer the  f ini te  cont ro l  r ema ins  in the  s a m e  

local  s ta te .  

D e f i n i t i o n 2 .  Given  a P L C S  L: = (S, so, C, M,  A, A ,  P, pi,  f )  define the  Markov  
chain  a s soc ia t ed  wi th  i t  as AA = (F~,  7, 70, 2:) where  27((s, w}) = x ( f ( s ) )  is 
the  i n t e r p r e t a t i o n  f u n c t i o n ,  and  F~ and  ~ are  as defined earl ier .  

A c o m p u t a t i o n  of a P L C S  L: (and  i ts  a s soc ia t ed  Markov  chain  AA) is an infi- 

n i te  sequence of  g loba l  s t a t e s  of the  fo rm 707172 �9 �9 �9 such t h a t  there  is a sequence 
of  t r a n s i t i o n s  70 ~m 71 ~v~ . . .  where  p l , P 2 , - - .  > 0. A n  execu t ion  of  a 
P L C S  (and  i ts  M a r k o v  chain)  is a f ini te  sequence of g loba l  s t a t es  7o, 71,72 - �9 -, 7k 
such t h a t  the re  is a sequence of  t r ans i t i ons  70 ----*pl 71 '~p2 . . .Tk  where  
p i ,  P 2 , . . . P ~  > 0. We will  let  7r range  over c o m p u t a t i o n s  and  a over execut ions .  
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Furthermore,  let 7r(i) and ~(i) refer to the i-th element of ~r and ct, respectively. 
We will also use 34 to refer to a PLCS s  when it needs to be viewed as a Markov 
chain. Finally, extend the interpretat ion function on global states Z : F --+ B(E)  
to sequences of global states as Z0r  ) = I0 r (0 ) )g0 r (1 ) )  . . . .  

D e f i n i t i o n 3  [12, 11, 15]. Given a Marker  chain 34 = (F, .... , ,To,E) define 
the sequence space as p (34)  = (f2, 5 c, p), for assigning probabilities, where 

- g2 = F ~ is the set of all infinite sequences of states of M star t ing at 70, 
- 9 c is a Borel field generated from the basic cylindric sets 

f (vova . . . 7 . )  = s?l  = 

- # is a probabil i ty function defined by 

where 70 ~px ")9 " " - ~ p 2  "" . ' ~ n -  

Propositional Temporal Logic We will now define how Propositional Temporal 
Logic (PTL) formulae are to be interpreted over a Markov chain. We assume that  
PTL formulae are built f rom the set of atomic propositions (cr E E), boolean 
operations (-~, A and V), the unary tempora l  connective next (o) and the binary 
temporal  connectives until (U) and while (12). Let r and r range over PTL 
formulae. The syntax of PTL formulae is given by the following grammar :  

O:= l-, loOloAe 1 0 v r  I O U e l O v e  

D e f i n l t i o n 4 .  For a Markov chain At ,  with interpretation function Z and a 
computat ion 7r of M ,  the satisfaction relation ~ is defined as: 

- 3,/, 7r, i ~ ~r iffZ(Tr(i)) =~ ~r. 
- 3d, 7r, i ~ --,0" iff Z(Tr(i)) ~ --,~r. 
- 3d, 7r, i ~ 0r iff 34, a-,i + 1 ~ O. 

- 3 d , ~ r , i ~ O A r  
- 34,7r, i ~ r 1 6 2  i f f34 ,~r , i  ~ O or 34, 7c, i b e.  

- 3d,  ~-, i ~ r162 iff for some j _> i we have 34, a', j ~ r and for all i < k < j 
it is the case that  At,  ~-, k ~ r 

- Ad,Tr, i ~ r 1 6 2  iff for all j _> i we have that  if Vk(i < k < j) : 34,Tr, k ~: r 
then At,  ~r, j ~ r 

Define XPTL to be the set of PTL formulae which do not contain the next 
state operator o. Furthermore,  we define the other typical operators  in the usual 
way: ~ (eventually) and [] (always) are defined as: 0 O = trueLt O and DO = 
r We say that  a computa t ion  7r of M satisfies O, denoted M ~" ~ r iff 
M, ,0 
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Note that  the syntax of PTL is such that  only formulae that  are in positive 
normal form are allowed, i.e., negation can be applied only to atomic proposi- 
tions. The conventional definition of PTL syntax gives formulae in which nega- 
tion is not restricted to be an innermost operation. A PTL formula in the con- 
ventional syntax can be converted to positive normal  form by using boolean 
identities to drive the negations to the innermost nesting level (and hence the 
two representations of the formula  are equivalent). Given a P T L  formula r writ- 
ten in the conventional syntax, we will use pn(r  to denote its positive normal  
form. 

3 Problems of interest and Summary  of Results  

Given a PLCS s we say that  a state 7 E Fz is reachable with probabil i ty p 
provided the set of computat ions  containing 7 has measure at least p, i.e., 

Similarly, we will say tha t  a XPTL formula ~ holds of a PLCS system s with 
probabil i ty p, writ ten s ~p  r provided the set of computat ions  which satisfy r 

has measure at least p, i.e., 

Given these definitions we now summarize  the results of this paper: 

Probabilistic Reachability Problem: 
G i v e n :  A PLCS s  a global s tate 7, a p E (0, 1] and a tolerance v > 0. 
Question: Is 7 reachable with probabil i ty at least p and tolerance v, in ~3 
(Is the measure of the set of computat ions  that  visit 7 at least p - v)? 
We give an algori thm to decide reachability for p E [0, 1]. 

Probabilistic M o d e l - c h e c k i n g :  
G i v e n :  A PLCS ~, a labeling function f ,  a P T L  formula  r a p E (0, 1) and 

a tolerance v > 0. 
Q u e s t i o n :  D o e s / :  satisfy r with probabil i ty at least p and tolerance v (Is 
the measure of the set of computat ions  that  satisfy r at least p - v)? 
We give an algori thm to show tha t  probabilistic satisfaction is computable  

for ; E (0, 1]. 

4 Probabil ist ie  Reaehabi l i ty  

We have defined the probabil i ty  of reaching a state 7f as the measure of the set 
of computat ions  tha t  visit 7J. Effectively, we can solve probabilistic reachability 
problem by comput ing the collective measure of finite execution sequences in 
which 7 appears  exactly once as the last s tate of the sequence. To facilitate the 
computat ion of probabil i ty of reaching a state 7] in a PLCS s we define an 
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execution tree T ( s  7]) which captures all execution sequences of s that  end in 

7/- 
The algorithm to check if a state 7/ of s is reachable with probability p] 

involves creating the execution tree of s in a breadth-first fashion. The nodes of 
this tree are pairs of the form (7, P)- The root node of the tree is a pair (70,1). 
Consider a path in the tree from (70, 1) to (7, P)�9 This tree path corresponds to 
a path from 7o to 7 in s and p denotes the probability of reaching 7 on it. In 
every step of the tree construction, we look for longer paths leading to 7] and 
stop when we accmnulate a probabili ty of at least p / .  To formally define these 
notions we need the notion of non-probabilistic reachability. 

T h e o r e m  5 N o n - p r o b a b i l i s t i c  R e a c h a b i l i t y  [1]. For a probabilistic tossy chan- 
nel system s and a finite representation of a set of global states F ~ C_ JT, we can 
compute a recognizable representation of the set {7~[ there is a path, of non-zero 
probability, from 7 ~ to 7 and 7 E F~}. 

Note that by this previous result we can only determine whether a state 
is reachable, not what the probability of its reachability is. Let Reach(7, 7 ~) 
be the subroutine that decides (non-probabilistically) whether 7 ~ is reachable 
from 7. We are now ready for a formalization of the idea behind probabilistic 
reachability. 

D e f i n i t i o n 6  E x e c u t i o n  t r e e .  Given a PLCS s and a global state 7] of s we 
define the execution tree 7-(s 7/)  as (Sz ,  V, s~) where: 

- ST is the set of nodes of the tree, 
- K7 : Sz  ---* F x ( 0, 1] is a labeling function, 
- s~r is the root node with label (70, 1), and 
- Let s E ST and ~V(s) = (7,P)- s is a leaf node provided 7 -- 7/ or if 

-~Reach(7,7]). Otherwise the children of s are sl ,  s 2 . . . s~  with respective 
labels (71,pl) ,  such that Vi(1 < i < 

Let Pk(7/)  denote the probabili ty of reaching a global state 7/ of the PLCS 
s through paths consisting of exactly k transitions which do not repeat 7/ .  Let 
depth(s) denote the depth of s in the tree T ( s  7 / ) - T h e n  

�9 We now have the following obvious property of the execution tree. 

L e m m a  T. The measure of all computations that visit 7/ is exactly }-'~i=0c~ Pi(7j0)" 

We will now show that the construction of the execution tree can be stopped 
at a finite depth�9 To that  end, define 

R~(7/)  = {c E S z l V ( c )  = (7,P) A depth(c) = k A Reach(v , 71)} 

which characterizes those nodes at level k from which it is possible to reach 7/ .  
The  following lemma provides us with the condition under which we can declare 
that  7/ is not reachable with probabili ty greater than or equal to a given p. 
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L e m m a  8. For a global state 7y of a PLCS and a p E (0, 1], 72 cannot be reached 
with a probability greater than or equal p if  and only if  there is an integer k such 
that 

k 

pi( j) + < p 

Proof. The first term of the sum is the probability of reaching 7y in i steps where 
i < k. The second term covers the sum of probabilities of those sequences that  
need more than k steps to visit 7y- If we have a k that  satisfies the condition, 
we have that  the sum of the measure of computations that  visit 7y in the first 
k steps and the measure of computat ions that  visit 7/ after k steps is less than 
p. Then, by definition of teachability, 7] is not reachable with probability p. For 
the other direction of the proof, we prove the contra-positive statement i.e., if 
for all k: 

k 

i=0 r (~f)AV(c)=(7,p~) 

then 7Y is reachable with probabili ty p. For any positive integer k, the left 
side of the above inequality is greater than or equal to the measure of all the 
computat ions that  visit 7f- As k approaches ee, the second summand approaches 
0, and the left side approaches the measure of all computations that  visit 7y (by 
Lemma 7) and we have the result. 

k 
If 7] and p, in the above lemma, are such that  l i m k ~  ~ / = 0  Pi(Ty) = P 

then the tree could be an infinite tree. To stop the algorithm, in such cases, 
we use the specified tolerance u and halt when the probability of reachability is 
within u of p, and the probability of the unexplored paths is less than u, i.e., 
~ = o P i ( 7 f )  > p - u  and ~ceRk ,(,~ ,^v(c) (7,p,'P'~ < v and yet their sum is 

- -  + f )  = 

at least p. In this case we will report  that  the ir r holds of s with in 
the required tolerance u. As k increases the nodes of the tree (7,P) will have p 
decreasing. Thus we are assured of termination.  Formally, we have 

T h e o r e m 9 .  There ezists an algorithm that decides whether the probability of 
reaching 7y is greater than or equal to a given p, with tolerance u. 

5 M o d e l - c h e c k i n g  a g a i n s t  P T L  f o r m u l a e  

In this section we will consider the model-checking problem: given a PLCS Z; 
and a XPTL formula r we show that  it is possible to compute the probabili ty 
with which/2 satisfies 4, with in a given limit of tolerance. Since the tolerance 
can be made as small as we want, our algorithm can be used to compute the 
probabili ty of satisfiability with arbitrary precision. The main technique consists 
of computing successively better  lower bounds to the probability of satisfaction 
of r by s this effect is achieved by constructing larger and larger portions of 
the state space of a lossy channel system and carrying out model-checking, at 
every step, on a finite piece of the global Markov chain. But in doing so, recall 
the following important  property of Markov chains: 
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Let S be a set of  infinite sequences of  a Markov chain. The  measure  of  
S is the same as the measure  of  S ~ C S where S ~ does not  contain any 
sequences with an infinite suffix of transient states.  

Consequently,  we are interested in comput ing  the probabi l i ty  of  those sequences 
which satisfy a proper ty  r and which has an infinite tail in one of  the closed 
connected componen t s  of  the Markov chain M corresponding to s  We will now 
characterize the closed connected components  of . s  

D e f i n i t i o n  l 0 .  A set of  s tates F' C_ i ~ is a closed connected components  pro- 
vided (a) for every state  7, 7 ~ E F ~ there is a pa th  f rom 7 to 7 ~ and f rom 7 ~ to 
7, and (b) for every state  y E / ~  and 7 ~ E F - F' there is no pa th  f rom 7 to 7 ~. 

For a closed connected componen t  F '  define proj (F ' )  = {(s, e)l(s , w) e F ' } .  
For every closed connected componen t  F ~ of  M ,  arising f rom a lossy channel 
sys tem s  it is easy to show tha t  pro j (F  ~) uniquely represents F ~. This  is due to 
the fact tha t  F ~ is a downward  closed set 3 and tha t  all states in F ~ are reachable 
f rom each other.  We, thus,  only have a finite number  of  closed SCCs for the 
Markov chain M .  Given a set of  global s tates F ~ C 5: x {e}, it is easy to check 
whether  F ~ represents a closed SCC (i.e., is a project ion of  a closed SCC):  check 
whether  the states in F ~ are reachable f rom each other,  tha t  no state  with a 
control componen t  not  represented in F ~ is reachable f rom some state in F ~, 
and tha t  the states in T" are reachable f rom the s tar t  s tate  70 (note all of  this 
can be carried out  with the aid of  the reaehabil i ty a lgor i thm for lossy channel 
systems [1]). Finally, it is also easy to check whether  an arb i t rary  state 7 belongs 
to some closed SCC of M .  Formally,  we have 

L e m m a l l .  Given a lossy channel system f~ and its Markov chain A4 it is 
decidable whether 

- A slate 7 is a member of a closed SCC of M .  
- A set of states F ~ C S x  {c} represents a closed strongly connected component 

o/M. 

W h e n  building a representat ion of  the Markov chain for model-checking we 
will use a representat ion of  the closed connected component ,  defined as follows: 

D e f i n l t i o n l 2 .  Let /~  C T' be a set of  s tates  tha t  form a closed SCC. Define 
F'  = proj (F ' )  and r e p ( ~ )  as the graph  defined as follows: 

- The states of  rep(]  ~') are/~1, 

- The  edges of  rep(F') are are follows: for every (s, e) and (s' ,  e) i n /~ '  add an 
edge between them if (a) there is a send edge between s to s' in the finite 

control  of  L:, or (b) if there is a receive edge %~-T between s and # in L: and 
(s, c[c :=  m]) is reachable and is in the closed SCC F '  (note: it is enough 
to check whether  (s, e[c :=  m]) is in some closed SCC, as closed SCCs have 
mu tua l ly  disjoint sets of  states).  

3 With respect to the sub-word ordering < C  Z'* • Z* defined as a a . . . a ~  < 
xoaa x la2 . . ,  xn-a anx~, lifted to vectors of words. 
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- The probability adorning each of the edges of rep(l ~') is inversely propor- 
tional to the out-degree of the source of that  edge, and 

- The interpretation of each node in this graph is the interpretation of the 
same node in the Markov chain M .  

In the following we will assume that  closed SCCs F~ , . . . ,  F~ are represented by 
^ ! 

the graphs rep(l"i ), 1 < i < n, as defined above. 
There are two questions that  need to be addressed: (a) how will the the 

(possibly infinite) graph corresponding to the Markov chain be explored? and 
(b) how will model-checking be carried out, and the probabilities computed? 
The answer to the second question follows from the following result, where the 
authors show that  by using a Btiehi automaton characterization of PTL[16] one 
can  identify those closed SCCs of a finite state systems all of whose sequences 
satisfy r 

T h e o r e m  13 [7]. There exists an algorithm P T L - s a t  to compute the probability 
of the set of sequences of a finite markov chain which satisfy a PTL formula r 

5 . 1  k - b o u n d e d  g r a p h s  

]n the k th iteration of the algorithm we propose to construct a Markov chain 
which is restricted to contain states whose buffer size is limited to k messages, 
and which contains representatives of reachable closed SCCs. We will first show 
that  by increasing k we will obtain a bet ter  approximation to the probability p 
with which property r holds of a sy s t em/ : .  To that  end, recall, from Section 
2, that  a PLCS/2  = (S, so, C, M, A, A, p, pe, f )  engenders a Markov chain M = 
(F, ~, 70, I )  where F is the set of global states of the PLCS, 70 is the start  state, 

is the transition probability mat r ix  and Z : F ~ B(~)  is the interpretation 
function. Furthermore, the markov chain d~4 allows us to define a sequence space 

~ ( M )  = ( r  ~, 7 ,  , ) .  
We will now define a family of markov chains M ~, k > 0, where A//k captures 

the rnarkov chain constructed at the k th i teration of our algorithm. 

D e f i n i t i o n l 4 .  Given a PLCS s = ( S, so, C, M, A, A, P, p~, f )  define a family 

M~ = (F~, ,k,70,/:~) 
~ j v  

and their corresponding sequence space p ( M k )  = (F~, k,//k) where 

- Let Fk = F~ U F :  U {D}, where P~ C__ (S x Wk(C, M)) contains states that  
are reachable from 70, through a path containing states in S x Wk(C, M), 
but does not contain any states that  is in some closed SCC. 1"2 is the union 
of the representatives of those closed components which have at least one 
state in S x Wk(C, M) reachable by a path of S x Wk(C, M) states. 

_ ~k: F~ x Fk ---+ [0, 1] is the transition probabi l i tymatr ix ,  defined as:  

�9 if 71,72 are members of some closed SCC Fi and there is edge with 

probability p between 7t and 72 in the graph rep([~i I) then 71 ~p 72. 
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�9 if 71,72 E F~ - {D}, neither is a member  of any closed SCC and there 
is an edge in M with probabil i ty p between 71 and 72 then 71 ----+p 72. 

�9 if 71 E (S • Wk (C, M))  and 72 = D then 71 ----+~ p 72 where 

p = ~{p ' l~2  r (s • W~(C,M))A~I --~p, ~ Ap' > O) 

�9 D ~ D .  
�9 D ----,o ~ 7, for all 7 ~ (S • W~(C, M)).  

- 27k : Yk ---+ B(,-~) agrees with S : F --+ B ( ~ )  on elements of f'k - {D} and 
gk(D) = ' t r u e .  

Note that  for every proposition ~r, neither a nor its negation is true in the 
dead state D. However, our definition of satisfaction (from Sec 2) carries over 
easily to these markov chains. The implication of using the notion of dead state 
is tha t  there are sequences involving the dead state which neither satisfy r nor 
its negation pn(-~r Note, however, that  for any computat ion sequence which 
does not involve the dead state, we have the following (which is established by 
an easy induction on the structure of the formula): 

L e m m a  15. For all k >__ O, for all paths rce (Fk - {D}) ~, for all PTL formulae 
r in positive normal form and for all i > O: either 2vlk,rr, i ~ r or A/Ik,rr, i 
pn(-~r 

The paths in the family J~/Ik, k > 0, and the complete markov chain A/I have 
a relation to each other. To formalize it we define a notion similar to stuttering 
equivalence [13]. Define a relation -< on sequences as follows: 

D e f i n i t i o n l 6 .  Define control : Uk>0/'k --+ S U {D} ascontrol((s,  w}) = s and 
control(D) = D. Furthermore,  define blocks : (S U {D}) ~~ --~ (S U {D})~~ U 
(S U {D})* such that  the result of blocks(w) is the computa t ion  obtained by 
removing all repeating states in rr. Note that  blocks(u) could be finite. Given 
re, rr' E /~wU F * D  ~~ define rr ~ re' provided 

- If  blocks(control(re)) is a finite sequence then there is a there is a prefix of 
rr" = blocks(control(re')) such that the blocks(control(re)) = blocks(control(rr") ), 
o r  btock,(cont~ol( ~) ) = bloeks( control( re") )D 

- If blocks(control(re)) and blocks(control(#)) are both infinite sequences then 
b / o c k ~ ( ( ~ ) )  = btocks(control(~')). 

One of the nice properties of the relation ~ is that  it preserves XPTL for- 
mulae, as has been shown in [13]. Formally, 

T h e o r e m  17 [13]. Let rc ~ rr'. For every X P T L  formula r if rc D r then re' D 
r 

Given two markov chains M1 and M 2  among the sequence of markov chains 
built define M1 <I M 2  provided for every computa t ion  rr in fl41 there is a 
sequence in w ~ in A/12 such that  re ___ re'. Furthermore,  it is also easy to see that  
for all i > 0 M i  <1 M .  We are now ready for the monotonici ty lemma,  which 
forms the basis for our algorithm: 
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Algor i thm PTL-sa t  
Input :  A PLCS L, PTL formula r p E (0, 1] and a tolerance u 
Outpu t :  'true' if/2 satisfies r with probability p and tolerance ~ and 'false' otherwise. 
var: p-sat, p-nosat : real; 
vat: k :integer; 
var: statesk : set; 
begin 

p-sat:=O; p-nosat:=O; 
k:=O; 
do 

if p-sat >_ p then 
exit(true); 

if p-nosat > 1 - p then 
exit(false); 

Construct Jgtk; 
if  k > 0 and statesk = statesk_a then (* PLCS is finite state *) 

exlt(false); 
p-sat := Sat-Prob(Mh, r 
p.nosat := Sat-Prob(A4k, pn(-,r 
k :=  k +  1; 

while p-sat + p.nosat < 1 - u; 
exit(true with in tolerance v); 

end. 

Fig. 2. 

L e m m a  18. Let 341 and 342 be two markov chains such that A t l  ,3 342. I f  pl  
and #2 are the probability functions defined by the sequence spaces of JM1 and 

312, respectively, then for every X P T L  formula r 

.1({31341, 0)) _< I M2, 0}). 

Proof. Consider a basic cylindric set in {~rlM1, ~r ~ r  with a prefix 7 0 7 1 . - - % .  
By Theorem 17 there is a basic cylindric set of 342 with prefix 7 0 7 1 . . . 7 . .  By 
Theorem 17 all computat ions  in this basic cylindric set satisfy r Hence we have 

By L e m m a  18 we see that  (a) the satisfaction probabil i ty of r by M~,  for 
any integer k, is a lower bound for the satisfaction probabil i ty of ~ by 34 and 
(b) the lower bounds form a monotonic sequence. Tha t  this monotonic sequence 
converges to the probabil i ty with which 3d satisfies r is proved in L e m m a  21 

5.2 A l g o r i t h m  

To check the satisfaction of a P T L  formula by a PLCS, the question to be 
answered is, for a given PLCS 2M, a P T L  formula  r p C [0, 1) and a tolerance 
(accuracy) ~ > 0, "Does 3,t ~p r  The algori thm (shown in Figure 2) inputs 
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the representation of the PLCS and computes successive approximations to the 
satisfaction probability of r in Ad k, and the satisfaction probability of pn(--,r in 
JMk, and records them in the variables p-sat and p-nosat, respectively. If in some 
iteration k, the set of global states of .hdk is the same as the set of global states 
of 2Mk-1 then the PLCS has no global states that  have more than k messages 
in a channel, and the algorithm can terminate. In the following, we will show 
that  the algorithm always terminates and that it computes the correct solution. 
To that  end, note that  the computations of a markov chain Adk can be divided 
into the following five, mutual ly disjoint, sets: 

1. C k -" computations that  satisfy r and do not end in D (characterized by sat,D" 
k its measure Psat,b) 

k 2. Csat, D. Computations that  satisfy r and end in D (with measure k Psat,D) 
3. k . C~osat,D" computations that satisfy pn(--,r and do end in D (measure k Pnosat,D) 
4. C k -" computations that  satisfy pn(--r and do not end in D (measure nosat,D " 

and 
5. k C~nknow n. computations that  satisfy neither r nor pn(--r (and end in D ) -  

measure pk l znknown 

Since these computations of.Adk are mutually disjoint, it is the case that  

pk k k k k 
sat,D + Psat,D -F Pnosat,D -~- Pnosat,D ~- Punknown : 1 

Call the values of the variables p-sat and p-nosat computed at the k th itera- 
tion as p-sat k and p-nosat k. We then have the relations p-sat k k k 

= Psat,D "~-Psat,D, 
and P -n~ -~ Pnosat,Dk Jr-Pno~at,b'k Note that  by Lemma 18 the variables p- 

sat k and p-nosat k are non-decreasing, as k increases. Therefore, the quantity 
pkunknown is non-increasing across the iterations of the algorithm P T L - s a t .  

We will now prove that  pk decreases as k increases. unknown 

L e m m a 1 9 .  Suppose A4kl is a Markov chain and kl Punknown ~ O. T h e n  there 
exists a k2 > kl such that Adkx and .Adk2 are distinct Markov chains and 
pk l pk 2 

unknown ~ unknown" 

Proof. Consider a computat ion ~'1 = 7071 . . .Tk~D ~ of A4k~. There must be a 
path from 7k, to a closed SCC of 3,t. Otherwise D captures a closed SCC of 
M (which is impossible from the definition of A~k). This path appears in some 
Mk2 where k2 > kl. Thus pk eventually decreases. u n k n o w n  

Given that pk~nknow,~ is decreasing, we have 

T h e o r e m 2 0 .  The algorithm P T L - s a t  terminates on all inputs. 

We now discuss the correctness of the algorithm. Given that  the probabilities 
are over rationals/reals the correctness criteria will involve both p and t,. But, 
we first prove that  the sequence p-sat k that  we compute, converges to the right 
result. 
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L e m m a  21. As k approaches o% p-sat k approaches the probability of satisfac- 
tion of (o by 34. 

Pro@ We know that  p-sat k and p-nosat k are both monotonically increasing 
(Lemma 18) and that  p-sal k + p-nosat k approaches 1 as k approaches oc. Sup- 
pose limk_~oop-sat k is less than the probability of satisfaction of ~ by 3//. Then 
limk__+~p-nosat ~ is greater than the probability of satisfaction of pn(-~r by A,t 
i.e., there is some k such that  probability of satisfaction of pn(-~r in AJ~ is 
greater than the probability of satisfaction of pn(-~r by A4. By Lemma 18 this 
is not possible. 

From these lemmata we conclude the following, final, correctness theorem: 

T h e o r e m  22. 

S o u n d n e s s  I f  P T L - s a t ( L ,  r p, u) terminates with the result t r u e  ( f a l s e ,  
true with in u) then s ~p r (s ~p r f~ ~p, r where p - u < p' < p + u, 
respectively). 

C o m p l e t e n e s s  If  ~ ~p, r where p - u < p' then P T L - s a t ( s  r p, u) termi- 
nates with the result t r u e  or t r u e  with in u. I f  ~ ~=p-v r then P T L - s a t ( s  
r p, u) terminates with the result f a l s e .  

6 Discussion 

We have shown that  probabilistic teachability and probabilistic model-checking 
problems are decidable for lossy channel systems, by providing algorithms for 
them. By modeling probability of errors in the specification, we believe, we have 
made protocol specifications more realistic. Two problems remain to be explored: 
that  of complexity of the algorithm and efficient implementations, and the effect 
of numerical errors and stability during the calculation. Is the model-checking 
problem in the traditional sense: "s ~1 r (with no notion of tolerance) de- 
cidable? Our conjecture is that  it is probably not, given that  non-probabilistic 

version of the problem is undecidable. 
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