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Abs t r ac t .  Dynamic binding, which has always been associated with Lisp, is still 
semantically obscure to many. Although largely replaced by lexical scoping, not 
only does dynamic binding remain an interesting and expressive programming 
technique in specialised circumstances: but also it is a key notion in semantics. 
This paper presents a syntactic theory that enables the programmer to perform 
equational reasoning on programs using dynamic bindiiig. The theory is proved 
to be sound and complete with respect to derivations allowed on programs in 
"dynamic-environment passing style". From this theory, we derive a sequential 
evaluation function in a context-rewriting system. Then, we exhibit the power 
and usefulness of dynamic binding in two different ways. First, we prove that 
dynamic binding adds expressiveness to a purely functional language. Second, we 
show that dynamic binding is an essential notion in semantics that can be used to 
define the semantics of exceptions. Afterwards, we further refine the evaluation 
function into the popular implementation strategy called deep binding. Finally, 
following the saying that deep binding is suitable for parallel evaluation, we 
present the parallel evaluation function of a fUture-based functional language 
extended with constructs for dynamic binding. 

1 Introduction 

Dynamic binding has tradit ionally been associated with Lisp dialects. It appeared in 
McCarthy 's  Lisp 1.0 [24] as a bug and became a feature in all succeeding implemen- 
tations, like for instance MacLisp ~ [28], Gnu Emacs Lisp [23].: Even modern dialects 
of the language which favour lexical scoping provide some form of dynamic variables, 
with s p e c i a l  declarations in Common Lisp [43], or even simulate dynamic binding by 
lexically-scoped variables as in MITScheme's f l u i d - l e t  [18]. 

Lexical scope has now become the norm, not only in imperative languages, but also 
in functional languages such as Scheme [39], Common Lisp [43], Standard ML [26], or 
Haskell [21]. The scope of a name binding is the text where occurrences of this name refer 
to the binding. Lexical scoping imposes that  a variable in an expression refers to the 
innermost lexically-enclosing construct declaring that  variable. This rule implies that  
nested declarations follow a block structure organisation. On the contrary, the  scope of a 
name is said to be indefinite [43] if references to it may occur anywhere in the program. 

On the other hand, dynamic binding refers to a notion of dynamic extent. The 
dynamic extent of an expression is the lifetime of this expression, s ta r t ing  and ending 
when control enters and exits this expression. A dynamic binding is a binding which 
exists and can only be used during the dynamic extent of an expression. A dynamic 
variable refers to the latest  active dynamic binding that  exists for that  variable Ill. The 
expression dynamic scope is convenient to refer to the indefinite scope of a variable with 
a dynamic extent [43]. 

Dynamic binding was initially defined by a meta-circular evaluator [24] and was 
later formalised by a denotational semantics by Gordon [15, 16]. I t  is also par t  of the 
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folklore that there exists a translation, the dynamic-environment passing translation, 
which translates programs using dynamic binding into programs using lexical binding 
only [36, p. 180]. Like the continuation-passing transform [35], the dynamic-passing 
translation adds an extra argument to each function, its dynamic environment, and 
every reference to a dynamic variable is translated into a lookup in the current dynamic 
environment. 

The late eighties saw the apparition of "syntactic theories", a new semantic frame- 
work which allows equational reasoning on programs using non-functional features hke 
first-class continuations and state [10, 11, 12, 44]. Those frameworks were later ex- 
tended to take into account parallel evaluation [9, 14, 29, 30]. The purpose of this paper 
is to present a syntactic theory that allows the user to perform equational reasoning on 
programs using dynamic binding. Our contribution is fivefold. 

First, from the dynamic-environment passing translation, we construct an inverse 
translation. Using Sabry and Felleisen's technique [40, 41], we derive a set of axioms 
and define a calculus, which we prove to be sound and complete with respect to the 
derivations accepted in dynamic-environment passing style (Section 3). 

Second, we devise a sequential evaluation function, i.e. an algorithm, which we prove 
to return a value whenever the calculus does so. The evaluation function, which relies 
on a context-rewriting technique [11], is presented in Section 4. 

Third, in order to strengthen our claim that dynamic binding is an expressive pro- 
gramming technique and a useful notion in semantics, we give a formal proof of its 
expressiveness and use it in the definition of exceptions. In Section 5, we define a re- 
lation of observational equivalence using the evaluation function, and we prove that  
dynamic binding adds expressiveness [8] to a purely functional programming language, 
by establishing that  dynamic binding cannot be macro-expressed in the call-by-value 
lambda-calculus. In Section 6, we use dynamic binding as a semantic primitive to for- 
malise two different models of exceptions: non-resumable exceptions as in ML [26] and 
resumable ones as in Common Lisp [43, 34]. 

Fourth, we refine our evaluation function in the strategy called deep binding, which 
facilitates the creation and restoration of dynamic environments (Section 7). 

Fifth, we extend our framework to parallel evaluation, based on the future construct 
[14, 17, 30]. In Section 8, we define a parallel evaluation function which also rehes on 

the deep binding technique. 
Before deriving our calculus, we further motivate our work by describing three broad 

categories of use of dynamic binding: conciseness, control dehmiters, and distributed 
computing. Let us insist here and now that our purpose is not to denigrate the quahties 
of lexical binding, which is the essence of abstraction by its block structure organisation, 
but to present a syntactic theory that allows equational reasoning on dynamic binding, 
to claim that dynamic binding is an expressive programming technique if used in a 
sensible manner, and to show that  dynamic binding can elegantly be used to define 
semantics of other constructs. Let us note that dynamic binding is found not only in 
Lisp but also in TEX [22], Perl [45], and Unix TM shells. 

2 P r a c t i c a l  U s e s  o f  D y n a m i c  B i n d i n g  

2.1 Conc iseness  
A typical use of dynamic binding is a printing routine pr in t -number  which requires the 
basis in which the numbers should be displayed. One solution would be to pass an ex- 
plicit argument to each call to pr int-number.  However, repeating such a programming 
pattern across the whole program is the source of programming mistakes. In addition, 
this solution is not scalable, because if later we require the prinK-number routine to 
take an additional parameter indicating in which font numbers should be displayed, we 

would have to modify the whole program. 
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Scheme I /O  functions take an optional input /ou tput  port. The procedures with- 
input-from-file and with-output-to-file [39] simulate dynamic binding for these 
parameters.  

Gnu Emacs [23] is an example of large program using dynamic variables. It contains 
dynamic variables for the current buffer, the current window, the current cursor position, 
which avoid to pass these parameters  to all the functions that  refer to them. 

These examples il lustrate Felleisen's conciseness conjecture [8], according to which 
sensible use of expressive programming constructs can reduce programming pat terns  
in programs. In order to strengthen this observation, we prove that  dynamic binding 
actually adds expressiveness to a purely functional language in Section 5. 

2.2 Control  Delimiters 
Even though Standard ML [26] is a lexically-scoped language, raised exceptions are 
caught by the latest  active handler. Usually, programmers install exception handlers for 
the durat ion of an expression, i.e. the handler is dynamically bound during the extent 
of the expression. MacLisp [28] and Common Lisp [43] c a t c h  and throw, Enlisp l e t / c o  
[34] are other examples of exception-like control operators with a dynamic extent. More 
generally, control delimiters are used to create part ia l  continuations, whose different 
semantics tolerate various degrees of dynamicness [5, 20, 31, 38, 42]. 

2.3 Parallelism and Distribution 

Parallelism and distribution are usually considered as a possible mean of increasing the 
speed of programs execution. However, another motivation for distribution, exacerbated 
by the ubiquitous W W W ,  is the quest for new resources: a computation has to migrate 
from a site s~ to a another site s2, because s2 holds a resource that  is not accessible 
from st.  For our explanatory purpose, we consider a simple resource which is the name 
of a computer. There are several solutions to model the name of the running host in a 
language; the last one only is entirely satisfactory. 

(i) A lexical variable hostname could be bound to the name of the computer when- 
ever a process is created. Unfortunately, this variable, which may be closed in a closure, 
will always return the same value, even though it is evaluated on a different site. 

(ii) A primitive (hostname),  defined as a function of its arguments only (by 5 in 
[35]), cannot return different values in different contexts, unless it is defined as a non- 
deterministic function, which would prevent equational reasoning. 

(iii) A special form (hostname) could satisfy our goal, but it is in contradiction with 
the minimalist philosophy of Scheme, which avoids adding unnecessary special forms. 
F~lrthermore, as we would have to define such a special form for every resource, it would 
be natural  to abstract  them into a unique special form, parameterised by the resource 
name: this introduces a new name space, which is exactly what dynamic binding offers. 

(iv) Our solution is to dynamically bind a variable hostname with the name of the 
computer at  process-creation time. Every occurrence of such a variable would refer to 
the latest  active binding for the variable. 

Besides, control of tasks in a paral lel /dis tr ibuted setting usually relies on a notion of 
dynamic extent: sponsors [33, 37] allow the programmer to control hierarchies of tasks. 

3 A C a l c u l u s  o f  D y n a m i c  B i n d i n g  

Figure I displays the syntax of Au, the language accessible to the end user. Let us observe 
that  the purpose of Au is to capture the essence of dynamic variables and not to propose 
a new syntax for them.The language Au is based on two disjoint sets of variables: the 
dynamic and static (or lexical) variables. As a consequence, the programmer can choose 
between lexical abstractions Axs.M which lexically bind their parameter  when applied, 
or dynamic abstractions AXd.M, which dynamically bind their parameter.  The former 
represent regular abstractions of the A-calculus [3], while the lat ter  model constructs 
like Common Lisp abstractions with special variables [43], or dynamic-scope  [6]. 
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M E A ~  . ::= V [ Xd I ( M M )  (Term) 
V EVal.ue~ ::= x~ I (Ix~.M) I (Axd.M) (Value) 
x~ E SV.ar = {x~0, x~l , . . . ]  (Static Variable) 
Xd E D~.ar -= {Xdo,Xdl,...] (Dynamic Variable) 

Fig. 1. The User Language A~ 

It is of paramount imp0t~tance to clearly state the naming conventions that  we adopt 
for such a language. Following Barendregt [3], we consider terms that  are equal up to 
the renaming of their bound ~static variables as equivalent. On the contrary, two terms 
that  differ by their dynamic variables are not considered as equivalent. 

V[(M1 M2),E] = (Ayl.((Ay2.(yl (E, y2))) D[M2,E~)) :D[M1,E] 
:D[Axd.M, E] = A(e, y). :DIM, (extend e xd y)] y ~ FV(M) 

:D[xd,E~ = (lookup xd E) 
l)[x~, E] = x~ 

~[(dlet 6 M), E] : :DIM, B[5, E H 
B[(), E] : E 

B[5 w ((Xd V)),E] = (extend B[5,E] Xd ~[V,e~) 

y~ ~ FV(V[M2, E~) 
Y2 ~ FV(E) 

Fig. 2. Dynamic-Environment Passing Transform 

In Figure 2, the dynamic-environment passing translation, which we call l) ,  is a 
program trarisformation that  maps programs of A~ into the target  language deps(Ad), an 
extended call:by-value A-calculus based on lexical variables only (Figure 3). Intuitively, 
each abstract ion (static or dynamic) of A~ is t ranslated by :D into an abstraction taking 
an extra  dynamic environment in argument; the target  language contains a variable e 
which denotes an unknown environment. As a result, the application protocol in the 
target  language is changed accordingly: operator values are applied to pairs. In the 
translat ion of the application, the dynamic environment E is used in the translations 
of the operator and operand, and is also passed in argument to the operator. Dynamic 
abstractions are t ranslated into abstractions which extend the dynamic environment. 
Each dynamic variable is t ranslated into a lookup for the corresponding constant in the 
current dynamic environment. 

The source language of :D extends A~ with a diet construct, (diet ((Xdl V1) . . . )  M),  
which stands for "dynamic let". Such a construct, inaccessible to the programmer, is 
u sed  internally by the system to model the bindings of dynamic variables Xdi to values 
~ .  The syntax of the input language, called Ad, appears in Figure 5. Binding lists are 
defined with the concatenation operator w satisfying the following property. 

((Xdl Yl) . . .  (Xdn Yn)) w ((Xdn+l Vn+l) . . .)  : ((Xdl V1) . . .  (Xdn Yn) (Xdn+l Vn+l) . . . )  
Evaluation in the target  language is based on the set of axioms displayed in the sec- 

ond par t  of Figure 3. Applications of binary abstractions require a double/3v-reduction 
as modelled by rule (/3~), and environment lookup is implemented by (Ikl) and (/k2). 

Following Sabry and Felieisen, our purpose in the rest of this Section is to derive 
the set of axioms that  can perform on terms of As the reductions allowed on terms of 
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The Language  deps(Az): 

P : : = W  [ (W ( E , W } ) I  ( lookupxdE) I 
w::=x~ l y {  ;,(~,y).P 
E : : = c  I ( e x t e n d E x d W )  I 0 
e 

x~,y6 SVars = {x~o,x~l,...}U{yo . . . .  } 
xa E DConst = {Xdo,Xdl,...} 

A x i o m s :  

(A(e, y).P)(E, W} = P{E/e}{W/y}  

(Ay.P)W = P{W/y}  

(lookup xa (extend E Xd W)) = W 

(lookup Xd (extend E Xdl W)) = (lookup Xd E) if Xdl # Xd 

(A(e,y).W(e,y)) ---- W i f e ,  y r FV(W)  

(Ay.P)P (Term) 
(Value) 

(Dynamic Environment) 
( Unknown Env. Variable) 

(Static Variable) 
(Dynamic Identifier) 

(ft.) 
(lk~) 
(lk~) 
(V~) 

Fig. 3. Syntax and Axioms of the deps(Ad)-Calculus 

D -1 ~(lookup Xd E)] 

~-~](~y.P,) Pd 
z)-~[(,~(e, v).P)] 

Z3-iM 

/3-1[(extend E xd W)] 

= (diet B-I[E] (7)-1[W1] ~D-I[W~)) 

= (diet B-I[E] Xd) 
~--- ()~y.~)-l[pll)  "D-lIp2] 

= Ay.~9-1[p~ 

= Az~.~-I~p] 

-~ -  X s 

= 0 
= ( B - ~ E ]  w ((Xd :D-~[W~))) 

Fig.  4. The Inverse Dynamic-Environment Passing Transform ~--1 

deps(Ad). More precisely, we want to define a calculus on Ad that  equationally corre- 
sponds to the calculus on deps(Ad). The following definition of equational correspon- 
dence is taken verbatim from [40]. 

D e f i n i t i o n  1 ( E q u a t i o n a l  C o r r e s p o n d e n c e )  Let 7~ and G be two languages with 
calculi AXn and AX6. Also let f : 7~ -9 G be a translation from 7~ to ~, and h : ~ --+ 7~ 
be a translat ion from G to T~. Finally let r, r l ,  r2 6 7~ and 9, gl, g2 6 ~. Then the calculus 
A X n  equationatly corresponds to the calculus AX~ if the following four conditions hold: 

1. A X n ~ - r = ( h  o f ) (r) .  3. AXn Fr l  = r 2 i f a n d o n l y i f A X ~  b f ( r l ) = f ( r 2 ) .  
2. AX~ ~- g = ( f  o h)(g). 4. AX~ ~- gl = 92 if and only if AXn ~- h(gl) = h(g2). 

[] 

Figure 4 contains an inverse dynamic-environment passing transform mapping terms 
of deps(Ad) into terms of Ad. The first case is worth explaining: a term (W1 (E, W2)) 
represents the application of an operator value W1 on a pair dynamic environment E and 
operand value W2; its inverse translation is the application of the inverse translations 
of W1 and W2, in the scope of a diet with the inverse translation of E. For the following 
cases, the inverse translation removes the environment argument added to abstractions, 
and translates any occurrence of a dynamic environment into a diet-expression. 
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State Space: 

M E A d  ::= V I Xd [ (MM)  
V �9 Valued ::= x, I y ] (Axe.M) 

�9 Bindd ::= 0 [ 5w V)) 
x~,y �9 SVar ::= {x~o,X~l,...} t-J {yo, 
Xd �9 DVar ::= {Xdo,Xdl . . . .  } 

Pr imary  Axioms: 

(xz~.M) V 

Axd.M 
(diet 5 ((Ay.M1) M2)) 

(diet 5~ (diet 52 M)) 

(diet 5 V) 

(diet 0 M) 

(diet (5 w ((Xd V))) Xd) 
(diet (5 w ((Xdl V))) Xd) 

(AX.X M2)M1 
(Ax.Y x) 

(diet 5 M) (Term) 
( Axd.M) (Value) 

(binding list) 
.) (Static Variable) 

(Dynamic Variable) 

= M { y / x ~ }  

----Ay.(dlet ((xd y)) M) ify ~ FV(M) 
-- (Ay.(dlet 5 M1)) (diet 5 M2) if y f[ FV(5) 
= (diet (51 w 52) M) 

= V  
= M  
= (diet (5 w ((Xd V))) V) 
=(dlet~xd)  i fxd l r  
= ( M I M 2 )  i fxf[FV(M2) 

= Y ifx f[FV(V) 

(diet intro) 
(diet propagate) 

(diet merge) 
(diet dim 1) 
(diet elim 2) 

(lookup 1) 
(lookup 2) 

(~'~ ) 

(vo) 

Derived Axioms: 

(Axd.M) V = (diet ((xd Y)) M) 
(diet ~ (M1 M2)) = (Ayl.(Ay2.(dlet ~ (yl Y2))) (diet ~ M2)) (diet 5 M1) 

Compat ibi l i ty  

{ (M1 M) = (M2 M) (Axs.M1) = (Axe.M2) 
M1 = M2 ~ (M M1) = (M Ms) ( ) ~ X d . M 1 )  : ()~xd.Ms) 

(diet 5 M1) = (diet 5 Ms) 

(diet intro' ) 
(diet propagate r) 

Fig. 5. Syntax and Axioms of the Ad-calculus 

If we apply the dynamic-environment passing transform 79 to a term of Ad, and 
immediately translate the result back to Ad by 79-1, we find the first six primary 
axioms of Figure 5. For explanatory purpose, we prefer to present the derived axioms 
(diet intro') and (dlet propagate'). The axiom (diet intro') is the counterpart of (~.) 
for dynamic abstraction: applying a dynamic abstraction on a value V creates a diet- 
construct that  dynamically binds the parameter to the argument V and that has the 
same body as the abstraction. Rule (diet propagate'), rewritten below using the syntactic 
sugar let, tells us how to transform an application appearing inside the scope of a diet. 

(diet ~ (M1 M2)) = (let (yl (diet 5 M1)) (let (y2 (diet ~ M2)) (diet 5 (yl Y~)))) 

The operator and the operand can each separately be evaluated inside the scope of the 
same dynamic environment, and the application of the operator value on the operand 
value also appears inside the scope of the same dynamic environment. The interpretation 
of (diet merge), (diet elim 1), (diet elim 2) is straightforward. 

We can establish the following properties concerning the composition of 79 and 79-1: 

L e m m a  2 For any term M E Ad, any value V E Valued, any list of bindings 51 E 
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Bindd, for any environment E e deps(Ad), let 5 = B -1 [El,  we have: 

Ad ~- (diet 5 M)  = I)-I[I)~M,E]] (1) )~d ~- (~ w (~1 ~--- B-1[B[51,EH (3 )  
~,~ ~- y = V-~[V[V,E]] (2) 

[] 

L e m m a  3 For any term P E deps(Ad), any value W C deps(Valued), any dynamic 
environments E, E1 E deps(Ad), we have: 

deps(Ad) ~- /)[~9-1[p],E] = P{E/e}  (1) depS(Ad) [- B[B-I[E1],E] = El{E/e}  (3) 
deps(Ad) I- T)[9-1[W],  E]  ---- W (2) 
[] 

Now, by applying the inverse translation / ) -1  to each axiom of deps(Ad), we ob- 
tain the four last pr imary axioms of Figure 5. Rules (lookup 1) and (lookup 2) are 
the immediate correspondent of (/kl) and (Ik2) in deps(Ad), while (fl~) and (Uv) were 
axioms discovered by Sabry and Felleisen in applying the same technique to calculi for 
continuations and assignments [40]. 

The intuition of the set of axioms of A d c a n  be explained as follows. In the absence of 
dynamic abstractions, A d behaves as the call-by-value A-calculus. Whenever a dynamic 
abstract ion is applied, a diet construct is created. Rule (diet propagatd) propagates 
the diet to the leaves of the syntax tree, and replaces each occurrence of a dynamic 
variable by its value in the dynamic environment by (lookup 1) and (lookup 2). Rule 
(diet propagate') also guarantees that  the dynamic binding remains accessible during 
the extent of the application of the dynamic abstraction, i.e. until it  is deleted by (diet 
elim 1). Let us also observe here and now that  parallel evaluation is possible because 
the dynamic environment is duplicated for the operator and the operand, and both can 
be reduced independently. This property will be used in Section 8 to define a parallel 
evaluation function. We obtain the following soundness and completeness results: 

L e m m a  4 ( S o u n d n e s s )  For any terms M1,M2 E Ad, such that  Ad F M1 = M2, and 
for any E E deps(Ad), we have that:  deps(Ad) b ~[M1, E] = :DIM2, El. [] 

L e m m a  5 ( C o m p l e t e n e s s )  For any terms P1,P2 E deps(Ad), such that  deps(Ad) F 
P1 ---- P2, we have that:  Ad ~- Z)-I[p1] ----- 1)-1[P2[ [] 

The following Theorem is a consequence of Lemmas 2 to 5. 

T h e o r e m  1 The calculus Ad equationally corresponds to the calculus deps(Ad). [] 

Within the calculus, we can define a part ia l  evaluation relation: the value of a pro- 
gram M is V if we can prove that  M equals V in the calculus. 

D e f i n i t i o n  6 (evalc) For any program M C A ~ evalc(M) = V if Ad ~- M = V. [] 

This definition does not give us an algorithm, but it states the specification that  must 
be satisfied by any evaluation procedure. The purpose of the next Section is to define 
such a procedure. 

4 S e q u e n t i a l  E v a l u a t i o n  

The sequential evaluation function is defined in Figure 6. It relies on a notion of evalu- 
ation context [11]: an evaluation context E is a term with a "hole", [ ], in place of the 
next subterm to evaluate. We use the notat ion E[M] to denote the term obtained by 
placing M inside the hole of the context E. Four transit ion rules only are necessary: (diet 
intro) and (diet elim) are derived from the Ad-Calcnlus. Rule (lookup) is a replacement 
for (diet propagate), (diet merge), (diet lookup 1), and (diet lookup 2) of the Ad-calcuhis. 
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State Space: 

MCAa ::= V I 
VEValued ::= x~ I 
x, E SVar = {x,0,xsl , . . .}  
xaCDVar = {Xdo,Xdl,...} 
CeEvCona : := [] I ( v E )  I (e M) 

Transition Rules: 

$[(Ax~.M) V] ~ d  r[M{V/x~}] 

x~ I (M M) I (diet (Xd V) M) (Term) 
(Ax~.M) I (Axd.M) (Value) 

(Static Variable) 
(Dynamic Variable) 

t (diet (Xd V) E) (Evaluation Context) 

C[()~xd.M) V] F-~'d E[(dlet (xd V) M)] 

$[(dlet (Xd V) El[Xd])] "--~d El(diet (xa V) CI[V])] ifxd r DBV(E1) 
C[(dlet (Xd V) Y')] ~-~d C[V'] 

(Z~) 

(diet intro) 
(lookup) 

(diet dim) 

Evaluation Function: 

V if M ~ V 
For any program M E A ~ eVald(M) = ifVj E IN, Mj ~+d Mj+l,with M0 = M 

error i f M  ~ M~,with Ms C Stuck(Ad) 

Dynamically Bound Variables: 
DBV([ ]) = 0 

DBV(V $) = DBV($) 
DBV(C M) = DBV($) 

DBV(dlet (Xd V) $) = {xd} U DBV($) 

Stuck Terms: 
M C Stuck(Ad) if 
M = E[Xd] with Xd ~_ DBV($) 

Fig. 6. Sequential Evaluation Function 

Intuitively, the value of a dynamic variable is given by the latest  active binding for this 
variable. In this framework, the latest active binding corresponds to the innermost diet 
that  binds this variable. The dynamic extent of a diet construct is the period of t ime 
between its appari t ion by (diet intro) and its elimination by (diet dim). 

The evaluation algorithm introduces the concept of stuck term, which is defined by 
the occurrence of a dynamic variable in an evaluation context that  does not contain a 
binding for it. The evaluation function is then defined as a total  function returning a 
value when evaluation terminates, _L when evaluation diverges, or error when a stuck 

term is reached. 
The correctness of the evaluation function is established by the following Theorem, 

which relates evalc and evald. Let us observe that  evalc may return a value V t that  
differs from the value V returned by evald because the calculus can perform reductions 

inside abstractions. 

T h e o r e m  2 For any program M E A~ evalc(M) -- V' iffevald(M) = V. [~ 

If we were to implement (lookup), we would start  from the dynamic variable to 
be evaluated, and search for the innermost enclosing diet. If it  contained a binding 
for the variable, we would return the associated value. Otherwise, we would proceed 
with the  next enclosing diet .  This behaviour exactly corresponds to the search o f  a 
value in an associative list (assoc  in Scheme). Such a s trategy is usually referred to 
as deep binding. In Section 7, we further refine the sequential evaluation function by 
making this associative list explicit. But, beforehand, we show that  dynamic binding 

adds expressiveness to a functional language. 
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5 E x p r e s s i v e n e s s  

In Section 2.1, we stated that  dynamic binding was an expressive programming tech- 
nique that ,  when used in a sensible manner, could reduce programming pat terns  in 
programs. In this Section, we give a formal justification to this statement,  by proving 
tha t  dynamic binding adds expressiveness [8] to a purely functional language. First ,  we 
define the notion of observational equivalence. 

D e f i n i t i o n  7 ( O b s e r v a t i o n a l  E q u i v a l e n c e )  Given a programming l anguage / :  and 
an evaluation function evaIL, two terms M1, Ms E s are observationally equivalent, 
writ ten M1 ~ c  MA, if for any context C ~ L, such that  C[M1] and C[M1] are both 
programs of s evalL(M1) is defined and equal to V if and only if evalL(MA) is defined 
and equal to V. [] 

We shall denote the observational equivalences for the call-by-value A-calculus and 
for the Ad-Calculus by ~v and ------d, respectively. In order to prove that  dynamic binding 
adds expressiveness [8] to a purely functional language, let us consider the following 
lambda terms, assuming the existence of a primitive cons to construct pairs. 

M 1 = Atf.(cons (t O) (f (Ad.(t 0)))) M2 = Atf.(let (v (t 0)) (cons v (f (Ad.v)))) 

The terms M1, M2 are observationnally equivalent in the Av-calculus , i.e. M1 ~v M2, but 
we have that  M1 ~d Ms. Indeed, if C E Ad is C = (Axd. ([] (Ad.Xd) (At. (AXd. (t 0)) 1))) 0, 
then C[M1] = (cons 0 1), while C[M~] = (cons 0 0). 

This example shows that  dynamic binding enables us to distinguish terms that  the 
call-by-value A-calculus cannot distinguish. As a result, ~vC~d ,  and using Felleisen's 
definition of expressiveness [8, Thin 3.14], we conclude that:  

P r o p o s i t i o n  1. Av cannot macro-express dynamic binding relative to Ad. 

6 S e m a n t i c s  o f  E x c e p t i o n s  

First-class continuations and state can simulate exceptions [13]. We show here that  
exceptions can be defined in terms of first-class continuations and dynamic binding. 

In the semantics of ML [26], a raised exception returns an exceptional value, dis- 
t inct  from a normal value, which has the effect to prune its evaluation context until 
a handler is able to deal with the exception. By merging the mechanism that  aborts  
the computat ion and the mechanism that  fetches the handler for the exception, the 
handler can no longer be executed in the dynamic environment in which the exception 
was raised. As a result, such an approach cannot be used to give a semantics to other 
kinds of exceptions, like resumable ones [43]. 

In order to model the abortive effect, we extend the sequential evaluation func- 
tion of Figure 6 with Felleisen and Friedman's abort  operator J[ [11]. For the sake of 
simplicity, we assume that  there exists only one exception type (discrimination on the 
kind of exception can be performed in the handler). We also assume the existence of 
a distinguished dynamic variable xed. In Figure 7, we give the semantics of ML-style 
exceptions. When an exception is raised, the latest active handler is called, escapes, 
and then applies f in the same dynamic environment as handle, and not in the dynamic 
environment where the exception was raised 3. 

On the other hand, there exist other kinds of exceptions, like resumable exceptions, 
e.g. Common Lisp resumable errors [43], or Eulisp resumable conditions [34]. They 
essentially offer the opportunity to resume the computation at the point where the 
exception was raised. In the sequel, we present a variant of Queinnec's monitors [36, 

3 The usage of a first-class continuation appears here as the rule for handle duplicates the 
evaluation context E. Let us also observe that the continuation is only used in a downward 
way, which amounts to popping frames from the stack only. 
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M E A d  :: . . . .  I 
g[.4 M] ~d M 

(A M) (Term) 
(Abort) 

g[(handle f M)] ~a  8[(Axed.M) (Av.A 8[(f v)])] 
g[(raise V)] ~td 8[(Xed V)] 

Fig. 7. ML-style exceptions 

p. 255], which give the essence of resumable exceptions. The primitives monitor/signal 
play the role that  handler/raise had for ML-style exceptions. Let us note that  signal is a 
binary flmction, which takes not only a value, but also a boolean r indicating whether 
the exception should be raised as resumable. 

El(monitor f M)] ~d 8[ (AXed.M)(let (old Xed) 

$[(signal r V)] ~-~d E[(xed r V)] 

()~ r v. (let (x ((AX~d.(f r V)) old)) 
(if r x (.A g[x])))))] 

F i g . 8 .  Resumable exceptions 

Like handle, monitor installs an  exception handler for the duration of a computation. 
If an exception is signalled, ~he.latest active handler is called in the dynamic environment 
of the signalled exception. I f  an exception is signalled by the handler itself, it will 
be handled by the handler t ha t  existed before monitor was called: this is why Xed is 
shadowed for the duration of the execution of the handler f ,  but will be again accessible 
if the "normal" computation resumes. If the exception was signalled as resumable, i.e. 
if the first argument of signal is true, the value returned by the handler is returned by 
signal, and computatiomaontinues in exactly the same dynamic environment 4, 

This approach to define the  semantics of exception has two advantages, at least. 
First, as we model each dffect by  the appropriate primitive (abortion by A and han- 
dler installation by dynamic binding), we have the ability to model different kinds of 
semantics for exceptions. Second, defining the semantics of exceptions with assignments 
weakens the theory [12] because assignments break some equivalences that  would hold 
in the presence of exceptions:so, our definition provides a more precise chaxacterisation 
of a theory of exceptions. 

7 R e f i n e m e n t  
We refine the evaluation function by representing the dynamic environment explicitly by 
an associative list. By separating the evaluation context from the dynamic environment, 
we facilitate the design of a parallel evaluation function of Section 8. 

Figure 9 displays the state space and transition rules of the deep binding strategy. 
The dynamic environment is represented in a new diet construct which can only appear 
at the outermost level of a configuration, called state. The list of bindings 5 can be 
regarded as a global stack, initially empty when evaluation starts. A binding is pushed 
on the binding list, every time a dynamic abstraction is applied, and popped at the 
end of the dynamic extent of the application. In Section 4, the diet construct was also 
modelling the dynamic extent of a dynamic-abstraction application; now that the diet 
construct no longer appears inside terms, we introduce a (pop M) term playing the 
same role: it is created when a dynamic abstraction is applied and is destroyed at the 
end of the dynamic extent, after popping the top binding of the binding list. Theorem 
3 establishes the correctness of the deep binding strategy. 

4 Such a semantics assumes that there exists an initial handler in which evaluation can proceed. 
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State  Space: 

S �9 Stateab ::= (diet 5 M) (State) 
M C Adb ::= V ] Xd I (MM)  [ (popM) (Term) 
v �9 V~l~edb ::= x, I ( ~ , . M )  I (~x~.M) (Value) 

�9 Binddb ::= 0 I 5 w ((Xd Y)) (Binding list) 
x~ �9 SVar = {X~o,X~l,...} (Static Variable) 
Xd �9 DVar = {Xdo,Xd~ .. . .  } (Dynamic Variable) 
E �9 E , C o ~  ::= [] I (v  E) I (E M) I (pop E) (Evaluation Context) 

Transition Rules: 

(diet 5 $[(%x~.M) V]) "-~db (diet 5 $[M{V/xs}]) 

(diet 5 $[()~Xd.M) V]) "-~db (diet 5w V)) 8[(pop M)]) 

(diet 5 E[Zd]) ~db (diet 5 E[V]) if V -- lk(xd,5) 

(diet 5w Y)) $[(pop Y')]) ~-~db (diet 5 $[V']) 

Evaluation Function: 

f V if (diet 0 M) ~ b  (diet 0 V) 
VM e A ~ evaldb(M) = ~ _L ifVj E ]N, Mj "-+rib Mj+l,with M0 = (diet 0 M) 

[, error if (diet 0 M)"-+~b M~,with M~ E Stuck(Adb) 

(gv) 

(diet extend) 

(lookup) 

(pop) 

Stuck State: S E Stuck(Adb), 
if S = (diet 5 E[xd]) with Xd ~ DOM(5) 

]k(xd,5~((xd V))) = V 
lk(xd, 5w V))) = lk(xd, 6) if Xd r Xdl 

Fig. 9. Deep Binding 

T h e o r e m  3 evald ---- evaldb [] 

The deep binding technique is simple to implement: bindings are pushed on the 
binding list 5 at application time of dynamic abstractions and popped at the end of 
their extent. However, the lookup operation is inefficient because it requires searching 
the dynamic list, which is an operation linear in its length. 

There exist some techniques to improve the lookup operation. The shallow binding 
technique consists in indexing the dynamic environment by the variable names [1]. A 
further optimisation, called shallow binding with value cell is to associate each dynamic 
variable with a fixed location which contains the correct binding for that variable: the 
lookup operation then simply requires to read the content of that location. 

8 Parallel  Evaluat ion 

In Section 3, we observed that the axiom (diet propagate ~) was particularly suitable for 
parallel evaluation because it allowed the independent evaluation of the operator and 
operand by duplicating the dynamic environment. It is well-known that the deep binding 
strategy is adapted to parallel evaluation because the associative list representing the 
dynamic environment can be shared between different tasks. 

As in our previous work [30], we follow the "parallelism by annotation" approach, 
where the programmer uses an annotation future [17] to indicate which expressions may 
be evaluated in parallel. The semantics of future has been described in the purely func- 
tional framework [14] and in the presence of first-class continuations and assignments 
[30]. In Figure 10, we present the semantics of future in the presence of dynamic binding. 

As in [14, 30], the set of terms is augmented with a future construct, and we add to 
the set of values a placeholder variable, "which represents the result of a computation 
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that  is in progress". In addition, a new construct (f-let (p M) S) has a double goal: first 
as a let, it binds p to the value of M in S; second, it models the potential evaluation of 
5' in parallel with M. The component M is the mandatory term because it is the first 
that  would be evaluated if evaluation was sequential, while S is speculative because its 
value is not known to be needed before M terminates. 

State  Space: 

S C Statep ::= (diet ~ M) [ (diet ~ (f-let (p M) S)) [ error 
M CAp ::= V [Xd I (M M) [ (future M) 

[(pop M) [ ( f rnark3U) ] (Aerror) 
W ~ PValu% ::= x, [ (,~x,.M) [ (,~xe.M) 
V E Valu% ::= W [ p 
g ~ A Y a l u e  ::= f ] (~x~.M) ] (Axd.M) 
73ESeqEvVon, ::= [ ]  [ (V/3) I (73 M ) ]  (pop 73) I 
g ~ EvConp ::= 73 [ (f-let (p 79) S) 

(State) 
(Term) 

(Proper Value) 
( Runtime Value) 

(Applicable Value) 
(fmark 5 73) (Seq. Ev. Context) 

( Ev. Context) 

Transit ion Rules: 

1,1 (diet ~ E[V1 V2]) ~tv 

1,1_ 
(diet  5 E[(Xxd.M) V]) ~tp 

(diet 5 E[Xd]) ~p 

1,1 (diet 8~((=~ V)) S[(pop V')l) ~ ,  
(diet 5 E[(.A error)]) ~-~v 

1,1_ 
(diet ~ g[(future M)]) ~+v 

1,1 (diet ~ g[(fmark 5z V)]) v-~ v 
1,0 (diet ~ s 81_ M)I ) ~->v 
1,1 (diet 5 (f-let (p V) S)) ~-Yp 

(diet (~ E[M{V2/x~)]) if V~ = (Xx~.M) (t3~) 
(diet 6 E[(A error)]) if V1 ~ AValue, V1 r p 

(diet ~w V)) E[(pop M)]) (diet extend) 

(diet 5 8[V]) if V = (i(Xd) (lookup) 
(diet 5 ErA error]) if Xd ~ DOM(5) 

(diet ~ s[y']) (pop) 
error (error) 
(diet ~ E[(fmark ~ M)]) (Itc) 
(diet 61 E[V]) (future id) 
(diet (f(fdet (p M)(diet 51E[p]))) P ~ FP(E) 0 FP(51Xfork) 
s{v/p}  (join) 

14 $2 (speculative) 1,o (diet ~ (f-let (p M) $2)) if $1 ~+v (diet ~ (f-let (p M) $1)) ~-~p 
s .+o,0 s (reexive) 

a,b S' and S' ~',b' S ' .  S ~+~',b+b' S" if S ~+p ~p , p  
(transitive) 

Evaluation Function: For any program M E A ~ 

W if (diet 0 M)~v(d le t  () W) 
evalp(M) = J- ifYj E IN,~nj,mj E IN such that 

(diet 0 M) = So and Sj ~+~j'mJ S~j~_l with m i > 0. 
error if (diet 0 M) ~-+~ M~,with Ms E Stuck(Adb), or (diet 0 M) ~v  error 

Fig. 10. Parallel Evaluation (differences with Figure 9) 

It is important to observe that (future [ ]) is not a valid evaluation context. Otherwise, 
if evaluation was allowed to proceed inside the future body, it could possibly change the 
dynamic environment, which would make (fork) unsound. Instead, rule (ltc), which 
stands for lazy task creation [27, 7], replaces a (future M) expression by (frnark 5 M), 
which should be interpreted as a mark indicating that a task may be created. 

If the runtime elects to create a new task, (fork) creates a f-let expression, whose 
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mandatory  component is the argument of fmark, i.e. the future argument, and whose 
speculative component is a new state evaluating the context of fmark filled with the 
placeholder variable, in the scope of the duplicated dynamic environment 61. If the run- 
t ime does not elect to spawn a new task, evaluation can proceed in the fmark argument. 

Rules (ltc) and (future id) specify the sequential behaviour of future: the value of 
future is the value of frnark, which is the value of its argument. 

When the evaluation of the mandatory component terminates, rule (join) substitutes 
the value of the placeholder in the speculative state. Rule (speculative) indicates that  
speculative transitions are allowed in the f-let body. 

Following [14], Figure 10 defines a relation $1 ~_~,m 52 meaning that  n steps are 
involved in the reduction from $1 to $2, among which m are mandatory. 

The correctness of the evaluation function follows from a modified diamond property 
and by the observation tha t  the number of pop terms in a state is always smaller or 
equal to the length of the dynamic environment. 

T h e o r e m  4 evaldb : eValp [] 

As far as implementation is concerned, rule (ltc) seems to indicate that  the dynamic 
environment should be duplicated. A further refinement of the system indicates that  it 
suffices to duplicate a pointer to the associative list, as long as the list remains accessible 
in a shared store. 

Rule (Itc) adds an overhead to every use of future, by duplicating the dynamic envi- 
ronment even if dynamic variables are not used. Feeley [7] describes an implementation 
tha t  avoids this cost by lazily recreating a dynamic environment when a task is stolen. 

Due to the orthogonality between assignments and dynamic binding, our previous 
results [30] with assignments can be merged within this framework. Adding assignments 
permits  the definition of mutable dynamic variables (with a construct like d y n a m i c - s e t  ! 
[34]). Due to the purely dynamic nature of the semantics, the presence of mutable 
dynamic variables offers less parallelism as observed in [30]. The interaction of dynamic 
binding and continuations is however beyond the scope of this paper [19]. 

9 R e l a t e d  W o r k  

In the conference on the History of Programming Languages, McCarthy [25] relates 
tha t  they observed the behaviour of dynamic binding on a program with higher-order 
functions. The bug was fixed by introducing the funarg device and the f u n c t i o n  con- 
struct[32]. 

Cartwright [4] presents an equational theory of dynamic binding, but  his language 
is extended with explicit substitutions and assumes a call-by-name parameter  passing 
technique. The motivation of his work fundamentally differs from ours: his goal is to 
derive a homomorphic model of functional languages by considering A as a combinator. 
His axioms are derived from the Aa-calculus axioms, while ours are constructed during 
the proof of equational correspondence of the calculus. 

The authors of [6] discuss the issue of tail-recursion in the presence of dynamic 
binding. They observe that  simple implementations of f l u i d - l e t  [18] are not tail- 
recursive because they restore the previous dynamic environment after evaluating the 
f l u i d - l e t  body. Therefore, they propose an implementation strategy, which in essence 
is a dynamic-environment passing style solution. Programs in dynamic-environment 
passing style are characterised by the fact that  they do not require a growth of the 
control s tate for dynamic binding; however, they require a growth of the heap space. 
An analogy is the continuation-passing translation, which generates a program where all 
function calls are in terminal position although it does not mean that  all cps-programs 
are iterative. Feeley [7] and Queinnec [36] observe that  programs in dynamic-environ- 
ment passing style reserve a special register for the current dynamic environment. Since 
every non-terminal call saves and then restores this register, such a strategy penalises 
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programs that do not use dynamic binding, especially in byte-code interpreters where 
the marginal cost of an extra register is very high. Both of them prefer a solution that 
does not penalise all programs, at the price of a growth of the control state for every 
dynamic binding. Consequently, we believe that implementors have to decide whether 
dynamic binding should or not increase the control state; in any case, it will result in a 
non-iterative behaviour. 

10 Conclusion 
In the tradition of the syntactic theories for continuations and assignments, we present 
a syntactic theory of dynamic binding. This theory helps us in deriving a sequential 
evaluation function and a refined implementation like deep binding. We also integrate 
dynamic-binding constructs into our framework for parallel evaluation of future-based 
programs. 

Besides, we prove that dynamic binding adds expressiveness to purely functional 
language and we show that dynamic binding is a suitable tool to define the semantics 
of exceptions-like notions. Furthermore, we believe that a single framework integrating 
continuations, side-effects, and dynamic binding would help us in proving implementa- 
tion strategies of f l u i d - l e t  in the presence of continuations [19]. 
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