
Locality Based Linda:
Programming with Explicit Localities*

Rocco De Nicola 1 GianLuigi Ferrari 2 Rosario Pugliese 1

1Dipartimento di Sistemi e Informatica, Universit~ di Firenze
e-maih {denicola,pugliese}~dsi2. ing .unifi. it

2Dipartimento di Informatica, Universitk di Pisa
e-maih giangi~di, unipi , i t

A b s t r a c t . In this paper we investigate the issue of defining a program-
ming calculus which supports programming with explicit localities. We
introduce a language which embeds the asynchronous Linda communi-
cation paradigm extended with explicit localities in a process calculus.
We consider multiple tuple spaces that are distributed over a collec-
tions of sites and use localities to distribute/retrieve tuples and processes
over/from these sites. The operational semantics of the language turns
out to be useful for discussing the language design, e.g. the effects of
scoping disciplines over mobile agents which maintain their connections
to the located tuple spaces while moving along sites. The flexibility of
the language is illustrated by a few examples.

1 Introduction

The World-Wide Web (WWW) is the best known example of an application ge-
ographically distributed over a collections of processors and networks. Recently,
the names of global information structures and global computers have been used
to identify such applications [8] and their underlying architecture. Another ex-
ample of global information structure is given by the T e l n e t protocol which
provides a global multiprocessor system.

Global structures are rapidly evolving towards programmability. Again, an
illustrative example is provided by the WWW. One could easily imagine appli-
cations where programs running at different sites need continuous interactions or
applications where decisions are taking according to information retrieved from
the global environment. This has called for new programming languages and
paradigms that supports migratory (mobile) applications. As an example the
Java language [16] permits local executions of self-contained programs down-
loaded from other sites. Similarly, the Facile language [14] supports mobility of
programs by allowing processes to be transmit ted in communications. Obliq [7]

Work partially supported by EEC: HCM project EXPRESS and Esprit Working
Group CONFER2~ and by CNR: Progetto Speciale "Modelli e Metodi per la Mate-

matica e l'Ingegneria".

713

is an example of a programming language with a static scoping discipline where
mobile processes maintain their connections when they move from one site to
the other.

/From a theoretical perspective, several research efforts have been devoted
to address mobility starting from the definition of the 7r-calculus [19], that has
been used as a design tool for the development of the concurrent object oriented
programming language PICT [21]. Indeed, an abstract semantic framework to
formalize and understand how global programming languages operate is clearly
required. Such semantic framework may provide the formal basis to discuss and
motivate controversial design/implementation issues (e.g. the scoping discipline
of mobile processes) and the support for reasoning about global programs.

In global programming one has to face the problem of developing applications
which need to access data or computational-resources distributed over a set
of sites. A simple example is provided by "distribute and print" applications
where, after a request, a server spawns a print job over certain sites (the sites
where printed data are needed) and delegates the control of the actual printing
activities to each site.

In this paper we investigate the issue of defining a programming notation
which directly supports programming with explicit localities. We concentrate
on the formal definition of the core language to clarify the critical design deci-
sions. Simulation and prototyping activities based on the formal definition are
in progress.

Our proposal embeds the Linda paradigm [12, 9] extended with an explicit
notion of locality within a CCS-like [18] process calculus. The new language will
be named Locality Linda, LLinda for short. The Linda asynchronous communi-
cation model, known as Generative Communication, allows programmers to ex-
plicit control interactions among processes via shared data and to use the same
set of primitives both for data manipulation and for process synchronization.
This has the advantage of rendering explicit all the interactions of a program
with its environment. The original Linda primitives are however not completely
adequate for programming distributed systems. For example, data protection
and security, that are key features of a distributed programming environment,
are problematic because the Linda communication model cannot guarantee data
privacy. Also, modular programming disciplines are awkward to follow in prac-
tice as there is no mean to guarantee that tuples coming from different contexts
are not mixed up when two modules are put together. Multiple tuple spaces
[13] are a first step toward the solution of these problems. LLinda, that takes
multiple tuple spaces as the starting point, can be seen as the formalization of
that idea, that had never thoroughly pursued.

LLinda can be seen as an asynchronous value-passing process calculus whose
basic actions are the original Linda primitives enriched with explicit informa-
tion about the location of the nodes where processes and tuples are allocated.
This allows programmers to distribute (retrieve) data and processes over (from)
different nodes directly from the language. Localities permit splitting the tu-
ple space into multiple, located spaces and to view groups of processes and their

714

data as distinct entities. Moreover, since localities are t reated as first-order data,
that can be exchanged in communications and dynamically created, they become
a powerful programming device. For example, encapsulation can be easily ob-
tained: an encapsulated module can be realized via a tuple space located at a
private locality, thus ensuring a controlled access to data. However, program-
mers have to share with a coordinator their control. This sharing is obtained by
providing abstractions over geographical distribution and by separating the op-
eration of logical distribution of processes and data from the mechanism which
maps a logically distributed program into a physically distributed application. To
this purpose a new class of values to represent logical distribution is introduced.
Logical localities provide an abstraction mechanism that allows programmers to
structure mobile agents by controlling the location of computation while ignoring
the precise allocation of processes and data.

The handling of logical localities - - the mapping on processors and nets, the
visibility of specific localities from each node - - is done at another level; we refer
to it as the coordination level. When applications migrate, all the issues related
to the scope discipline are dealt with at the coordination level; this is somehow
in the spirit of [3].

The two syntactic levels of our programming framework are reflected at the
semantic level. The operational semantics of LLinda follows the SOS style [22]
and proceeds in two steps. The first step defines the symbolic semantics where
process commitments, i.e. the control on localities and the effects on the tuple
spaces, are only partially evaluated. The full evaluation of process commitments
is the main concern of the second step, the one at the coordination level.

In this paper we show that the separation between logical and physical lo-
calities is a clean abstraction for global programming languages. Moreover, the
coordination level turns out to be essential to study migratory applications and
to understand configuration decisions before carrying out an implementation.
This will be illustrated in the present paper by analyzing the effects of choosing
specific scoping disciplines for accessing tuple spaces. The usage of the language
is illustrated by presenting some examples of distribution and mobility.

2 L L i n d a

The language LLinda is an a t tempt to amalgamate the Linda paradigm [12, 9]
with an explicit notion of locality to support a programming paradigm where
applications can migrate from one computing environment to another.

2.1 A L i n d a O u t l i n e

Linda is a coordination language that relies on an asynchronous and associative
communication mechanism based on a shared global environment called Tuple
Space (TS), a multiset of tuples. A tuple is a sequence of actual fields, i.e.
expressions or values, and formal fields, i.e. variables. Pattern-matching is used
to select tuples in TS: two tuples match if they have the same number of fields

715

and corresponding fields have matching values or variables; variables match any
value of the same type and two values match only if identical. Linda has just
four primitives for manipulating tuples. Two (non-blocking) operations, out(t)
and eval(t), permit to add tuples to TS. The operation out(t) adds the tuple
resulting from the evaluation of t to TS. The operation eval(t) differs from
out(t) because t is firstly added to TS and then a new concurrent process is
created for evaluating the tuple; this will not be available for matching until its
evaluation is completed. Two (possibly blocking) operations, in(t) and read(t) ,
permit accessing tuples in TS. The operation in(t) evaluates t and looks for a
matching tuple t t in TS. Whenever t' is found, it is removed from TS; then, the
corresponding values of t' are assigned to the variables of t and the operation
terminates. If no matching tuple is found, the operation is suspended until one is
available. The operation read(t) differs from in(t) because the tuple f selected
by pattern-matching is not withdrawn from TS.

In the original proposal of [12] two predicative (non-blocking) forms, inp and
r eadp , were part of the language. We do not include them in LLinda because
they appear to us as functional duplicates of their non-predicative counterparts
and as statements about the global state of a distributed program, thus requiring
expensive global synchronizations (see [17]).

2.2 S y n t a x

The LLinda language consists of a core Linda language with multiple tuple
spaces, where tuple spaces and operations over tuples are located, and of a set
of operators, borrowed from Milner's CCS [18], for building processes.

Localities are taken from a set Loc of locMities. A locality ~ can be consid-
ered as the address of the node where processes and tuple spaces are allocated.
To provide an abstraction mechanism that allows to structure programs over
a distributed enviromnent while hiding the precise allocation of processes and
data, also the set Loc of logical localities is introduced. A logical locality may be
thought of as the symbolic name or alias for a physical site. We assume a distin-
guished logical locality self (self6 Loc), that processes may use for denoting
the physical locality at which they are executed. We shall use l to range over
logical localities.

An assignment of logical localities is a (partial) function 9 ~ from Loc to Loc.
In what follows F will denote the set of assignments, r the empty assignment and
It~l] the assignment which maps the logical locality I to L Finally, if 7i, V2 6/',
we will use the notation 71 �9 72 for the function defined by:

71 �9 72 (1) = ~ 71 (1) if l 6 dorn(71)
(72 (l) otherwise

One of the syntactic categories of LLinda is that of expressions. We assume
existence of a set of variable symbols, Var, whose typical elements are x, y,. �9
and a non-empty countable set of basic values v E Val, together with a set of
operators. This yields Exp, ranged over by e, the category of value expressions.

716

Furthermore, we assume existence of the syntactic category LExp (ranged over
by le) of locality expressions built out of locality variables (ranged over by u)
and operators over them, that will not be explicited here. We also assume a set
of process variables (ranged over by X) and a set of process constants (ranged
over by A), each with a fixed arity. We will use z for denoting a value variable
or a locality variable and w for denoting a value or a logical locality.

Substitution works as expected and we will use the standard notation e[el/x]
to indicate the substitution of the value expression e I for the variable x in e.
A similar notation will be adopted for denoting the substitution of (actual)
parameters and that of data tuples inside processes.

The LLinda process expressions (terms) are given by the abstract syntax

below:

P ::-= n i l l a .P] P1 IP21t)I+P2]A(Zl,...,Zn)
a ::= out(t)@le]in(t)@le]read(t)@le [eval(P)@le] newloc (u)

t ::-- el lel Pl!xl! l!X It,,t

The basic operators for building processes are nl l (inaction), a.P (prefixing),
P1]P'2 (parallel composition) and PI+P2 (choice). nil stands for the process that
cannot, perform any action, a.P denotes the process that first executes action a
and then behaves like P. P1 IP2 denotes the parallel composition of P1 and P2.
Finally, P1 +P'2 denotes the nondeterministic composition of P1 and P2.

The Linda operations to generate tuples (out) , to spawn a new process
(eval), to read tuples (read) , and to remove tuples (in) are located. Hence,
LLinda permits multiple, distributed tuple spaces, accessible via the evalua-
tion of locality expressions. We have a modified eval primitive that permits
processes as arguments rather than tuples. As it will be clarified later, ac-
tion eval(out(t)@Ie.nil)@le can be used to simulate the "expected" behaviour
of action eval(t)@le. New physical localities are created through the prefix
newloc(u) . This operation creates a fresh physical locality that can be accessed
via locality variable u. We shall assume that locations are garbage collected, and

thus that no explicit deletion is necessary.
Variables occurring in a LLinda process expression can be bound by prefixes.

More precisely, prefixes in(t)@le.- and read(t)@le.- act as binders for variables
in the formal fields of t. Formal fields of tuples are denoted by "! var" where var
is a generic variable. Prefix newloc(u) . - binds the locality variable u.

Process constants are used in recursive process definitions, and it is as-
sumed that each process constant A with arity n has a single defining equation

A(zl, . . . ,zn) d~ p , where all free (value and locality) variables in P are con-
tained in {Z l , . . . , zn} and all occurrences of process constants in P are guarded
(i.e. each occurrence is within the scope of a prefix a.-).

A process is a process expression without free variables. Observe that pro-
cesses and localities are first-class data and can be manipulated and generated

as any other data occurring in tuples.
To simplify notation, in the following, we often shall write a instead of a.nil,

moreover we shall use -~ for denoting syntactic identity of terms.

717

2.3 The Symbol ic Semantics

We shall present the two-level Operational semantics of LLinda in the SOS style
[22]. The first level consists of the definition of a symbolic semantics. The second
one packages processes and data over a distributed environment.

The labelled transition system of the symbolic semantics describes abstractly
the possible evolutions of LLinda processes without providing the actual alloca-
tion of processes and tuple spaces. For this reason, the corresponding operational
semantics is called symbolic in that neither value and locality expressions nor
tuples are evaluated. Our use of allocation environments as par t of the labels
of transitions is similar to the use of boolean expressions in the operational
framework of [15].

To describe the effects of processes over the different localities, we introduce
the auxiliary process expression P{7} that indicates the process P packaged
with the allocation of logical localities specified by 3'. Intuitively, the mapping
3" is a sort of environment and P{3"} is a closure. For the sake of simplicity we
will use P to range also over closures.

The structural rules of the symbolic semantics are displayed in Table 1. The
transition

p_e~ p'
3 ̀

describes the evolution of a process. Labels of transitions are pairs (#, 3`/ which
provide an abstract description of the activities performed in process evolution.
For instance, # = o(t)Qle describes the output of tuple t in the tuple space
specified by le. Similarly, # = u(u)@sel* can be thought of as the request
of binding a fresh locality to the variable u. The function 3 ̀ records the local
allocation environment that must be used for evaluating #. The interpretation
of the structural rules of Table 1 is straightforward. We have already remarked
that these rules do not evaluate expressions and location expressions, they only
describe symbolic evaluation of processes. There is one exception, namely the rule
for process closures P{3'}; in this case the evaluation of process P is determined
also by the allocation requirements specified by 3".

2.4 T h e C o o r d i n a t i o n Leve l

As in [10, 23], we model tuples as processes but find it convenient to introduce
a new process for denoting evaluated tuples that have been placed in one of
the tuple spaces. Thus, we extend the syntax of processes with the construct
out(e t) (that is different from the prefix operator out(t)@le._), where the set of
evaluated tuples is generated by the following syntax:

et ::= v I e I p l ! x l ! u l ! X i et,,et2

The structural rule of the symbolic semantic of process ou t (e t) is

ou t (e t) o(et)~,l~ nil
r

718

out(t)@le.P ~(t)Qt~ P
r

in(t)@le.P i(t)Q~ p
r

newloc(u).P v(u)~,zf) P
r

p 2_) p'
2/

P+Q -~ p'
7

p -~ p'
V

P I Q 2 + P ' I Q
V

p_..% p '

7'

P{V} " ~ P'{"/}
V ~ "V

eval(Q)@le.P e(Q)~le) P
r

read(t)@le.P r(t)~l~ p
r

p - ~ p'
V

Q+P -~ p'
7

p 2~ p'

Q I P 4 Q I P '
"7

P [w l / z l , . . . , w~/z ,~] - ~ P '
7

A (w l , . . . ,wn) -~ P' V

if A(zl, . . . , z.) d j p

Table 1. The Structural Rules of Symbolic Semantics

In the semantics rules, we shall permit using physical localities alike locality
expressions within processes. Thus, the operational semantics is defined for terms
generated by this extended syntax.

Given a finite set of physical localities, a net of processes with multiple,
distributed tuple spaces is a map that associates a node to each physical locality.
A node is a pair (P, 7) where P encompasses both processes and the local tuple
space, and "/is the local allocation environment. S will be used to indicate the

set of nodes.
Let L be a finite subset of Loc; a net over L is a map NL : Loc -+ S such

that

- NL (s is defined if and only if ~ E L,
-- NL(~) = (P, "/) implies range("/) C_ L and - / (se l f) = s

A net provides a mechanism for coordinating the allocation of processes which
interacts via multiple tuple spaces distributed over the localities of L. Processes
at each locality can potentially access any other locality of the net; however
locality visibility is controlled (locally) by the local allocation environment. A
locality ~ is visible at the node (P,"/) only if ~ E range("/).

The operational semantics of nets makes use of evaluation mechanisms for
value and locality expressions. We let them be the evaluation functions below,

that are defined in the obvious way.

s ~ : Exp ~ F) Val s ~ : LExp) F ---+ Loc

719

We will use $[e IV and s le]7 for denoting the value of the expression
e and of the locality expression le when evaluated in 7 (we implicitly assume
that they have no variables). Similarly, the evaluation of tuples depends on the
allocation environment: 7-[t IV is the tuple obtained by evaluating the tuple t in
the allocation environment 7- The mapping 7-[.] is inductively defined over the
definition of tuples. There is only one non-trivial case, namely the evaluation
of a process, say T[P]% which yields a process closure, i.e. P{7}- Finally, the
pattern matching predicate is defined in Table 2.

match (v, v) match (g, g)

match(P, P) match(! x, v)

match(! u, g) match(! X, P)
match(etl, e t 2) match(etl, et2)

match(et2, etl)

match(eta, et4)

match((etl, eta), (et2, et4))

Table 2. The Matching Rules

The operational semantics of nets is presented in Table 3. Each node in a net
has a unique physical locality, thus we can consider a net just as a set. We write
6 ::~ P for an element of a net, and NL, 6 ::~ P for the net given by NL U {6 ::~ P}
(with the implicit side condition that 6 ~ L). Basically, a node can be thought
of as a located process in the style of [20]. The structural rules of the operational
semantics specify the outcome of both local and remote operations performed by
located processes. Thus, for each Linda primitive, we have two structural rules.

The evaluation of an ou t operation modifies a tuple space. Rule (1) adds
a new tuple to the local tuple space of the process. Rule (2), instead, adds a
new tuple to the remote tuple space located at 62. Notice that in the latter
rule, the evaluation of the tuple t depends on the allocation environment 7 "71 �9
This corresponds to having a static scope discipline for the remote generation of
tuples. Moreover, if the tuple t contains a field with a process, the corresponding
field of the evaluated tuple et contains a closure. Hence, processes in a tuple are
transmitted together with their local allocation environment.

A dynamic scoping strategy is adopted for the eval operation, described by
rules (3) and (4). In this case the process spawned in the remote node is trans-
mitted without the local allocation environment, and its execution is influenced
by the remote allocation environment 72.

For the communication operations in and r e a d we have to spell out that
in modifies the tuple space (see rules (5) and (6)) while r e a d does not (in the
conclusions of rules (7) and (8) the tuple space encompassed within process P'2 is
left unchanged by process evolution). Obviously, we have to distinguish between
local, rules (5) and (7), and remote, rules (6) and (8), accesses.

Let us consider rule (5) (rules (6), (7) and (8) can be interpreted similarly).

720

, , . , = 7-[t] , , . ,

pf NL,~ ::~/ P ~ NL,~ ::'r I out@t)

Pa ~(')~'; P~ e,2 = E[le] et -= T~ t] 7o'n

(1)

(2)

7 ~

NL, t ::.~ P ~-+ NL, t ::~ Q I P~

7

NL, ~ ::~ P~, ~ ::7~ P.~ >---+ N~, ~ ::7~ P~, ~ ::7~ Q I B~

ea ~ P; g = s le ~./o.~ P2 ~ p.J match(T[t] v'ov' at)

(3)

(4)

(~)

Nc,g nv P~l/a'z ~ NL,t ::~ P~[et/Tit],,oz]lP,~

(6)
p,!

/ o(ee)@~.xf ~/
P1 P{ s = s v P2 > ~z m a t c h (T [t] 7 , . ~ , e t)

(7)

r (s)

NL,~ ::~ /91 ~ NL,e =7 P~

NL,E ::7 PIIP2 ~ NL,~ ::~ P;}P2

N L , 6 ::7 P ~'+ NL, g' ::z P'[s ::[~/,.lf].7 nil

plus the symmetr ic of rules (5), (7) and (9)

(9)

(lo)

Table 3. The Structural Rules of Nets Operational Semantics

721

It says that a process can perform an in action at the local tuple space by
synchronizing with a process which represents a matching tuple. The result of
this synchronization is that the tuple is consumed, i.e. the corresponding process
becomes nil, and its values are used to replace the corresponding (free) variables
of the process which has performed the in operation.

Rule (9) models the asynchronous evolution of subcomponents of a node.
Such a rule is necessary because, due to the syntax of nodes, rules (5)
and (7) might not be applicable. For an example consider the case P2 -
in(! z)@self .Q[out(1) .

Rules (1)-(9) may modify the structure of the nodes of the net but they
cannot introduce new localities. The creation of a new node is described by rule
(10). The environment of a new node is obtained from that of the creating one
(with the obvious update for the s e l f locality). The underlying idea is that
the new node inherits all the knowledge about localities of the creating node;
obviously, other choices could have been taken. An alternative formulation is:

3"1

NL, gt ::-~ P ~ NL,e' P'[~./u],e::[e/sezfl. r nil

The rationale behind this choice (adopted in [25]) is that any new node has no
knowledge of the previously existing net.

We would like to remark that the introduction of rule (9) and its symmet-
ric and of t h e symmetric of rules (5) and (7') could be avoided by assuming a
structural congruence in the style of [4] that would imply commutativity and
associativity of "[". We did not make this choice because we would like our
operational semantics be a guide for future implementations.

2.5 S t a t i c vs. d y n a m i c b i n d i n g

Our operational semantics of nets adopts a static binding discipline for the evalu-
ation of ou t operations. Instead, a dynamic scope discipline is adopted for remote
evaI operations: the meaning of logical localities used by a process spawned at
a remote locality depends on the remote allocation environment.

Indeed,: whenever a process P located at the locality ~1 wishes to insert a
tuple t into the remote tuple space located at g2, the local environment of P,
namely 3'1, is used for evaluating t. A dynamic binding discipline for o u t can be
obtained by replacing rule (2) in Table 3 with the following:

NL'el ::"fl P~,es ::;~ P2 ~--~ NL,el ::,1 PI,e2 ::;2 Ps [out(et)

where the local environment 7s is used for evaluating t.

722

Dynamic binding for ou t can be also simulated within our proposed se-
mantics (without any modification of the operational rules for nets) by writing
eval(out(t)Qself)@le.P instead of out(t)@le.P. The execution of eval spawns
process out(t)@self at locality ~2 (resulting from the evaluation of le) and,
therefore, t is evaluated by using the local environment at g2.

When process P located at gl wants to spawn a process Q at the remote
locality ~2, a dynamic binding discipline is followed. The local environment at "/2
is used for giving meaning to the logical localities which may be referred in Q.
A static binding discipline for eval can be obtained by spawning Q{3'1} rather
than Q. More precisely, rule (4) in Table 3 could be replaced by the following:

p, ~(Q)~t~ p~ g2 = s Q' = Q{71}

NL,el ::zl Pl,e2 ::,~ P2 ~-+ NL,gl ::~1 P~,~2 ::z: Q' I P2

In this case the remote spawning of process Q consists of transmitting Q pack-
aged with its allocation environment 71.

Again, eval with static scoping can be simulated (without modifying the
operational semantics of nets) via the primitives of the language, in particu-
lar, by passing processes (and then closures) as fields of tuples and using pri-
vate localities for storing intermediate results. With this in mind, we can write
newloc(u).out(Q)@u.in(!'X)Qu.eval(X)Qle.P instead of eval(Q)Qle.P. When
eval(X) is executed at ~2, X is bound to the process Q packaged with 71. Hence,
a closure instead of a plain process is activated at g2, differently from the case

of eval(Q).

3 P r o g r a m m i n g E x a m p l e s

In this section we shall present three small examples which are useful for illus-
trating how mobile computations can be expressed in LLinda. Here, we assume
that natural numbers and identifiers are basic values, i.e. belong to the set Val.

3.1 R e m o t e Procedure Call

Our first example shows how remote procedure call can be encoded in our lan-

guage.
A caller process, caller, sends a request to the callee, callee, and waits for a

response. The request, together with the name of the procedure and its actual
parameters, contains the caller's private locality where the response is delivered.

caller = newloc(u), out(proc - - id , ei, . . . , en, u)@Icallee.
in(! Yi, . . - , ! yk)@u. (next behaviour).

Process caUee waits for an invocation, executes the related procedure and sends
back the results using the locality, which has been passed together with the
service request, while ready to accept other requests.

723

callee = in(!p/d, ! x l , . . . , ! Xn, ! u)@se l f . (ca l l e e t
(p i d (X l , . . . , x n)) . o u t (r l , . . . , rk)@u.nil).

When processes are allocated in a net, the local environment of caller assigns to
the logical locality Ic~uee the physical locality where eaIlee is allocated. Hence,
we have:

net =_ {61 ::{~l/~,lf,~2/l~.z,~& caller, 62 ::{~2/~.1~} callee}

This example points out the use of the operation newloc(u) to create a private
data space accessible only via the variable u.

3.2 R e m o t e S e r v e r

Here we tackle the problem of client-server programming. LLinda procedures
(i.e. processes) can be invoked, but also transmitted, over the nodes of the net.
Due to the static binding discipline for evaluating the arguments (tuples) of ou t ,
processes passed as fields of tuples have a locality-independent meaning. This,
in practice, means that the environment of the originating node is used in the
evaluation of the logical localities of the transmitted processes. This (lexical)
scoping discipline is similar to that used in Obliq [7]. This is clarified in our next
example: a remote server.

Suppose that a client process, client, needs to call a server, server, to execute
a procedure proc, incrementing the value of a local integer variable x represented
via a two-field tuple (x, v), with v being its actual value. After calling server,
c l ient will wait for an acknowledgment signalling that its request has been ser-
viced.

proc = in(x, ! x) @ s e l f . o u t (x , x + 1)@sel f .n i l

client = newlo e (u) .ou t (exec, u,proc) @4erver.in(ack) @u. (next behaviour)

Process server waits for the request of services, manages the incoming request
and then sends an acknowledgment back to the client.

s e ? ~ v e r : in(exec, ! u, ! X) @ s e l f . e v a l (X) @ s e l f . o u t (a c k) @ u . s e r v e r
+ in(other - -service, ! u , . . .) @ s e l f
- J - . . .

When the server and cl ient are coordinated into a net, cl ient local environment
refers the physical allocation of the server:

n e t - {61 ::{~1/~.1~,~2/l } elientIP1,62 ::{~2/s.1~} server}

where we have used P1 for denoting the local tuple space at node 61. Therefore,
if P1 = out (x , 0), i.e. the value of variable x of the client is 0, the execution of
procedure proc at locality 62 assigns 1 to x.

724

3.3 D y n a m i c N e w s g a t h e r e r

Here we illustrate how LLinda can be used for remote programming. This kind
of programming discipline allows the user to write agents which can dynamically
move along the network and can interact locally with other agents. In this way,
a~l agent placed by a user at the server's location can be decoupled from the user
and can interact with the server without using the net.

Consider the following scenario. User P needs additional information on a
piece of data represented by item (e.g. item could be the title of a book of
which P wants to know the price). Par t of the behaviour of P depends on this
information; however, there are some activities which are independent of it. P
can look for the required information in a database distributed over the network.
The starting point of the search, say locality litem, can be chosen according to the
search key item. We assume that at each node of the database reachable from
litem, it is present either a tuple of the form (item, v), containing the desired
information, or a tuple of the form (item, Inex~), containing information about
the next node to search for the additional information.

The user process P calls for the execution at li~em of the agent gatherer,
which dynamically travels between nodes looking for a tuple that contains in-
formation on item. This agent takes as parameters the research key item and
a fresh locality u, which provides the address of the user's private tuple space
where the result of the search has to be placed. Once gatherer has been spawned,
P splits its behaviour into two parallel components: one waits for the additional
information and the other proceeds. Thus, those activities which do not need
the additional information are decoupled from the search activity, which might
be complex and expensive.

p = newloc(u).eval(gatherer(item, u))@litem.((in(! x)@u.P1)lP2)

Process gatherer can match two alternative tuples. The first one captures the
additional information on item (e.g. the price); if this is found then it is placed
at locality u and gatherer terminates. The second tuple is used for obtaining
the address of the node where the search has to be repeated.

gatherer(item, u) = read(item, ! x)@self .out(x)Qu.nil
+ read(item, !u')@self.eval(gatherer(item, u))@u'.nil

Our assumption about the distributed database guarantees that gatherer
never deadlocks (because either the associated information or a location where
the search can be repeated are surely found) but it does not ensure that the
search activity will successful terminate: gatherer might loop indefinitely. This
could happen if its second tuple, tha t with location information, always finds a

match in the tuple spaces.

4 C o n c l u d i n g R e m a r k s a n d R e l a t e d W o r k

In this paper we have presented a programming notation that supports mobile
applications. Our proposal embeds Linda enriched with explicit locality in a

725

CCS-like calculus. An operational semantics, which focuses on the coordination
of mobile agents, is provided. Examples are presented that illustrate how mobile
applications and remote programming can be expressed in LLinda. We plan
to develop observational semantics as foundation for programming logics and
verification techniques. To this purpose, our starting point will be the testing
framework developed for a process calculus based on Linda in [10, 23].

Differently, from other distributed programming paradigms (e.g. CML [24],
Facile [14] and Telescript [26]), our basic communication mechanism is asyn-
chronous. We consider this kind of communication as more practical. When
implemented, communication takes time and its distributed implementation has
to face with delays and synchronization overheads. Asynchronous communica-
tion is then simpler to implement and indeed many distributed systems and
programming languages, such as data flow, concurrent logic and concurrent con-
straint languages, offer it as basic primitive. Synchronous communications can
be implemented by means of a more complex protocol where the sender waits for
the reception of acknowledgments. Asynchronous communications has also the
advantage of decoupling the behaviours of sender and receiver and of avoiding
propagation of failures.

Several theoretical works in non-interleaving semantics of process calculi have
adopted the notion of locality to capture logical distribution of processes (see e.g.
[5], [6] and the references therein). The basic idea of these approaches is to allow
the external observer to see an action together with the location (access path)
where it takes place. In our approach, localities are not used as a tool for observ-
ing distribution of processes but rather as a programming device to structure
and control distribution of processes and data. The formal models presented in
[2, 11] are closely related to the work presented here. These approaches deal with
mobility much like the ~r-calculus (channel and locality names can be passed in
interactions). Remarkably, localities in LLinda can be used for simulating the
private name passing and the scope extrusion mechanisms of the 7r-calculus, so
that a natural encoding of the asynchronous zr-calculus (see e.g. [1]) in LLinda
can be easily programmed.

A c k n o w l e d g m e n t s We are grateful to Luca Cardelli for stimulating dis-
cussions about global programming.

References

1. R. Amadio, I. Castellani, D. Sangiorgi. On Bisimulation for the Asynchronous 7r-
calculus. In Proc. of CONCUR'96, LNCS 1119, 1996.

2. R. Amadio, S. Prasad. Localities and Failures. In Proc. of FCT~zTCS 14, LNCS
880, 1994.

3. E. Astesiano, G. Reggio. SMoLCS Driven Concurrent Calculi. In Proc. of TAP-
SOFT'87, LNCS 249, 1987.

4. G. Berry, G. Boudol. The chemical abstract machine. Theoretical Computer Sci-
ence, 96:217-248, 1992.

726

5. G. Boudol, I. Castellani, M. Hennessy, A. Kiehn. Observing Localities. Theoretical
Computer Science, 114, 1993.

6. F. Corradini, R. De Nicola. Locality Based Semantics for Process Algebras. Report
DSI-94-05, Univ. Roma, La Sapienza, 1994 (to appear in Acta Informatica).

7. L. Cardelli. A language with distributed scope. Computing Systems, 8(1):27-59,
MIT Press, 1995.

8. L. Cardelli. GlobalComputation. Manuscript, 1996.
9. N. Carriero, D. Celernter. Linda in Context. Communications of the A CM,

32(4):444-458,]989.
10. R. De Nicola, R. ~Pugliese. A Process Algebra based on Linda. Proc. COORDINA-

TION'96, LNCS'1061, 1996.
11. C. Fournet, G, Gonthier, J.-L. L~vy, L. Maranget, D. R~my. A Calculus of Mobile

Agents. Proc. CONCUR'96, LNCS 1119, 1996.
12. D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-

gramming Languages and Systems, 7(1):80-112, 1985.
13. D. Gelernter. Multiple Tuple Spaces in Linda. PARLE'89, LNCS 365, 1989.
14. A. Giacalone, P. Mishra, S. Prasad. Facile: A symmetric integration of concur-

rent and functional programming. International Journal of Parallel Programming,
18(2), 1989.

15. M. Hennessy, H. Lin. Symbolic Bisimulations, Theoretical Computer Science,
138:353-389, 1995.

16. Sun Microsystems. The Java Language: A white paper. Sun Microsystems White
Paper, 1994.

17. J. Leitcher. Shared Memories, Buses and LANs - - Linda Implementations Across
the Spectrum of Connectivity. Dep. of Computer Science, Yale Univ., Research
Report YALEU/DCS/TR-714, 1989.

18. R. Milner. Communication and Concurrency. Prentice Hall Int., 1989.
19. R. Milner, J. Parrow, D. Walker. A calculus of mobile processes, (Part I and II).

Info~nation and Computation, 100:1-77, 1992.
20. D. Murphy. Observing Located Concurrency. MFCS'93, LNCS 711, 1993.
21. B. Pierce, D. Turner. Concurrent Objects in a Process Calculus. In "Theory and

Practice of Parallel Programming", LNCS 907, 1994.
22. G.D. Plotkin. A Structural Approach to Operational Semantics. Tech.Rep. DAIMI

FN-19, Aarhus University, Dep. of Computer Science, 1981.
23. R. Pugliese. Semantic Theories for Asynchronous Languages. Ph.D. Thesis VIII-

96-6, Univ. di Roma "La Sapienza", Dip. Scienze dell'Informazione, 1996.
24. J. Reppy. Higher Order Concurrency. Ph.D. Thesis, Cornell University, Tr-92-1285,

1992.
25. B. Thomsen, L. Leth, A. Giaealone. Some Issues in the Semantics of Facile Dis-

tributed Programming. REX Workshop "Semantics: Foundations and Applica-
tions", LNCS 666, Springer, 1992.

26. J.E. White. Telescript Technology: The Foundation for the Electronic Market
Place. General Magic White Paper, 1994.

