
A Syntactic Theory of Dynamic Binding

Luc Moreau*

University of Southampton

Abs t r ac t . Dynamic binding, which has always been associated with Lisp, is still
semantically obscure to many. Although largely replaced by lexical scoping, not
only does dynamic binding remain an interesting and expressive programming
technique in specialised circumstances: but also it is a key notion in semantics.
This paper presents a syntactic theory that enables the programmer to perform
equational reasoning on programs using dynamic bindiiig. The theory is proved
to be sound and complete with respect to derivations allowed on programs in
"dynamic-environment passing style". From this theory, we derive a sequential
evaluation function in a context-rewriting system. Then, we exhibit the power
and usefulness of dynamic binding in two different ways. First, we prove that
dynamic binding adds expressiveness to a purely functional language. Second, we
show that dynamic binding is an essential notion in semantics that can be used to
define the semantics of exceptions. Afterwards, we further refine the evaluation
function into the popular implementation strategy called deep binding. Finally,
following the saying that deep binding is suitable for parallel evaluation, we
present the parallel evaluation function of a fUture-based functional language
extended with constructs for dynamic binding.

1 Introduction

Dynamic binding has tradit ionally been associated with Lisp dialects. It appeared in
McCarthy 's Lisp 1.0 [24] as a bug and became a feature in all succeeding implemen-
tations, like for instance MacLisp ~ [28], Gnu Emacs Lisp [23].: Even modern dialects
of the language which favour lexical scoping provide some form of dynamic variables,
with s p e c i a l declarations in Common Lisp [43], or even simulate dynamic binding by
lexically-scoped variables as in MITScheme's f l u i d - l e t [18].

Lexical scope has now become the norm, not only in imperative languages, but also
in functional languages such as Scheme [39], Common Lisp [43], Standard ML [26], or
Haskell [21]. The scope of a name binding is the text where occurrences of this name refer
to the binding. Lexical scoping imposes that a variable in an expression refers to the
innermost lexically-enclosing construct declaring that variable. This rule implies that
nested declarations follow a block structure organisation. On the contrary, the scope of a
name is said to be indefinite [43] if references to it may occur anywhere in the program.

On the other hand, dynamic binding refers to a notion of dynamic extent. The
dynamic extent of an expression is the lifetime of this expression, s ta r t ing and ending
when control enters and exits this expression. A dynamic binding is a binding which
exists and can only be used during the dynamic extent of an expression. A dynamic
variable refers to the latest active dynamic binding that exists for that variable Ill. The
expression dynamic scope is convenient to refer to the indefinite scope of a variable with
a dynamic extent [43].

Dynamic binding was initially defined by a meta-circular evaluator [24] and was
later formalised by a denotational semantics by Gordon [15, 16]. I t is also par t of the

* This research was supported in part by EPSRC grant GR/K30773. Author's address: De-
partment of Electronics and Computer Science, University of Southampton, Southampton
SO17 1BJ. United Kingdom. E-mail: L.Noreau�9 soton, ac.uk.

2 At least, the interpreted mode.

728

folklore that there exists a translation, the dynamic-environment passing translation,
which translates programs using dynamic binding into programs using lexical binding
only [36, p. 180]. Like the continuation-passing transform [35], the dynamic-passing
translation adds an extra argument to each function, its dynamic environment, and
every reference to a dynamic variable is translated into a lookup in the current dynamic
environment.

The late eighties saw the apparition of "syntactic theories", a new semantic frame-
work which allows equational reasoning on programs using non-functional features hke
first-class continuations and state [10, 11, 12, 44]. Those frameworks were later ex-
tended to take into account parallel evaluation [9, 14, 29, 30]. The purpose of this paper
is to present a syntactic theory that allows the user to perform equational reasoning on
programs using dynamic binding. Our contribution is fivefold.

First, from the dynamic-environment passing translation, we construct an inverse
translation. Using Sabry and Felleisen's technique [40, 41], we derive a set of axioms
and define a calculus, which we prove to be sound and complete with respect to the
derivations accepted in dynamic-environment passing style (Section 3).

Second, we devise a sequential evaluation function, i.e. an algorithm, which we prove
to return a value whenever the calculus does so. The evaluation function, which relies
on a context-rewriting technique [11], is presented in Section 4.

Third, in order to strengthen our claim that dynamic binding is an expressive pro-
gramming technique and a useful notion in semantics, we give a formal proof of its
expressiveness and use it in the definition of exceptions. In Section 5, we define a re-
lation of observational equivalence using the evaluation function, and we prove that
dynamic binding adds expressiveness [8] to a purely functional programming language,
by establishing that dynamic binding cannot be macro-expressed in the call-by-value
lambda-calculus. In Section 6, we use dynamic binding as a semantic primitive to for-
malise two different models of exceptions: non-resumable exceptions as in ML [26] and
resumable ones as in Common Lisp [43, 34].

Fourth, we refine our evaluation function in the strategy called deep binding, which
facilitates the creation and restoration of dynamic environments (Section 7).

Fifth, we extend our framework to parallel evaluation, based on the future construct
[14, 17, 30]. In Section 8, we define a parallel evaluation function which also rehes on

the deep binding technique.
Before deriving our calculus, we further motivate our work by describing three broad

categories of use of dynamic binding: conciseness, control dehmiters, and distributed
computing. Let us insist here and now that our purpose is not to denigrate the quahties
of lexical binding, which is the essence of abstraction by its block structure organisation,
but to present a syntactic theory that allows equational reasoning on dynamic binding,
to claim that dynamic binding is an expressive programming technique if used in a
sensible manner, and to show that dynamic binding can elegantly be used to define
semantics of other constructs. Let us note that dynamic binding is found not only in
Lisp but also in TEX [22], Perl [45], and Unix TM shells.

2 P r a c t i c a l U s e s o f D y n a m i c B i n d i n g

2.1 Conc iseness
A typical use of dynamic binding is a printing routine pr in t -number which requires the
basis in which the numbers should be displayed. One solution would be to pass an ex-
plicit argument to each call to pr int-number. However, repeating such a programming
pattern across the whole program is the source of programming mistakes. In addition,
this solution is not scalable, because if later we require the prinK-number routine to
take an additional parameter indicating in which font numbers should be displayed, we

would have to modify the whole program.

729

Scheme I /O functions take an optional input /ou tput port. The procedures with-
input-from-file and with-output-to-file [39] simulate dynamic binding for these
parameters.

Gnu Emacs [23] is an example of large program using dynamic variables. It contains
dynamic variables for the current buffer, the current window, the current cursor position,
which avoid to pass these parameters to all the functions that refer to them.

These examples il lustrate Felleisen's conciseness conjecture [8], according to which
sensible use of expressive programming constructs can reduce programming pat terns
in programs. In order to strengthen this observation, we prove that dynamic binding
actually adds expressiveness to a purely functional language in Section 5.

2.2 Control Delimiters
Even though Standard ML [26] is a lexically-scoped language, raised exceptions are
caught by the latest active handler. Usually, programmers install exception handlers for
the durat ion of an expression, i.e. the handler is dynamically bound during the extent
of the expression. MacLisp [28] and Common Lisp [43] c a t c h and throw, Enlisp l e t / c o
[34] are other examples of exception-like control operators with a dynamic extent. More
generally, control delimiters are used to create part ia l continuations, whose different
semantics tolerate various degrees of dynamicness [5, 20, 31, 38, 42].

2.3 Parallelism and Distribution

Parallelism and distribution are usually considered as a possible mean of increasing the
speed of programs execution. However, another motivation for distribution, exacerbated
by the ubiquitous W W W , is the quest for new resources: a computation has to migrate
from a site s~ to a another site s2, because s2 holds a resource that is not accessible
from st. For our explanatory purpose, we consider a simple resource which is the name
of a computer. There are several solutions to model the name of the running host in a
language; the last one only is entirely satisfactory.

(i) A lexical variable hostname could be bound to the name of the computer when-
ever a process is created. Unfortunately, this variable, which may be closed in a closure,
will always return the same value, even though it is evaluated on a different site.

(ii) A primitive (hostname), defined as a function of its arguments only (by 5 in
[35]), cannot return different values in different contexts, unless it is defined as a non-
deterministic function, which would prevent equational reasoning.

(iii) A special form (hostname) could satisfy our goal, but it is in contradiction with
the minimalist philosophy of Scheme, which avoids adding unnecessary special forms.
F~lrthermore, as we would have to define such a special form for every resource, it would
be natural to abstract them into a unique special form, parameterised by the resource
name: this introduces a new name space, which is exactly what dynamic binding offers.

(iv) Our solution is to dynamically bind a variable hostname with the name of the
computer at process-creation time. Every occurrence of such a variable would refer to
the latest active binding for the variable.

Besides, control of tasks in a paral lel /dis tr ibuted setting usually relies on a notion of
dynamic extent: sponsors [33, 37] allow the programmer to control hierarchies of tasks.

3 A C a l c u l u s o f D y n a m i c B i n d i n g

Figure I displays the syntax of Au, the language accessible to the end user. Let us observe
that the purpose of Au is to capture the essence of dynamic variables and not to propose
a new syntax for them.The language Au is based on two disjoint sets of variables: the
dynamic and static (or lexical) variables. As a consequence, the programmer can choose
between lexical abstractions Axs.M which lexically bind their parameter when applied,
or dynamic abstractions AXd.M, which dynamically bind their parameter. The former
represent regular abstractions of the A-calculus [3], while the lat ter model constructs
like Common Lisp abstractions with special variables [43], or dynamic-scope [6].

730

M E A ~ . ::= V [Xd I (M M) (Term)
V EVal.ue~ ::= x~ I (Ix~.M) I (Axd.M) (Value)
x~ E SV.ar = {x~0, x~l , . . .] (Static Variable)
Xd E D~.ar -= {Xdo,Xdl,...] (Dynamic Variable)

Fig. 1. The User Language A~

It is of paramount imp0t~tance to clearly state the naming conventions that we adopt
for such a language. Following Barendregt [3], we consider terms that are equal up to
the renaming of their bound ~static variables as equivalent. On the contrary, two terms
that differ by their dynamic variables are not considered as equivalent.

V[(M1 M2),E] = (Ayl.((Ay2.(yl (E, y2))) D[M2,E~)) :D[M1,E]
:D[Axd.M, E] = A(e, y). :DIM, (extend e xd y)] y ~ FV(M)

:D[xd,E~ = (lookup xd E)
l)[x~, E] = x~

~[(dlet 6 M), E] : :DIM, B[5, E H
B[(), E] : E

B[5 w ((Xd V)),E] = (extend B[5,E] Xd ~[V,e~)

y~ ~ FV(V[M2, E~)
Y2 ~ FV(E)

Fig. 2. Dynamic-Environment Passing Transform

In Figure 2, the dynamic-environment passing translation, which we call l) , is a
program trarisformation that maps programs of A~ into the target language deps(Ad), an
extended call:by-value A-calculus based on lexical variables only (Figure 3). Intuitively,
each abstract ion (static or dynamic) of A~ is t ranslated by :D into an abstraction taking
an extra dynamic environment in argument; the target language contains a variable e
which denotes an unknown environment. As a result, the application protocol in the
target language is changed accordingly: operator values are applied to pairs. In the
translat ion of the application, the dynamic environment E is used in the translations
of the operator and operand, and is also passed in argument to the operator. Dynamic
abstractions are t ranslated into abstractions which extend the dynamic environment.
Each dynamic variable is t ranslated into a lookup for the corresponding constant in the
current dynamic environment.

The source language of :D extends A~ with a diet construct, (diet ((Xdl V1) . . .) M),
which stands for "dynamic let". Such a construct, inaccessible to the programmer, is
u sed internally by the system to model the bindings of dynamic variables Xdi to values
~ . The syntax of the input language, called Ad, appears in Figure 5. Binding lists are
defined with the concatenation operator w satisfying the following property.

((Xdl Yl) . . . (Xdn Yn)) w ((Xdn+l Vn+l) . . .) : ((Xdl V1) . . . (Xdn Yn) (Xdn+l Vn+l) . . .)
Evaluation in the target language is based on the set of axioms displayed in the sec-

ond par t of Figure 3. Applications of binary abstractions require a double/3v-reduction
as modelled by rule (/3~), and environment lookup is implemented by (Ikl) and (/k2).

Following Sabry and Felieisen, our purpose in the rest of this Section is to derive
the set of axioms that can perform on terms of As the reductions allowed on terms of

731

The Language deps(Az):

P : : = W [(W (E , W }) I (lookupxdE) I
w::=x~ l y { ;,(~,y).P
E : : = c I (e x t e n d E x d W) I 0
e

x~,y6 SVars = {x~o,x~l,...}U{yo }
xa E DConst = {Xdo,Xdl,...}

A x i o m s :

(A(e, y).P)(E, W} = P{E/e}{W/y}

(Ay.P)W = P{W/y}

(lookup xa (extend E Xd W)) = W

(lookup Xd (extend E Xdl W)) = (lookup Xd E) if Xdl # Xd

(A(e,y).W(e,y)) ---- W i f e , y r FV(W)

(Ay.P)P (Term)
(Value)

(Dynamic Environment)
(Unknown Env. Variable)

(Static Variable)
(Dynamic Identifier)

(ft.)
(lk~)
(lk~)
(V~)

Fig. 3. Syntax and Axioms of the deps(Ad)-Calculus

D -1 ~(lookup Xd E)]

~-~](~y.P,) Pd
z)-~[(,~(e, v).P)]

Z3-iM

/3-1[(extend E xd W)]

= (diet B-I[E] (7)-1[W1] ~D-I[W~))

= (diet B-I[E] Xd)
~--- ()~y.~)-l[pll) "D-lIp2]

= Ay.~9-1[p~

= Az~.~-I~p]

-~ - X s

= 0
= (B - ~ E] w ((Xd :D-~[W~)))

Fig. 4. The Inverse Dynamic-Environment Passing Transform ~--1

deps(Ad). More precisely, we want to define a calculus on Ad that equationally corre-
sponds to the calculus on deps(Ad). The following definition of equational correspon-
dence is taken verbatim from [40].

D e f i n i t i o n 1 (E q u a t i o n a l C o r r e s p o n d e n c e) Let 7~ and G be two languages with
calculi AXn and AX6. Also let f : 7~ -9 G be a translation from 7~ to ~, and h : ~ --+ 7~
be a translat ion from G to T~. Finally let r, r l , r2 6 7~ and 9, gl, g2 6 ~. Then the calculus
A X n equationatly corresponds to the calculus AX~ if the following four conditions hold:

1. A X n ~ - r = (h o f) (r) . 3. AXn Fr l = r 2 i f a n d o n l y i f A X ~ b f (r l) = f (r 2) .
2. AX~ ~- g = (f o h)(g). 4. AX~ ~- gl = 92 if and only if AXn ~- h(gl) = h(g2).

[]

Figure 4 contains an inverse dynamic-environment passing transform mapping terms
of deps(Ad) into terms of Ad. The first case is worth explaining: a term (W1 (E, W2))
represents the application of an operator value W1 on a pair dynamic environment E and
operand value W2; its inverse translation is the application of the inverse translations
of W1 and W2, in the scope of a diet with the inverse translation of E. For the following
cases, the inverse translation removes the environment argument added to abstractions,
and translates any occurrence of a dynamic environment into a diet-expression.

732

State Space:

M E A d ::= V I Xd [(MM)
V �9 Valued ::= x, I y] (Axe.M)

�9 Bindd ::= 0 [5w V))
x~,y �9 SVar ::= {x~o,X~l,...} t-J {yo,
Xd �9 DVar ::= {Xdo,Xdl }

Pr imary Axioms:

(xz~.M) V

Axd.M
(diet 5 ((Ay.M1) M2))

(diet 5~ (diet 52 M))

(diet 5 V)

(diet 0 M)

(diet (5 w ((Xd V))) Xd)
(diet (5 w ((Xdl V))) Xd)

(AX.X M2)M1
(Ax.Y x)

(diet 5 M) (Term)
(Axd.M) (Value)

(binding list)
.) (Static Variable)

(Dynamic Variable)

= M { y / x ~ }

----Ay.(dlet ((xd y)) M) ify ~ FV(M)
-- (Ay.(dlet 5 M1)) (diet 5 M2) if y f[FV(5)
= (diet (51 w 52) M)

= V
= M
= (diet (5 w ((Xd V))) V)
=(dlet~xd) i fxd l r
= (M I M 2) i fxf[FV(M2)

= Y ifx f[FV(V)

(diet intro)
(diet propagate)

(diet merge)
(diet dim 1)
(diet elim 2)

(lookup 1)
(lookup 2)

(~'~)

(vo)

Derived Axioms:

(Axd.M) V = (diet ((xd Y)) M)
(diet ~ (M1 M2)) = (Ayl.(Ay2.(dlet ~ (yl Y2))) (diet ~ M2)) (diet 5 M1)

Compat ibi l i ty

{ (M1 M) = (M2 M) (Axs.M1) = (Axe.M2)
M1 = M2 ~ (M M1) = (M Ms) () ~ X d . M 1) : ()~xd.Ms)

(diet 5 M1) = (diet 5 Ms)

(diet intro')
(diet propagate r)

Fig. 5. Syntax and Axioms of the Ad-calculus

If we apply the dynamic-environment passing transform 79 to a term of Ad, and
immediately translate the result back to Ad by 79-1, we find the first six primary
axioms of Figure 5. For explanatory purpose, we prefer to present the derived axioms
(diet intro') and (dlet propagate'). The axiom (diet intro') is the counterpart of (~.)
for dynamic abstraction: applying a dynamic abstraction on a value V creates a diet-
construct that dynamically binds the parameter to the argument V and that has the
same body as the abstraction. Rule (diet propagate'), rewritten below using the syntactic
sugar let, tells us how to transform an application appearing inside the scope of a diet.

(diet ~ (M1 M2)) = (let (yl (diet 5 M1)) (let (y2 (diet ~ M2)) (diet 5 (yl Y~))))

The operator and the operand can each separately be evaluated inside the scope of the
same dynamic environment, and the application of the operator value on the operand
value also appears inside the scope of the same dynamic environment. The interpretation
of (diet merge), (diet elim 1), (diet elim 2) is straightforward.

We can establish the following properties concerning the composition of 79 and 79-1:

L e m m a 2 For any term M E Ad, any value V E Valued, any list of bindings 51 E

733

Bindd, for any environment E e deps(Ad), let 5 = B -1 [El, we have:

Ad ~- (diet 5 M) = I)-I[I)~M,E]] (1))~d ~- (~ w (~1 ~--- B-1[B[51,EH (3)
~,~ ~- y = V-~[V[V,E]] (2)

[]

L e m m a 3 For any term P E deps(Ad), any value W C deps(Valued), any dynamic
environments E, E1 E deps(Ad), we have:

deps(Ad) ~- /)[~9-1[p],E] = P{E/e} (1) depS(Ad) [- B[B-I[E1],E] = El{E/e} (3)
deps(Ad) I- T)[9-1[W], E] ---- W (2)
[]

Now, by applying the inverse translation /) -1 to each axiom of deps(Ad), we ob-
tain the four last pr imary axioms of Figure 5. Rules (lookup 1) and (lookup 2) are
the immediate correspondent of (/kl) and (Ik2) in deps(Ad), while (fl~) and (Uv) were
axioms discovered by Sabry and Felleisen in applying the same technique to calculi for
continuations and assignments [40].

The intuition of the set of axioms of A d c a n be explained as follows. In the absence of
dynamic abstractions, A d behaves as the call-by-value A-calculus. Whenever a dynamic
abstract ion is applied, a diet construct is created. Rule (diet propagatd) propagates
the diet to the leaves of the syntax tree, and replaces each occurrence of a dynamic
variable by its value in the dynamic environment by (lookup 1) and (lookup 2). Rule
(diet propagate') also guarantees that the dynamic binding remains accessible during
the extent of the application of the dynamic abstraction, i.e. until it is deleted by (diet
elim 1). Let us also observe here and now that parallel evaluation is possible because
the dynamic environment is duplicated for the operator and the operand, and both can
be reduced independently. This property will be used in Section 8 to define a parallel
evaluation function. We obtain the following soundness and completeness results:

L e m m a 4 (S o u n d n e s s) For any terms M1,M2 E Ad, such that Ad F M1 = M2, and
for any E E deps(Ad), we have that: deps(Ad) b ~[M1, E] = :DIM2, El. []

L e m m a 5 (C o m p l e t e n e s s) For any terms P1,P2 E deps(Ad), such that deps(Ad) F
P1 ---- P2, we have that: Ad ~- Z)-I[p1] ----- 1)-1[P2[[]

The following Theorem is a consequence of Lemmas 2 to 5.

T h e o r e m 1 The calculus Ad equationally corresponds to the calculus deps(Ad). []

Within the calculus, we can define a part ia l evaluation relation: the value of a pro-
gram M is V if we can prove that M equals V in the calculus.

D e f i n i t i o n 6 (evalc) For any program M C A ~ evalc(M) = V if Ad ~- M = V. []

This definition does not give us an algorithm, but it states the specification that must
be satisfied by any evaluation procedure. The purpose of the next Section is to define
such a procedure.

4 S e q u e n t i a l E v a l u a t i o n

The sequential evaluation function is defined in Figure 6. It relies on a notion of evalu-
ation context [11]: an evaluation context E is a term with a "hole", [], in place of the
next subterm to evaluate. We use the notat ion E[M] to denote the term obtained by
placing M inside the hole of the context E. Four transit ion rules only are necessary: (diet
intro) and (diet elim) are derived from the Ad-Calcnlus. Rule (lookup) is a replacement
for (diet propagate), (diet merge), (diet lookup 1), and (diet lookup 2) of the Ad-calcuhis.

734

State Space:

MCAa ::= V I
VEValued ::= x~ I
x, E SVar = {x,0,xsl , . . .}
xaCDVar = {Xdo,Xdl,...}
CeEvCona : := [] I (v E) I (e M)

Transition Rules:

$[(Ax~.M) V] ~ d r[M{V/x~}]

x~ I (M M) I (diet (Xd V) M) (Term)
(Ax~.M) I (Axd.M) (Value)

(Static Variable)
(Dynamic Variable)

t (diet (Xd V) E) (Evaluation Context)

C[()~xd.M) V] F-~'d E[(dlet (xd V) M)]

$[(dlet (Xd V) El[Xd])] "--~d El(diet (xa V) CI[V])] ifxd r DBV(E1)
C[(dlet (Xd V) Y')] ~-~d C[V']

(Z~)

(diet intro)
(lookup)

(diet dim)

Evaluation Function:

V if M ~ V
For any program M E A ~ eVald(M) = ifVj E IN, Mj ~+d Mj+l,with M0 = M

error i f M ~ M~,with Ms C Stuck(Ad)

Dynamically Bound Variables:
DBV([]) = 0

DBV(V $) = DBV($)
DBV(C M) = DBV($)

DBV(dlet (Xd V) $) = {xd} U DBV($)

Stuck Terms:
M C Stuck(Ad) if
M = E[Xd] with Xd ~_ DBV($)

Fig. 6. Sequential Evaluation Function

Intuitively, the value of a dynamic variable is given by the latest active binding for this
variable. In this framework, the latest active binding corresponds to the innermost diet
that binds this variable. The dynamic extent of a diet construct is the period of t ime
between its appari t ion by (diet intro) and its elimination by (diet dim).

The evaluation algorithm introduces the concept of stuck term, which is defined by
the occurrence of a dynamic variable in an evaluation context that does not contain a
binding for it. The evaluation function is then defined as a total function returning a
value when evaluation terminates, _L when evaluation diverges, or error when a stuck

term is reached.
The correctness of the evaluation function is established by the following Theorem,

which relates evalc and evald. Let us observe that evalc may return a value V t that
differs from the value V returned by evald because the calculus can perform reductions

inside abstractions.

T h e o r e m 2 For any program M E A~ evalc(M) -- V' iffevald(M) = V. [~

If we were to implement (lookup), we would start from the dynamic variable to
be evaluated, and search for the innermost enclosing diet. If it contained a binding
for the variable, we would return the associated value. Otherwise, we would proceed
with the next enclosing diet . This behaviour exactly corresponds to the search o f a
value in an associative list (assoc in Scheme). Such a s trategy is usually referred to
as deep binding. In Section 7, we further refine the sequential evaluation function by
making this associative list explicit. But, beforehand, we show that dynamic binding

adds expressiveness to a functional language.

735

5 E x p r e s s i v e n e s s

In Section 2.1, we stated that dynamic binding was an expressive programming tech-
nique that , when used in a sensible manner, could reduce programming pat terns in
programs. In this Section, we give a formal justification to this statement, by proving
tha t dynamic binding adds expressiveness [8] to a purely functional language. First , we
define the notion of observational equivalence.

D e f i n i t i o n 7 (O b s e r v a t i o n a l E q u i v a l e n c e) Given a programming l anguage / : and
an evaluation function evaIL, two terms M1, Ms E s are observationally equivalent,
writ ten M1 ~ c MA, if for any context C ~ L, such that C[M1] and C[M1] are both
programs of s evalL(M1) is defined and equal to V if and only if evalL(MA) is defined
and equal to V. []

We shall denote the observational equivalences for the call-by-value A-calculus and
for the Ad-Calculus by ~v and ------d, respectively. In order to prove that dynamic binding
adds expressiveness [8] to a purely functional language, let us consider the following
lambda terms, assuming the existence of a primitive cons to construct pairs.

M 1 = Atf.(cons (t O) (f (Ad.(t 0)))) M2 = Atf.(let (v (t 0)) (cons v (f (Ad.v))))

The terms M1, M2 are observationnally equivalent in the Av-calculus , i.e. M1 ~v M2, but
we have that M1 ~d Ms. Indeed, if C E Ad is C = (Axd. ([] (Ad.Xd) (At. (AXd. (t 0)) 1))) 0,
then C[M1] = (cons 0 1), while C[M~] = (cons 0 0).

This example shows that dynamic binding enables us to distinguish terms that the
call-by-value A-calculus cannot distinguish. As a result, ~vC~d , and using Felleisen's
definition of expressiveness [8, Thin 3.14], we conclude that:

P r o p o s i t i o n 1. Av cannot macro-express dynamic binding relative to Ad.

6 S e m a n t i c s o f E x c e p t i o n s

First-class continuations and state can simulate exceptions [13]. We show here that
exceptions can be defined in terms of first-class continuations and dynamic binding.

In the semantics of ML [26], a raised exception returns an exceptional value, dis-
t inct from a normal value, which has the effect to prune its evaluation context until
a handler is able to deal with the exception. By merging the mechanism that aborts
the computat ion and the mechanism that fetches the handler for the exception, the
handler can no longer be executed in the dynamic environment in which the exception
was raised. As a result, such an approach cannot be used to give a semantics to other
kinds of exceptions, like resumable ones [43].

In order to model the abortive effect, we extend the sequential evaluation func-
tion of Figure 6 with Felleisen and Friedman's abort operator J[[11]. For the sake of
simplicity, we assume that there exists only one exception type (discrimination on the
kind of exception can be performed in the handler). We also assume the existence of
a distinguished dynamic variable xed. In Figure 7, we give the semantics of ML-style
exceptions. When an exception is raised, the latest active handler is called, escapes,
and then applies f in the same dynamic environment as handle, and not in the dynamic
environment where the exception was raised 3.

On the other hand, there exist other kinds of exceptions, like resumable exceptions,
e.g. Common Lisp resumable errors [43], or Eulisp resumable conditions [34]. They
essentially offer the opportunity to resume the computation at the point where the
exception was raised. In the sequel, we present a variant of Queinnec's monitors [36,

3 The usage of a first-class continuation appears here as the rule for handle duplicates the
evaluation context E. Let us also observe that the continuation is only used in a downward
way, which amounts to popping frames from the stack only.

736

M E A d :: I
g[.4 M] ~d M

(A M) (Term)
(Abort)

g[(handle f M)] ~a 8[(Axed.M) (Av.A 8[(f v)])]
g[(raise V)] ~td 8[(Xed V)]

Fig. 7. ML-style exceptions

p. 255], which give the essence of resumable exceptions. The primitives monitor/signal
play the role that handler/raise had for ML-style exceptions. Let us note that signal is a
binary flmction, which takes not only a value, but also a boolean r indicating whether
the exception should be raised as resumable.

El(monitor f M)] ~d 8[(AXed.M)(let (old Xed)

$[(signal r V)] ~-~d E[(xed r V)]

()~ r v. (let (x ((AX~d.(f r V)) old))
(if r x (.A g[x])))))]

F i g . 8 . Resumable exceptions

Like handle, monitor installs an exception handler for the duration of a computation.
If an exception is signalled, ~he.latest active handler is called in the dynamic environment
of the signalled exception. I f an exception is signalled by the handler itself, it will
be handled by the handler t ha t existed before monitor was called: this is why Xed is
shadowed for the duration of the execution of the handler f , but will be again accessible
if the "normal" computation resumes. If the exception was signalled as resumable, i.e.
if the first argument of signal is true, the value returned by the handler is returned by
signal, and computatiomaontinues in exactly the same dynamic environment 4,

This approach to define the semantics of exception has two advantages, at least.
First, as we model each dffect by the appropriate primitive (abortion by A and han-
dler installation by dynamic binding), we have the ability to model different kinds of
semantics for exceptions. Second, defining the semantics of exceptions with assignments
weakens the theory [12] because assignments break some equivalences that would hold
in the presence of exceptions:so, our definition provides a more precise chaxacterisation
of a theory of exceptions.

7 R e f i n e m e n t
We refine the evaluation function by representing the dynamic environment explicitly by
an associative list. By separating the evaluation context from the dynamic environment,
we facilitate the design of a parallel evaluation function of Section 8.

Figure 9 displays the state space and transition rules of the deep binding strategy.
The dynamic environment is represented in a new diet construct which can only appear
at the outermost level of a configuration, called state. The list of bindings 5 can be
regarded as a global stack, initially empty when evaluation starts. A binding is pushed
on the binding list, every time a dynamic abstraction is applied, and popped at the
end of the dynamic extent of the application. In Section 4, the diet construct was also
modelling the dynamic extent of a dynamic-abstraction application; now that the diet
construct no longer appears inside terms, we introduce a (pop M) term playing the
same role: it is created when a dynamic abstraction is applied and is destroyed at the
end of the dynamic extent, after popping the top binding of the binding list. Theorem
3 establishes the correctness of the deep binding strategy.

4 Such a semantics assumes that there exists an initial handler in which evaluation can proceed.

737

State Space:

S �9 Stateab ::= (diet 5 M) (State)
M C Adb ::= V] Xd I (MM) [(popM) (Term)
v �9 V~l~edb ::= x, I (~ , . M) I (~x~.M) (Value)

�9 Binddb ::= 0 I 5 w ((Xd Y)) (Binding list)
x~ �9 SVar = {X~o,X~l,...} (Static Variable)
Xd �9 DVar = {Xdo,Xd~ } (Dynamic Variable)
E �9 E , C o ~ ::= [] I (v E) I (E M) I (pop E) (Evaluation Context)

Transition Rules:

(diet 5 $[(%x~.M) V]) "-~db (diet 5 $[M{V/xs}])

(diet 5 $[()~Xd.M) V]) "-~db (diet 5w V)) 8[(pop M)])

(diet 5 E[Zd]) ~db (diet 5 E[V]) if V -- lk(xd,5)

(diet 5w Y)) $[(pop Y')]) ~-~db (diet 5 $[V'])

Evaluation Function:

f V if (diet 0 M) ~ b (diet 0 V)
VM e A ~ evaldb(M) = ~ _L ifVj E]N, Mj "-+rib Mj+l,with M0 = (diet 0 M)

[, error if (diet 0 M)"-+~b M~,with M~ E Stuck(Adb)

(gv)

(diet extend)

(lookup)

(pop)

Stuck State: S E Stuck(Adb),
if S = (diet 5 E[xd]) with Xd ~ DOM(5)

]k(xd,5~((xd V))) = V
lk(xd, 5w V))) = lk(xd, 6) if Xd r Xdl

Fig. 9. Deep Binding

T h e o r e m 3 evald ---- evaldb []

The deep binding technique is simple to implement: bindings are pushed on the
binding list 5 at application time of dynamic abstractions and popped at the end of
their extent. However, the lookup operation is inefficient because it requires searching
the dynamic list, which is an operation linear in its length.

There exist some techniques to improve the lookup operation. The shallow binding
technique consists in indexing the dynamic environment by the variable names [1]. A
further optimisation, called shallow binding with value cell is to associate each dynamic
variable with a fixed location which contains the correct binding for that variable: the
lookup operation then simply requires to read the content of that location.

8 Parallel Evaluat ion

In Section 3, we observed that the axiom (diet propagate ~) was particularly suitable for
parallel evaluation because it allowed the independent evaluation of the operator and
operand by duplicating the dynamic environment. It is well-known that the deep binding
strategy is adapted to parallel evaluation because the associative list representing the
dynamic environment can be shared between different tasks.

As in our previous work [30], we follow the "parallelism by annotation" approach,
where the programmer uses an annotation future [17] to indicate which expressions may
be evaluated in parallel. The semantics of future has been described in the purely func-
tional framework [14] and in the presence of first-class continuations and assignments
[30]. In Figure 10, we present the semantics of future in the presence of dynamic binding.

As in [14, 30], the set of terms is augmented with a future construct, and we add to
the set of values a placeholder variable, "which represents the result of a computation

738

that is in progress". In addition, a new construct (f-let (p M) S) has a double goal: first
as a let, it binds p to the value of M in S; second, it models the potential evaluation of
5' in parallel with M. The component M is the mandatory term because it is the first
that would be evaluated if evaluation was sequential, while S is speculative because its
value is not known to be needed before M terminates.

State Space:

S C Statep ::= (diet ~ M) [(diet ~ (f-let (p M) S)) [error
M CAp ::= V [Xd I (M M) [(future M)

[(pop M) [(f rnark3U)] (Aerror)
W ~ PValu% ::= x, [(,~x,.M) [(,~xe.M)
V E Valu% ::= W [p
g ~ A Y a l u e ::= f] (~x~.M)] (Axd.M)
73ESeqEvVon, ::= [] [(V/3) I (73 M)] (pop 73) I
g ~ EvConp ::= 73 [(f-let (p 79) S)

(State)
(Term)

(Proper Value)
(Runtime Value)

(Applicable Value)
(fmark 5 73) (Seq. Ev. Context)

(Ev. Context)

Transit ion Rules:

1,1 (diet ~ E[V1 V2]) ~tv

1,1_
(diet 5 E[(Xxd.M) V]) ~tp

(diet 5 E[Xd]) ~p

1,1 (diet 8~((=~ V)) S[(pop V')l) ~ ,
(diet 5 E[(.A error)]) ~-~v

1,1_
(diet ~ g[(future M)]) ~+v

1,1 (diet ~ g[(fmark 5z V)]) v-~ v
1,0 (diet ~ s 81_ M)I) ~->v
1,1 (diet 5 (f-let (p V) S)) ~-Yp

(diet (~ E[M{V2/x~)]) if V~ = (Xx~.M) (t3~)
(diet 6 E[(A error)]) if V1 ~ AValue, V1 r p

(diet ~w V)) E[(pop M)]) (diet extend)

(diet 5 8[V]) if V = (i(Xd) (lookup)
(diet 5 ErA error]) if Xd ~ DOM(5)

(diet ~ s[y']) (pop)
error (error)
(diet ~ E[(fmark ~ M)]) (Itc)
(diet 61 E[V]) (future id)
(diet (f(fdet (p M)(diet 51E[p]))) P ~ FP(E) 0 FP(51Xfork)
s{v/p} (join)

14 $2 (speculative) 1,o (diet ~ (f-let (p M) $2)) if $1 ~+v (diet ~ (f-let (p M) $1)) ~-~p
s .+o,0 s (reexive)

a,b S' and S' ~',b' S ' . S ~+~',b+b' S" if S ~+p ~p , p
(transitive)

Evaluation Function: For any program M E A ~

W if (diet 0 M)~v(d le t () W)
evalp(M) = J- ifYj E IN,~nj,mj E IN such that

(diet 0 M) = So and Sj ~+~j'mJ S~j~_l with m i > 0.
error if (diet 0 M) ~-+~ M~,with Ms E Stuck(Adb), or (diet 0 M) ~v error

Fig. 10. Parallel Evaluation (differences with Figure 9)

It is important to observe that (future []) is not a valid evaluation context. Otherwise,
if evaluation was allowed to proceed inside the future body, it could possibly change the
dynamic environment, which would make (fork) unsound. Instead, rule (ltc), which
stands for lazy task creation [27, 7], replaces a (future M) expression by (frnark 5 M),
which should be interpreted as a mark indicating that a task may be created.

If the runtime elects to create a new task, (fork) creates a f-let expression, whose

739

mandatory component is the argument of fmark, i.e. the future argument, and whose
speculative component is a new state evaluating the context of fmark filled with the
placeholder variable, in the scope of the duplicated dynamic environment 61. If the run-
t ime does not elect to spawn a new task, evaluation can proceed in the fmark argument.

Rules (ltc) and (future id) specify the sequential behaviour of future: the value of
future is the value of frnark, which is the value of its argument.

When the evaluation of the mandatory component terminates, rule (join) substitutes
the value of the placeholder in the speculative state. Rule (speculative) indicates that
speculative transitions are allowed in the f-let body.

Following [14], Figure 10 defines a relation $1 ~_~,m 52 meaning that n steps are
involved in the reduction from $1 to $2, among which m are mandatory.

The correctness of the evaluation function follows from a modified diamond property
and by the observation tha t the number of pop terms in a state is always smaller or
equal to the length of the dynamic environment.

T h e o r e m 4 evaldb : eValp []

As far as implementation is concerned, rule (ltc) seems to indicate that the dynamic
environment should be duplicated. A further refinement of the system indicates that it
suffices to duplicate a pointer to the associative list, as long as the list remains accessible
in a shared store.

Rule (Itc) adds an overhead to every use of future, by duplicating the dynamic envi-
ronment even if dynamic variables are not used. Feeley [7] describes an implementation
tha t avoids this cost by lazily recreating a dynamic environment when a task is stolen.

Due to the orthogonality between assignments and dynamic binding, our previous
results [30] with assignments can be merged within this framework. Adding assignments
permits the definition of mutable dynamic variables (with a construct like d y n a m i c - s e t !
[34]). Due to the purely dynamic nature of the semantics, the presence of mutable
dynamic variables offers less parallelism as observed in [30]. The interaction of dynamic
binding and continuations is however beyond the scope of this paper [19].

9 R e l a t e d W o r k

In the conference on the History of Programming Languages, McCarthy [25] relates
tha t they observed the behaviour of dynamic binding on a program with higher-order
functions. The bug was fixed by introducing the funarg device and the f u n c t i o n con-
struct[32].

Cartwright [4] presents an equational theory of dynamic binding, but his language
is extended with explicit substitutions and assumes a call-by-name parameter passing
technique. The motivation of his work fundamentally differs from ours: his goal is to
derive a homomorphic model of functional languages by considering A as a combinator.
His axioms are derived from the Aa-calculus axioms, while ours are constructed during
the proof of equational correspondence of the calculus.

The authors of [6] discuss the issue of tail-recursion in the presence of dynamic
binding. They observe that simple implementations of f l u i d - l e t [18] are not tail-
recursive because they restore the previous dynamic environment after evaluating the
f l u i d - l e t body. Therefore, they propose an implementation strategy, which in essence
is a dynamic-environment passing style solution. Programs in dynamic-environment
passing style are characterised by the fact that they do not require a growth of the
control s tate for dynamic binding; however, they require a growth of the heap space.
An analogy is the continuation-passing translation, which generates a program where all
function calls are in terminal position although it does not mean that all cps-programs
are iterative. Feeley [7] and Queinnec [36] observe that programs in dynamic-environ-
ment passing style reserve a special register for the current dynamic environment. Since
every non-terminal call saves and then restores this register, such a strategy penalises

740

programs that do not use dynamic binding, especially in byte-code interpreters where
the marginal cost of an extra register is very high. Both of them prefer a solution that
does not penalise all programs, at the price of a growth of the control state for every
dynamic binding. Consequently, we believe that implementors have to decide whether
dynamic binding should or not increase the control state; in any case, it will result in a
non-iterative behaviour.

10 Conclusion
In the tradition of the syntactic theories for continuations and assignments, we present
a syntactic theory of dynamic binding. This theory helps us in deriving a sequential
evaluation function and a refined implementation like deep binding. We also integrate
dynamic-binding constructs into our framework for parallel evaluation of future-based
programs.

Besides, we prove that dynamic binding adds expressiveness to purely functional
language and we show that dynamic binding is a suitable tool to define the semantics
of exceptions-like notions. Furthermore, we believe that a single framework integrating
continuations, side-effects, and dynamic binding would help us in proving implementa-
tion strategies of f l u i d - l e t in the presence of continuations [19].

11 Acknowledgement
Many thanks to Daniel Ribbens, Christian Queinnec, and the anonymous referees for

their helpful comments.

References
1. John Allen. Anatomy o[Lisp. Mc Graw Hill, 1979.
2. Henry Baker. Shallo~ binding in lisp 1.5. Comm. o[the ACM, 21(7):565-569, 1978.
3. Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of

Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.
4. l~obert Cartwright. Lambda: the Ultimate Combinator. In V. Lifschitz, editor, Arti-

ficial Intelligence and Mathematical Theory of Computation: Papers in Honor of John
McCarthy, pages 27-46. Academic Press, 1991.

5. Otivier Danvy and Andrzej Filinski. Abstracting Control. In Proceedings of the 1990 ACM
Conference on Lisp and Functional Programming, pages 151-160, June 1990.

6. Bruce F. Duba, Matthias Felleisen, and Daniel P. Friedman. Dynamic Identifiers Can Be
Neat. Technical Report 220, Indiana University, Computer Science Department, 1987.

7. Marc Feeley. An Efficient and General Implementation of Futures on Large Scale Shared-
Memory Multiprocessors. PhD thesis, Brandeis University, 1993.

8. Matthias Felleisen. On the Expressive Power of Programming Languages- ~n Proc. Euro-
pean Symposium on Programming, in LNCS 432, pages 134-151. Springer-Verlag, 1990.

9. Matthias Felleisen and Daniel P. Friedman. A Reduction Semantics for Imperative Higher-
Order Languages. in Parallel Architecture and Languages Europe, in LNCS 259, pages
206-223, 1987.

10. Matthias Felleisen and Daniel P. Friedman. A Syntactic Theory of Sequential State. The-
oretical Computer Science, ~9:243-287, 1989.

11. Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce Duba. A Syn-
tactic Theory of Sequential Control. Theoretical Computer Science, 52(3):205-237, 1987.

12. Matthias Felleisen and Robert Hieb. The Revised Report on the Syntactic Theories of
Sequential Control and State. Theoretical Computer Science, 2(4):235-271, 1992.

13. Andrzej Filinski. Controlling Effects. PhD thesis, School of Computer Science. Carnegie
Mellon University, May 1996.

14. Cormac Flanagan and Matthias Felleisen. The Semantics of Future and Its Use in Program
Optimization. In Proceedings of the Twenty Second Annual ACM SIGACT-SIGPLAN
Symposium on Principles o] Programming Languages, ~nuary 1995.

15. Michael J.C. Gordon. Operational Reasoning and Denotational Semantics. In Proving
and Improving Programs, Colloques tRIA, pages 83-98, Arc et Senans, July 1975.

16. Michael J.C. Gordon. Towards a Semantic Theory of Dynamic Binding. Technical Report
STAN-CS-75-507, Stanford University, August 1975.

741

17. Robert H. Halstead, Jr. New Ideas in Parallel Lisp : Language Design, Implementation.
In Parallel Lisp : Languages and Systems, in LNCS 441, pages 2-57. Springer-Verlag, 1990.

18. Chris Hanson. MIT Scheme Reference Manual. Massachusetts Inst. of Tech., Jan. 1991.
19. Christopher Haynes and Daniel P. Friedman. Embedding Continuations in Procedural

Objects. A CM Transactions on Programming Languages and Systems, 9(4):582-598, 1987.
20. Robert Hieb and R. Kent Dybvig. Continuations and Concurrency. In Second ACM

SIGPLAN Symposium on Principles ~4 Practice of Parallel Programming, pages 128-136,
1990.

21. Paul Hudak, Simon Peyton Jones, and Philip Wadler (editors). Report on the Programming
Language Haskell. 1991.

22. Donald E. Knuth. The TF~book. Addison-Wesley, 1994.
23. lZobert Krawitz, Bil Lewis, Dan LaLiberte, Richard M. Stallman, and Chris Welt. GNU

Emacs Lisp Reference Manual, 2.4 edition.
24. John McCarthy. Recursive Functions of Symbolic Expressions and Their Computation by

Machine, Part I. Communications of the ACM, 3(4):184-195, 1960.
25. John McCarthy. History of Lisp. In ACM SIGPLAN History of Programming Languages

Conference, ACM Monograph Series, pages 173-196, June 1978.
26. P~obin Milner, Mads ToRe, and Robert Harper. The Definition of Standard ML. MIT

Press, 1990.
27. Eric Mohr, David A. Kranz, and Robert H. Halstead. Lazy Task Creation : a Technique

for Increasing the Granularity of Parallel Programs. In Proceedings of the 1990 ACM
Conference on Lisp and Functional Programming, pages 185-197, June 1990.

28. David A. Moon. Maclisp reference manual. Technical report, MIT Project Mac, April
1974.

29. Luc Moreau. Sound Evaluation of Parallel Functional Programs with First-Class Contin-
uations. PhD thesis, University of Liege, Liege, Belgium, June 1994.

30. Luc Moreau. The Semantics of Scheme with Future. In In ACM SIGPLAN International
Conference on Functional Programming (ICFP'96), pages 146-156, May 1996.

31. Luc Moreau and Christian Queinnec. Partial Continuations as the Difference of Continu-
ations. A Duumvirate of Control Operators. In International Conference on Programming
Language Implementation and Logic Programming (PLILP'94), in LNCS 844, pages 182-
197, Madrid, Spain, September 1994. Springer-Verlag.

32. Joel Moses. The function of function in lisp or why the funarg problem should be called
the environment problem. Project MAC AI-199, M.I.T., June 1970.

33. Randy B. Osborne. Speculative Computation in Multilisp. In Parallel Lisp : Languages
and Systems, in LNCS 441, pages 103-137. Springer-Verlag, 1990.

34. Julian Padget and Grep Nuyens (Editors). The Eulisp Definition, June 1991.
35. Gordon D. Plotkin. Call-by-Name, Call-by-Value and the A-Calculus. Theoretical Com-

puter Science, pages 125-159, 1975.
36. Christian Queinnec. Lisp in Small Pieces. Cambridge University Press, 1996. ISBN 0 521

56247 3.
37. Christian Queinnec and David De Roure. Design of a Concurrent and Distributed Lan-

guage. In Parallel Symbolic Computing: Languages, Systems and Applications, in LNCS
748, pages 234-259, Boston, Massachussetts, October 1992. Springer-Verlag.

38. Christian Queinnec and Bernard Serpette. A Dynamic Extent Control Operator for Par-
tial Continuations. In Proceedings of the Eighteenth Annual ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 174-184, 1991.

39. Jonathan Rees and William Clinger, editors. Revised 4 Report on the Algorithmic Lan-
guage Scheme. Lisp Pointers, 4(3):1-55, July-September 1991.

40. Amr Sabry. The Formal Relationship between Direct and Continuation-Passing Style Op-
timizing Compilers: a Synthesis of Two Paradigms. PhD thesis, Rice University, 1994.

41. Amr Sabry and Matthias Felleisen. Reasoning about Programs in Continuation-Passing
Style. Lisp and Symbolic and Computation, 6(3/4):289-360, November 1993.

42. Dorai Sitaram and Matthias Felleisen. Control Delimiters and Their Hierarchies. Lisp and
Symbolic Computation, 3(1):67-99, 1990.

43. Guy Lewis Steele, Jr. Common Lisp. The Language. Digital Press, second edition, 1990.
44. Carolyn Talcott. Rum : an Intensional Theory of Function and Control Abstractions. In

Proc. 1t~87 Workshop on Foundations of Logic and Functional Programming, in LNCS 306,
pages 3-44. Springer-Verlag, 1988.

45. Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl. O'Reilly ~:
Associates, Inc., second edition edition, 1996.

