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A b s t r a c t .  In this paper we investigate the issue of defining a program- 
ming calculus which supports programming with explicit localities. We 
introduce a language which embeds the asynchronous Linda communi- 
cation paradigm extended with explicit localities in a process calculus. 
We consider multiple tuple spaces that are distributed over a collec- 
tions of sites and use localities to distribute/retrieve tuples and processes 
over/from these sites. The operational semantics of the language turns 
out to be useful for discussing the language design, e.g. the effects of 
scoping disciplines over mobile agents which maintain their connections 
to the located tuple spaces while moving along sites. The flexibility of 
the language is illustrated by a few examples. 

1 Introduction 

The World-Wide Web (WWW) is the best known example of an application ge- 
ographically distributed over a collections of processors and networks. Recently, 
the names of global information structures and global computers have been used 
to identify such applications [8] and their underlying architecture. Another ex- 
ample of global information structure is given by the T e l n e t  protocol which 
provides a global multiprocessor system. 

Global structures are rapidly evolving towards programmability. Again, an 
illustrative example is provided by the WWW. One could easily imagine appli- 
cations where programs running at different sites need continuous interactions or 
applications where decisions are taking according to information retrieved from 
the global environment. This has called for new programming languages and 
paradigms that  supports migratory (mobile) applications. As an example the 
Java language [16] permits local executions of self-contained programs down- 
loaded from other sites. Similarly, the Facile language [14] supports mobility of 
programs by allowing processes to be transmit ted in communications. Obliq [7] 
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is an example of a programming language with a static scoping discipline where 
mobile processes maintain their connections when they move from one site to 
the other. 

/From a theoretical perspective, several research efforts have been devoted 
to address mobility starting from the definition of the 7r-calculus [19], that  has 
been used as a design tool for the development of the concurrent object oriented 
programming language PICT [21]. Indeed, an abstract semantic framework to 
formalize and understand how global programming languages operate is clearly 
required. Such semantic framework may provide the formal basis to discuss and 
motivate controversial design/implementation issues (e.g. the scoping discipline 
of mobile processes) and the support for reasoning about global programs. 

In global programming one has to face the problem of developing applications 
which need to access data  or computational-resources distributed over a set 
of sites. A simple example is provided by "distribute and print" applications 
where, after a request, a server spawns a print job over certain sites (the sites 
where printed data are needed) and delegates the control of the actual printing 
activities to each site. 

In this paper we investigate the issue of defining a programming notation 
which directly supports programming with explicit localities. We concentrate 
on the formal definition of the core language to clarify the critical design deci- 
sions. Simulation and prototyping activities based on the formal definition are 
in progress. 

Our proposal embeds the Linda paradigm [12, 9] extended with an explicit 
notion of locality within a CCS-like [18] process calculus. The new language will 
be named Locality Linda, LLinda for short. The Linda asynchronous communi- 
cation model, known as Generative Communication, allows programmers to ex- 
plicit control interactions among processes via shared data  and to use the same 
set of primitives both for data  manipulation and for process synchronization. 
This has the advantage of rendering explicit all the interactions of a program 
with its environment. The original Linda primitives are however not completely 
adequate for programming distributed systems. For example, data  protection 
and security, that  are key features of a distributed programming environment, 
are problematic because the Linda communication model cannot guarantee data 
privacy. Also, modular programming disciplines are awkward to follow in prac- 
tice as there is no mean to guarantee that  tuples coming from different contexts 
are not mixed up when two modules are put together. Multiple tuple spaces 
[13] are a first step toward the solution of these problems. LLinda, that  takes 
multiple tuple spaces as the starting point, can be seen as the formalization of 
that idea, that  had never thoroughly pursued. 

LLinda can be seen as an asynchronous value-passing process calculus whose 
basic actions are the original Linda primitives enriched with explicit informa- 
tion about the location of the nodes where processes and tuples are allocated. 
This allows programmers to distribute (retrieve) data  and processes over (from) 
different nodes directly from the language. Localities permit splitting the tu- 
ple space into multiple, located spaces and to view groups of processes and their 
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data as distinct entities. Moreover, since localities are t reated as first-order data, 
that  can be exchanged in communications and dynamically created, they become 
a powerful programming device. For example, encapsulation can be easily ob- 
tained: an encapsulated module can be realized via a tuple space located at a 
private locality, thus ensuring a controlled access to data. However, program- 
mers have to share with a coordinator their control. This sharing is obtained by 
providing abstractions over geographical distribution and by separating the op- 
eration of logical distribution of processes and data from the mechanism which 
maps a logically distributed program into a physically distributed application. To 
this purpose a new class of values to represent logical distribution is introduced. 
Logical localities provide an abstraction mechanism that  allows programmers to 
structure mobile agents by controlling the location of computation while ignoring 
the precise allocation of processes and data. 

The handling of logical localities - -  the mapping on processors and nets, the 
visibility of specific localities from each node - -  is done at another level; we refer 
to it as the coordination level. When applications migrate, all the issues related 
to the scope discipline are dealt with at the coordination level; this is somehow 
in the spirit of [3]. 

The two syntactic levels of our programming framework are reflected at the 
semantic level. The operational semantics of LLinda follows the SOS style [22] 
and proceeds in two steps. The first step defines the symbolic semantics where 
process commitments, i.e. the control on localities and the effects on the tuple 
spaces, are only partially evaluated. The full evaluation of process commitments 
is the main concern of the second step, the one at the coordination level. 

In this paper we show that  the separation between logical and physical lo- 
calities is a clean abstraction for global programming languages. Moreover, the 
coordination level turns out to be essential to study migratory applications and 
to understand configuration decisions before carrying out an implementation. 
This will be illustrated in the present paper by analyzing the effects of choosing 
specific scoping disciplines for accessing tuple spaces. The usage of the language 
is illustrated by presenting some examples of distribution and mobility. 

2 L L i n d a  

The language LLinda is an a t tempt  to amalgamate the Linda paradigm [12, 9] 
with an explicit notion of locality to support a programming paradigm where 
applications can migrate from one computing environment to another. 

2.1 A L i n d a  O u t l i n e  

Linda is a coordination language that  relies on an asynchronous and associative 
communication mechanism based on a shared global environment called Tuple 
Space (TS), a multiset of tuples. A tuple is a sequence of actual fields, i.e. 
expressions or values, and formal fields, i.e. variables. Pattern-matching is used 
to select tuples in TS: two tuples match if they have the same number of fields 
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and corresponding fields have matching values or variables; variables match any 
value of the same type and two values match only if identical. Linda has just 
four primitives for manipulating tuples. Two (non-blocking) operations, out( t )  
and eval(t), permit to add tuples to TS. The operation out( t )  adds the tuple 
resulting from the evaluation of t to TS. The operation eval(t) differs from 
out( t )  because t is firstly added to TS and then a new concurrent process is 
created for evaluating the tuple; this will not be available for matching until its 
evaluation is completed. Two (possibly blocking) operations, in(t) and read( t ) ,  
permit accessing tuples in TS. The operation in(t) evaluates t and looks for a 
matching tuple t t in TS. Whenever t' is found, it is removed from TS; then, the 
corresponding values of t' are assigned to the variables of t and the operation 
terminates. If no matching tuple is found, the operation is suspended until one is 
available. The operation read( t )  differs from in(t) because the tuple f selected 
by pattern-matching is not withdrawn from TS. 

In the original proposal of [12] two predicative (non-blocking) forms, inp  and 
r eadp ,  were part of the language. We do not include them in LLinda because 
they appear to us as functional duplicates of their non-predicative counterparts 
and as statements about the global state of a distributed program, thus requiring 
expensive global synchronizations (see [17]). 

2.2 S y n t a x  

The LLinda language consists of a core Linda language with multiple tuple 
spaces, where tuple spaces and operations over tuples are located, and of a set 
of operators, borrowed from Milner's CCS [18], for building processes. 

Localities are taken from a set Loc of locMities. A locality ~ can be consid- 
ered as the address of the node where processes and tuple spaces are allocated. 
To provide an abstraction mechanism that  allows to structure programs over 
a distributed enviromnent while hiding the precise allocation of processes and 
data, also the set Loc of logical localities is introduced. A logical locality may be 
thought of as the symbolic name or alias for a physical site. We assume a distin- 
guished logical locality self (self6 Loc), that  processes may use for denoting 
the physical locality at which they are executed. We shall use l to range over 
logical localities. 

An assignment of logical localities is a (partial) function 9 ~ from Loc to Loc. 
In what follows F will denote the set of assignments, r the empty assignment and 
It~l] the assignment which maps the logical locality I to L Finally, if 7i, V2 6/', 
we will use the notation 71 �9 72 for the function defined by: 

71 �9 72 (1) = ~ 71 (1) if l 6 dorn(71) 
( 72 (l) otherwise 

One of the syntactic categories of LLinda is that  of expressions. We assume 
existence of a set of variable symbols, Var, whose typical elements are x, y,.  �9 
and a non-empty countable set of basic values v E Val, together with a set of 
operators. This yields Exp, ranged over by e, the category of value expressions. 
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Furthermore, we assume existence of the syntactic category LExp (ranged over 
by le) of locality expressions built out of locality variables (ranged over by u) 
and operators over them, that  will not be explicited here. We also assume a set 
of process variables (ranged over by X)  and a set of process constants (ranged 
over by A), each with a fixed arity. We will use z for denoting a value variable 
or a locality variable and w for denoting a value or a logical locality. 

Substitution works as expected and we will use the standard notation e[el/x] 
to indicate the substitution of the value expression e I for the variable x in e. 
A similar notation will be adopted for denoting the substitution of (actual) 
parameters and that  of data  tuples inside processes. 

The LLinda process expressions (terms) are given by the abstract  syntax 

below: 

P ::-= n i l l  a .P  ] P1 IP21t)I+P2]A(Zl,...,Zn) 
a ::= out( t )@le ]in(t)@le ]read(t)@le [ eval(P)@le ] newloc (u )  

t ::-- el lel Pl!xl! l!X It,,t  

The basic operators for building processes are nl l  (inaction), a.P (prefixing), 
P1 ]P'2 (parallel composition) and PI+P2 (choice). nil  stands for the process that  
cannot, perform any action, a.P denotes the process that  first executes action a 
and then behaves like P.  P1 IP2 denotes the parallel composition of P1 and P2. 
Finally, P1 +P'2 denotes the nondeterministic composition of P1 and P2. 

The Linda operations to generate tuples (out) ,  to spawn a new process 
(eval),  to read tuples ( read) ,  and to remove tuples (in) are located. Hence, 
LLinda permits multiple, distributed tuple spaces, accessible via the evalua- 
tion of locality expressions. We have a modified eval  primitive that  permits 
processes as arguments rather than tuples. As it will be clarified later, ac- 
tion eval(out(t)@Ie.nil)@le can be used to simulate the "expected" behaviour 
of action eval(t)@le. New physical localities are created through the prefix 
newloc(u) .  This operation creates a fresh physical locality that  can be accessed 
via locality variable u. We shall assume that  locations are garbage collected, and 

thus that  no explicit deletion is necessary. 
Variables occurring in a LLinda process expression can be bound by prefixes. 

More precisely, prefixes in(t)@le.- and read(t)@le.- act as binders for variables 
in the formal fields of t. Formal fields of tuples are denoted by "! var" where var 
is a generic variable. Prefix newloc(u) . -  binds the locality variable u. 

Process constants are used in recursive process definitions, and it is as- 
sumed that  each process constant A with arity n has a single defining equation 

A(zl, . . .  ,zn) d~ p ,  where all free (value and locality) variables in P are con- 
tained in {Z l , . . . ,  zn} and all occurrences of process constants in P are guarded 
(i.e. each occurrence is within the scope of a prefix a.-). 

A process is a process expression without free variables. Observe that  pro- 
cesses and localities are first-class data  and can be manipulated and generated 

as any other data  occurring in tuples. 
To simplify notation, in the following, we often shall write a instead of a.nil, 

moreover we shall use -~ for denoting syntactic identity of terms. 
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2.3 The Symbol ic  Semantics  

We shall present the two-level Operational semantics of LLinda in the SOS style 
[22]. The first level consists of the definition of a symbolic semantics. The second 
one packages processes and data  over a distributed environment. 

The labelled transition system of the symbolic semantics describes abstractly 
the possible evolutions of LLinda processes without providing the actual alloca- 
tion of processes and tuple spaces. For this reason, the corresponding operational 
semantics is called symbolic in that  neither value and locality expressions nor 
tuples are evaluated. Our use of allocation environments as par t  of the labels 
of transitions is similar to the use of boolean expressions in the operational 
framework of [15]. 

To describe the effects of processes over the different localities, we introduce 
the auxiliary process expression P{7} that  indicates the process P packaged 
with the allocation of logical localities specified by 3'. Intuitively, the mapping 
3" is a sort of environment and P{3"} is a closure. For the sake of simplicity we 
will use P to range also over closures. 

The structural rules of the symbolic semantics are displayed in Table 1. The 
transition 

p_e~ p'  
3  ̀

describes the evolution of a process. Labels of transitions are pairs (#, 3`/ which 
provide an abstract description of the activities performed in process evolution. 
For instance, # = o(t)Qle describes the output  of tuple t in the tuple space 
specified by le. Similarly, # = u(u)@sel* can be thought of as the request 
of binding a fresh locality to the variable u. The function 3  ̀ records the local 
allocation environment that  must be used for evaluating #. The interpretation 
of the structural rules of Table 1 is straightforward. We have already remarked 
that  these rules do not evaluate expressions and location expressions, they only 
describe symbolic evaluation of processes. There is one exception, namely the rule 
for process closures P{3'}; in this case the evaluation of process P is determined 
also by the allocation requirements specified by 3". 

2.4 T h e  C o o r d i n a t i o n  Leve l  

As in [10, 23], we model tuples as processes but  find it convenient to introduce 
a new process for denoting evaluated tuples that  have been placed in one of 
the tuple spaces. Thus, we extend the syntax of processes with the construct 
out(e t )  (that is different from the prefix operator out(t)@le._), where the set of 
evaluated tuples is generated by the following syntax: 

et ::= v I e I p l ! x l ! u l ! X i  et,,et2 

The structural rule of the symbolic semantic of process ou t (e t )  is 

ou t (e t )  o(et)~,l~ nil 
r 
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out(t)@le.P ~(t)Qt~ P 
r 

in(t)@le.P i(t)Q~ p 
r 

newloc(u).P v(u)~,zf ) P  
r 

p 2_) p' 
2/ 

P+Q -~ p' 
7 

p -~ p' 
V 

P I Q 2 + P ' I Q  
V 

p_..% p '  

7' 

P{V} " ~ P'{"/} 
V ~ "V 

eval(Q)@le.P e(Q)~le ) P  
r 

read(t)@le.P r(t)~l~ p 
r 

p - ~  p' 
V 

Q+P -~ p' 
7 

p 2~ p' 

Q I P 4 Q I P '  
"7 

P [ w l / z l , .  . . , w~/z ,~]  - ~  P '  
7 

A ( w l , . . .  ,wn) -~ P' V 

if A(zl, . . . ,  z.) d j p  

Table 1. The Structural Rules of Symbolic Semantics 

In the semantics rules, we shall permit  using physical localities alike locality 
expressions within processes. Thus, the operational semantics is defined for terms 
generated by this extended syntax. 

Given a finite set of physical localities, a net of processes with multiple, 
distributed tuple spaces is a map that  associates a node to each physical locality. 
A node is a pair (P, 7) where P encompasses both processes and the local tuple 
space, and "/is  the local allocation environment. S will be used to indicate the 

set of nodes. 
Let L be a finite subset of Loc; a net over L is a map NL : Loc -+ S such 

that 

- NL (s is defined if and only if ~ E L, 
--  NL(~) = (P, "/) implies range("/) C_ L and - / ( se l f )  = s 

A net provides a mechanism for coordinating the allocation of processes which 
interacts via multiple tuple spaces distributed over the localities of L. Processes 
at each locality can potentially access any other locality of the net; however 
locality visibility is controlled (locally) by the local allocation environment. A 
locality ~ is visible at the node (P,"/) only if ~ E range("/). 

The operational semantics of nets makes use of evaluation mechanisms for 
value and locality expressions. We let them be the evaluation functions below, 

that  are defined in the obvious way. 

s ~ : Exp ~ F ) Val s  ~ : LExp  ) F ---+ Loc 
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We will use $[ e IV and s  le]7 for denoting the value of the expression 
e and of the locality expression le when evaluated in 7 (we implicitly assume 
that  they have no variables). Similarly, the evaluation of tuples depends on the 
allocation environment: 7-[ t IV is the tuple obtained by evaluating the tuple t in 
the allocation environment 7- The mapping 7-[. ] is inductively defined over the 
definition of tuples. There is only one non-trivial case, namely the evaluation 
of a process, say T[  P ]% which yields a process closure, i.e. P{7}- Finally, the 
pattern matching predicate is defined in Table 2. 

match (v, v) match (g, g) 

match(P, P) match(! x, v) 

match(! u, g) match(! X, P) 
match(etl, e t 2 )  match(etl, et2) 

match(et2, etl ) 

match(eta, et4) 

match( (etl, eta), (et2, et4) ) 

Table 2. The Matching Rules 

The operational semantics of nets is presented in Table 3. Each node in a net 
has a unique physical locality, thus we can consider a net just as a set. We write 
6 ::~ P for an element of a net, and NL, 6 ::~ P for the net given by NL U {6 ::~ P} 
(with the implicit side condition that  6 ~ L). Basically, a node can be thought 
of as a located process in the style of [20]. The structural rules of the operational 
semantics specify the outcome of both local and remote operations performed by 
located processes. Thus, for each Linda primitive, we have two structural rules. 

The evaluation of an ou t  operation modifies a tuple space. Rule (1) adds 
a new tuple to the local tuple space of the process. Rule (2), instead, adds a 
new tuple to the remote tuple space located at 62. Notice that  in the latter 
rule, the evaluation of the tuple t depends on the allocation environment 7 "71 �9 
This corresponds to having a static scope discipline for the remote generation of 
tuples. Moreover, if the tuple t contains a field with a process, the corresponding 
field of the evaluated tuple et contains a closure. Hence, processes in a tuple are 
transmitted together with their local allocation environment. 

A dynamic scoping strategy is adopted for the eval  operation, described by 
rules (3) and (4). In this case the process spawned in the remote node is trans- 
mitted without the local allocation environment, and its execution is influenced 
by the remote allocation environment 72. 

For the communication operations in and r e a d  we have to spell out that  
in modifies the tuple space (see rules (5) and (6)) while r e a d  does not (in the 
conclusions of rules (7) and (8) the tuple space encompassed within process P'2 is 
left unchanged by process evolution). Obviously, we have to distinguish between 
local, rules (5) and (7), and remote, rules (6) and (8), accesses. 

Let us consider rule (5) (rules (6), (7) and (8) can be interpreted similarly). 
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, , . ,  = 7-[ t ] , , . ,  

pf NL,~ ::~/ P ~ NL,~ ::'r I out@t) 

Pa ~(')~'; P~ e,2 = E[ le ] et -= T~ t ] 7o'n 

(1) 

(2) 

7 ~ 

NL, t ::.~ P ~-+ NL, t ::~ Q I P~ 

7 

NL, ~ ::~ P~, ~ ::7~ P.~ >---+ N~, ~ ::7~ P~, ~ ::7~ Q I B~ 

ea ~ P; g = s  le ~./o.~ P2 ~ p.J match(T[  t ] v'ov' at) 

(3) 

(4) 

(~) 

Nc,g  nv P~l/a'z ~ NL,t ::~ P~[et/Tit],,oz]lP,~ 

(6) 
p,! 

/ o(ee)@~.xf ~/ 
P1 P{ s = s  v P2 > ~z m a t c h ( T [ t ] 7 , . ~ , e t )  

(7) 

r (s) 

NL,~ ::~ /91 ~ NL,e =7 P~ 

NL,E ::7 PIIP2 ~ NL,~ ::~ P;}P2 

N L , 6  ::7 P ~'+ NL, g' ::z P'[s ::[~/,.lf].7 nil 

plus the symmetr ic  of rules (5), (7) and (9) 

(9) 

(lo) 

Table  3. The Structural Rules of Nets Operational Semantics 
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It says that  a process can perform an in action at the local tuple space by 
synchronizing with a process which represents a matching tuple. The result of 
this synchronization is that  the tuple is consumed, i.e. the corresponding process 
becomes nil, and its values are used to replace the corresponding (free) variables 
of the process which has performed the in  operation. 

Rule (9) models the asynchronous evolution of subcomponents of a node. 
Such a rule is necessary because, due to the syntax of nodes, rules (5) 
and (7) might not be applicable. For an example consider the case P2 - 
in(! z)@self .Q[out(1) .  

Rules (1)-(9) may modify the structure of the nodes of the net but they 
cannot introduce new localities. The creation of a new node is described by rule 
(10). The environment of a new node is obtained from that  of the creating one 
(with the obvious update for the s e l f  locality). The underlying idea is that  
the new node inherits all the knowledge about localities of the creating node; 
obviously, other choices could have been taken. An alternative formulation is: 

3"1 

NL, gt ::-~ P ~ NL,e' P'[~./u],e::[e/sezfl. r nil  

The rationale behind this choice (adopted in [25]) is that  any new node has no 
knowledge of the previously existing net. 

We would like to remark that  the introduction of rule (9) and its symmet- 
ric and of t h e  symmetric of rules (5) and (7') could be avoided by assuming a 
structural congruence in the style of [4] that  would imply commutativity and 
associativity of  "[". We did not make this choice because we would like our 
operational semantics be a guide for future implementations. 

2.5 S t a t i c  vs. d y n a m i c  b i n d i n g  

Our operational semantics of nets adopts a static binding discipline for the evalu- 
ation of ou t  operations. Instead, a dynamic scope discipline is adopted for remote 
evaI operations: the meaning of logical localities used by a process spawned at 
a remote locality depends on the remote allocation environment. 

Indeed,: whenever a process P located at the locality ~1 wishes to insert a 
tuple t into the  remote tuple space located at g2, the local environment of P,  
namely 3'1, is used for evaluating t. A dynamic binding discipline for o u t  can be 
obtained by replacing rule (2) in Table 3 with the following: 

NL'el ::"fl P~,es ::;~ P2 ~--~ NL,el  ::,1 PI,e2 ::;2 Ps [ out(et)  

where the local environment 7s is used for evaluating t. 
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Dynamic binding for ou t  can be also simulated within our proposed se- 
mantics (without any modification of the operational rules for nets) by writing 
eval(out(t)Qself)@le.P instead of out(t)@le.P. The execution of eval spawns 
process out( t )@self  at locality ~2 (resulting from the evaluation of le) and, 
therefore, t is evaluated by using the local environment at g2. 

When process P located at gl wants to spawn a process Q at the remote 
locality ~2, a dynamic binding discipline is followed. The local environment at "/2 
is used for giving meaning to the logical localities which may be referred in Q. 
A static binding discipline for eval can be obtained by spawning Q{3'1} rather 
than Q. More precisely, rule (4) in Table 3 could be replaced by the following: 

p, ~(Q)~t~ p~ g2 = s Q' = Q{71} 

NL,el ::zl Pl,e2 ::,~ P2 ~-+ NL,gl ::~1 P~,~2 ::z: Q' I P2 

In this case the remote spawning of process Q consists of transmitting Q pack- 
aged with its allocation environment 71. 

Again, eval with static scoping can be simulated (without modifying the 
operational semantics of nets) via the primitives of the language, in particu- 
lar, by passing processes (and then closures) as fields of tuples and using pri- 
vate localities for storing intermediate results. With this in mind, we can write 
newloc(u).out(Q)@u.in(!'X)Qu.eval(X)Qle.P instead of eval(Q)Qle.P. When 
eval(X) is executed at ~2, X is bound to the process Q packaged with 71. Hence, 
a closure instead of a plain process is activated at g2, differently from the case 

of eval(Q). 

3 P r o g r a m m i n g  E x a m p l e s  

In this section we shall present three small examples which are useful for illus- 
trating how mobile computations can be expressed in LLinda. Here, we assume 
that natural numbers and identifiers are basic values, i.e. belong to the set Val. 

3.1 R e m o t e  Procedure  Call  

Our first example shows how remote procedure call can be encoded in our lan- 

guage. 
A caller process, caller, sends a request to the callee, callee, and waits for a 

response. The request, together with the name of the procedure and its actual 
parameters, contains the caller's private locality where the response is delivered. 

caller = newloc(u), out(proc - - id ,  ei, . . . ,  en, u)@Icallee. 
in(! Yi, . . - ,  ! yk)@u. (next behaviour). 

Process caUee waits for an invocation, executes the related procedure and sends 
back the results using the locality, which has been passed together with the 
service request, while ready to accept other requests. 
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callee = in(!p/d,  ! x l ,  . . . , ! Xn, ! u )@se l f . ( ca l l e e  t 
( p i d ( X l , . . . ,  x n ) ) . o u t ( r l , . . . ,  rk)@u.nil ). 

When processes are allocated in a net, the local environment of caller assigns to 
the logical locality Ic~uee the physical locality where eaIlee is allocated. Hence, 
we have: 

net  =_ {61 ::{~l/~,lf,~2/l~.z,~& caller, 62 ::{~2/~.1~} callee} 

This example points out the use of the operation newloc(u )  to create a private 
data space accessible only via the variable u. 

3.2 R e m o t e  S e r v e r  

Here we tackle the problem of client-server programming. LLinda procedures 
(i.e. processes) can be invoked, but  also transmitted, over the nodes of the net. 
Due to the static binding discipline for evaluating the arguments (tuples) of ou t ,  
processes passed as fields of tuples have a locality-independent meaning. This, 
in practice, means that  the environment of the originating node is used in the 
evaluation of the logical localities of the transmitted processes. This (lexical) 
scoping discipline is similar to that  used in Obliq [7]. This is clarified in our next 
example: a remote server. 

Suppose that  a client process, client,  needs to call a server, server,  to execute 
a procedure proc, incrementing the value of a local integer variable x represented 
via a two-field tuple (x, v), with v being its actual value. After calling server,  
c l ient  will wait for an acknowledgment signalling that  its request has been ser- 
viced. 

proc = in(x, ! x ) @ s e l f . o u t ( x ,  x + 1)@sel f .n i l  

client  = newlo  e (u) .ou t  (exec, u,proc) @4erver.in(ack) @u. ( next behaviour) 

Process server  waits for the request of services, manages the incoming request 
and then sends an acknowledgment back to the client. 

s e ? ~ v e r  : in(exec, ! u, ! X ) @ s e l f . e v a l (  X ) @ s e l f . o u t ( a c k ) @ u . s e r v e r  
+ in(other  - -service,  ! u , . . . ) @ s e l f  . . . .  
- J -  . . .  

When the server  and cl ient  are coordinated into a net, cl ient  local environment 
refers the physical allocation of the server: 

n e t -  {61 ::{~1/~.1~,~2/l . . . . . .  } elientIP1,62 ::{~2/s.1~} server}  

where we have used P1 for denoting the local tuple space at node 61. Therefore, 
if P1 = out (x ,  0), i.e. the value of variable x of the client is 0, the execution of 
procedure proc at locality 62 assigns 1 to x. 
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3.3 D y n a m i c  N e w s g a t h e r e r  

Here we illustrate how LLinda can be used for remote programming. This kind 
of programming discipline allows the user to write agents which can dynamically 
move along the network and can interact locally with other agents. In this way, 
a~l agent placed by a user at the server's location can be decoupled from the user 
and can interact with the server without using the net. 

Consider the following scenario. User P needs additional information on a 
piece of data  represented by item (e.g. item could be the title of a book of 
which P wants to know the price). Par t  of the behaviour of P depends on this 
information; however, there are some activities which are independent of it. P 
can look for the required information in a database distributed over the network. 
The starting point of the search, say locality litem, can be chosen according to the 
search key item. We assume that  at each node of the database reachable from 
litem, it is present either a tuple of the form (item, v), containing the desired 
information, or a tuple of the form (item, Inex~), containing information about 
the next node to search for the additional information. 

The user process P calls for the execution at li~em of the agent gatherer, 
which dynamically travels between nodes looking for a tuple that  contains in- 
formation on item. This agent takes as parameters the research key item and 
a fresh locality u, which provides the address of the user's private tuple space 
where the result of the search has to be placed. Once gatherer has been spawned, 
P splits its behaviour into two parallel components: one waits for the additional 
information and the other proceeds. Thus, those activities which do not need 
the additional information are decoupled from the search activity, which might 
be complex and expensive. 

p = newloc(u).eval(gatherer(item, u))@litem.((in(! x)@u.P1)lP2) 

Process gatherer can match two alternative tuples. The first one captures the 
additional information on item (e.g. the price); if this is found then it is placed 
at locality u and gatherer terminates. The second tuple is used for obtaining 
the address of the node where the search has to be repeated. 

gatherer(item, u) = read(item, ! x)@self .out(x)Qu.nil  
+ read(item, !u')@self.eval(gatherer(item, u))@u'.nil  

Our assumption about the distributed database guarantees that  gatherer 
never deadlocks (because either the associated information or a location where 
the search can be repeated are surely found) but  it does not ensure that  the 
search activity will successful terminate: gatherer might loop indefinitely. This 
could happen if its second tuple, tha t  with location information, always finds a 

match in the tuple spaces. 

4 C o n c l u d i n g  R e m a r k s  a n d  R e l a t e d  W o r k  

In this paper we have presented a programming notation that  supports mobile 
applications. Our proposal embeds Linda enriched with explicit locality in a 
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CCS-like calculus. An operational semantics, which focuses on the coordination 
of mobile agents, is provided. Examples are presented that  illustrate how mobile 
applications and remote programming can be expressed in LLinda. We plan 
to develop observational semantics as foundation for programming logics and 
verification techniques. To this purpose, our starting point will be the testing 
framework developed for a process calculus based on Linda in [10, 23]. 

Differently, from other distributed programming paradigms (e.g. CML [24], 
Facile [14] and Telescript [26]), our basic communication mechanism is asyn- 
chronous. We consider this kind of communication as more practical. When 
implemented, communication takes time and its distributed implementation has 
to face with delays and synchronization overheads. Asynchronous communica- 
tion is then simpler to implement and indeed many distributed systems and 
programming languages, such as data  flow, concurrent logic and concurrent con- 
straint languages, offer it as basic primitive. Synchronous communications can 
be implemented by means of a more complex protocol where the sender waits for 
the reception of acknowledgments. Asynchronous communications has also the 
advantage of decoupling the behaviours of sender and receiver and of avoiding 
propagation of failures. 

Several theoretical works in non-interleaving semantics of process calculi have 
adopted the notion of locality to capture logical distribution of processes (see e.g. 
[5], [6] and the references therein). The basic idea of these approaches is to allow 
the external observer to see an action together with the location (access path) 
where it takes place. In our approach, localities are not used as a tool for observ- 
ing distribution of processes but rather as a programming device to structure 
and control distribution of processes and data. The formal models presented in 
[2, 11] are closely related to the work presented here. These approaches deal with 
mobility much like the ~r-calculus (channel and locality names can be passed in 
interactions). Remarkably, localities in LLinda can be used for simulating the 
private name passing and the scope extrusion mechanisms of the 7r-calculus, so 
that  a natural encoding of the asynchronous zr-calculus (see e.g. [1]) in LLinda 
can be easily programmed. 
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