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Abs t r ac t .  Binding-time analysis is a crucial part of o~ine partial eval- 
uation. It is often specified as a non-standard type system. Many type- 
based binding-time analyses are reminiscent of simple type systems with 
additional features like recursive types. We make this connection explicit 
by expressing binding-time analysis with annotated type systems that 
separate the concerns of type inference from those of binding-time anno- 
tation. The separation enables us to explore a design space for binding- 
time analysis by varying the underlying type system and the annotation 
strategy independently. The result is a classification of different mono- 
va~iant binding-time analyses which allows us to compare their relative 
power. Due to the systematic approach we uncover some novel analyses. 

A part ial  evaluator separates the computat ion of a source program into two 
or more stages [7, 20]. Using the (static) input of the first stage it t ransforms a 
source program into a specialized residual program. Application of the residual 
p rogram to the (dynamic) input of t he  second stage yields the same answer as 
application of the source program to the entire input. The binding time of an 
input is the information whether it is static or dynamic. 

Binding-time analysis (BTA) is a prepass of a partial  evaluator that  anno- 
ta tes  each expression in the source program with the earliest (static is earlier 
than  dynamic) t ime at which it can be evaluated. The actual specializer is a 
mere interpreter of annotated programs tha t  executes the static expressions and 

generates code for the remaining ones. 
Binding-time analyses come in two flavors: A monovariant BTA computes a 

single mapping of program points to binding-times, whereas a polyvariant BTA 
allows for several such mappings. Both alternatives have their merits. Mono- 
variant BTAs are simple and efficient to implement [4, 14,15,18, 20]. However, 
in some applications static and dynamic values flow through the same program 
points, which forces a monovariant  BTA to annotate  the program points as dy- 
namic. A polyvariant  BTA [5, 6] yields bet ter  results in these cases, but  is also 

considerably more expensive. 
In the current work we concentrate on monovariant  BTAs for the l ambda  

calculus as they are used in many  partial  evaluators I4, 14,15,18]. Our analy- 
ses achieve some degree of polyvariance because we admit  liberal binding-time 
coercions and rely on a more precise inclusion-based flow analysis framework. 

BTA is often presented as a monolithic analysis which makes it unnecessarily 
hard to unders tand and to reason about  [2,3,14,18,21]. Recent work has shown 
the possibility to modularize BTA into several stages [4, 12, 13]. All of these 
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works rely more or less implicitly on using type systems and extending them 
with annotations. However, none of the latter works really exploits the potential 
of the modularization, namely comparing variants of the analyses with respect 
to their accuracy. 

We consider a modest staging of BTA in two phases, building on the ideas of 
annotated type systems: flow-type analysis and binding-time annotation. Build- 
ing a BTA on top of a flow-type system has some advantages over approaches 
where types and binding times are intermingled [2, 14, 18]. First, it is easier to 
implement a modular algorithm. Second, the approach applies to typed and 
untyped languages. Third, it clearly separates different concerns: binding-time 
propagation and type correctness. By not confusing them, we avoid a problem in 
Henglein's type inference algorithm [18], which was discovered by Birkedal and 
Welinder [2]. We investigate two variations of flow-type systems, an equational 
system and an inclusion-based system which adds subtyping to the equational 
system. On top of these, we investigate two binding-time annotation strategies, 
a local one and a global one. The essential difference between these two lies in 
additional binding-time coercion rules of the local strategy. We also identify an 
instance of our framework that is equivalent to Gomard's BTA [14]. 

We present a modular algorithm for this BTA framework. Its run time ranges 
from almost-linear (for the equational system with the global annotation strat- 
egy) to exponential (for the inclusion-based system with the local annotation 
strategy), relying on well-known algorithms for flow-type analysis [18, 30]. 

We have compared the relative strengths of the different instantiations of 
our algorithm. We can show that the equational and inclusion-based approaches 
are equivalent under the global annotation scheme. This is somewhat unexpected 
and shows that a simple-minded annotation strategy can throw away information 
which is present in the underlying flow-type system. Otherwise, we show that 
the local strategy produces strictly better results than the global strategy for 
both type systems. Fhrthermore, the local variant of the inclusion-based system 
is strictly better than the local variant of the equational system. Finally, we show 
how to improve the results of a local equational BTA by using eta-expansors [11]. 
Figure 1 gives an overview of our results. 

As far as we know, the following issues have not been investigated previously: 

- the generic algorithm for BTA based on type automata and annotations, 
- the combination of equational flow-typing with a local annotation scheme, 
- inclusion-based BTA in a type-based setting, and 
- an algorithm to improve the results of BTA using eta-expansors. 

1 Basic  Framework 

For concreteness of our exposition, we have chosen a lambda calculus extended 
with numbers, pairs, and conditionals. 
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In the subsequent text,  we use let-expressions "let x -- el in e2" as syntactic 
sugar for "(Ax.e2)@el ." We assume that  each subterm c is identified by a unique 
program point ~ C L which we indicate by superscripting e ~ where necessary. 

We also define an annotated version of the syntax which serves to express the 
output  of the BTA./~ ranges over binding-time (bt) annotations, for example S 

and D. lift z'z' E denotes a binding-time coercion (from ~ t o / ~ )  for integers. 

E : : = x ] A ~ x . E I E @ ~ E I 0 1 s u c c  ~ EI  (E,E)  ~ [ ~ E l i f 0  ~ E E E I l i f t  ~'B' E 

We define ]El as the term obtained by dropping all annotations and lifts from 
E. E is a completion of e if e = [El. 

We employ a standard type language with • and T types denoting the empty 
type and the type of all values, which are used in the inclusion-based system. 
Types can be recursive without an explicit fixpoint constructor in the language. 

I.I Type Inference 

From an abstract operational view, type inference takes a term as input and 
constructs a directed graph, every node of which is annotated by a type con- 
structor, and a mapping M from the set L of program points to the nodes of 
the graph. We call this directed graph a type automaton (cf. [29]). 

D e f i n i t i o n 1 .  A type automaton over a set of program points L is a Moore 
machine [19] .4 = (Q, E, X, 5, lab) where Q is the set of states, E = {1, 2 , . . . }  
is the input alphabet, X is the set of labels, which are type constructors, 5 : 
Q • E --+ Q is the partial transition function, and lab : Q -+ X the labeling 
function. For any state r the transitions 5(r 1 ) , . . . ,  5(5, n) are defined if and 
only if lab(C) is an n-ary type constructor. 

The additional mapping M from the set L of program points to Q determines for 
each program point ~ a subautomaton A(~) with initial state M(Q that describes 
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the type of the construct at ~. Recursive types arise natural ly in this framework: 
they are type au toma ta  tha t  recognize infinite languages. 

It  is helpful to consider states of the type au tomaton  as type variables and 
type inference as a process t h a t  refines an initial non-deterministic au tomaton  
by unification until unification fails or the au tomaton  is deterministic. 

1.2 Binding-Time Annotat ion 

We relate binding times to states of an au tomaton  by giving a map B : Q -+ 
BT. BT can be the s tandard domain {0, 1} aka {S,D}, as well as a multi- 
level binding-time domain {O,...,D} where D _> 1 is the max imum binding 
t ime [13]. Each map B corresponds to an annotat ion of the occurrences of type 
constructors in the recursive type denoted by the automaton.  However, it is often 
more convenient to talk about  binding-t ime-annotated types p. 

Definit ion 2 Binding-Time-Annotated  Types.  

p::=_18 [ T S [ i n t  ~ ]p__+Sp[p•  

Annota ted  types may also be recursive. We write v z = p in order to peel off 
the top-level binding-time annotation. 

Not every binding-time annotation is admissible. For example, the annota ted  
type int o _+D int o does not make sense because it specifies a dynamic function 
where the argument  and result are available at t ime 0, i.e., statically. Clearly, 
the same kind of restriction must be imposed on all other type constructors: the 
components of a constructed value are not available before the constructor. 

Definit ion 3 Well-formedness .  Let ,4 = (Q, E, X, 6, lab) be a type au toma-  
ton and B : Q --~ BT a binding-time annotation. 

(A, B) is well-formed if for all r E Q: either lab(C) = T and D = B(r  or 
Vi. r  = ~(r i) defined ~ B(r  < B(r  

Equivalently, we can express the well-formedness criterion as a predicate on 
annota ted  types [12]: 

Definit ion 4 W e l l - f o r m e d  T y p e s .  An annotated type p is well-formed if wft p 
is derivable from the axioms wft T ~ and wft int z and the rules 

wft@ wft@ Z<pl wft@ wft@ Z_<Zl 
wft vfl • @ 

Def. 3 provides a set of inequalities that  every well-formed annotat ion must  
fulfill. These inequalities give rise to a set of binding-time constraints (BTC) 
from a type au tomaton  in the obvious way: Associate a binding-time variable 
/3r with each state r of the automaton.  This variable captures the annotat ion 
/3r = B(r  The BTC sets only involve BTCs of the forms: 

1. i_</3 ( f o r 0 < i < D ) ,  2 .~ l_<f l2 ,  and 3 . / 3 1 - - / ~  

where _< and = are the usual relations over BT _C N. 
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D e f i n i t i o n  5. A solution for a set of BTCs is an assignment from binding-time 
variables to BT which satisfies all constraints. 

Fac t .  Every set of BTCs has a unique least solution. 

L e m m a 6 .  There is an algorithm to compute the least solution for B TC  set S 
in O([SI) time. 

Proof. First rewrite inequations of the form a _< fl to equations of the form 
= a U/3 (where II denotes maximum).  This takes O(ISI) t ime and preserves all 

solutions. A theorem of Seidl [32, Theorem 10] provides an algorithm to compute  
the least solution to such a set of equations over N in O(ISI) time. 

1.3 A n n o t a t i o n  S t r a t e g i e s  

Given a t e rm and its type automaton,  we have two choices to perform a binding- 
t ime annotation.  One choice is the global strategy tha t  provides a single well- 
annotat ion for the entire type automaton.  It  is similar to what  s tandard algo- 
r i thms provide [2,14, 18]. 

Another  choice is the local strategy. For each program point g, it constructs 
the subautomaton  A(~) of the type automaton.  For each of these au toma ta  
we have to provide well-annotations, but  now we also need to respect phase 
constraints that  relate the types of "neighboring" program points. These phase 
constraints can prescribe binding-time coercions that  need to be inserted into the 
t e rm to make it well-annotated. Below, we will make this notion more precise. 

It  is important  to observe tha t  every global annotat ion gives rise to a local 
annotation.  Given a type automaton .4 = (Q , . . . )  and a global annotat ion B 
we construct the local annotat ion Be of .4(~) = (Q~, . . . )  for expression e ~. By 
construction of the A(~) there is an injective mapping L : Qe -~ Q and we can 
define Be by Be := B o ~, i.e., by restricting B to the set of states of `4(~). 

2 Equational Binding-Time Analysis 

F t- e : int 
(var) F{x: T} ~- x:  ~- (const) F ~- 0: int (succ) F }- succ e:  int 

F ~- e l  : T2 --~ T1 F ~ - e e  : T2 r{x: ~} ~_e_- rl 
(abs)  i ~ - x - ~ e  ~ T2 -+ 71 ( app )  P ~- e l s e 2  : 7"1 

(pair) r ~- el : "/-1 ~ ~- e2 : ~-2 (proj) F l- e : TI x 7-2 

P F (el,e2) : ~-1 x ~-2 F F 1r~e : ~-~ 
r ~- el :int P~- e2 :~- P ~ - e a : T  

(if) F }- if0 el e2 e3 : 7- 

Fig. 2. Simple Types 

The underlying type system of equational BTA is the system of simple types 

with recursion. Figure 2 gives the s tandard rules. 
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F ~- e ~,z E : int ~ 
F{x : p} b- x ~,~ x : p F F 0~,~ lift ~ 0 : int z F F succ e ~-~ succ ~ E : int z 

F{x : p2} F e ~,~ E : pl wft p2 --+Z pl F F el ~-~ E1 : p2 __+Z pl F F e2 ",~ E2 : p2 
F I- Ax.e---~ A Z x . E  : p2 _+t~ pl F I-" e l @ e 2  ,x~ E I @ Z E 2  : Pl 

F H ei ,-,z Bi : pl F [- e2 ~ E2 : p2 wft pi x z p2 F H e ,x~ E : pl X B f12 
r ~- (e~, e2) ~ (E~, E2) ~ : ;~ x~ p2 r F- ~ e  ~ ~ E  : p~ 

F k el ",~ E l  : v~ F F e2 "-* E2 : p F b - e 3 " , ~ E 3 : p  
F F i f 0  el eee3",~if0 z E1 E 2 E 3 : p  

F ig .  3. Translation Rules for Global Equational BTA 

2.1 Global  Variant 

For  the  g lobal  var ian t  we only need  the  we l l - anno ta t edness  cons t ra in t s ,  phase  
cons t r a in t s  are  not  necessary.  

Definit ion 7 Global  Equational  Binding-Time Analysis.  
- C o n s t r u c t  ,4 by t y p e  r econs t ruc t ion  for s imple  t ypes  wi th  recurs ion.  
- Bui ld  a B T C  set f rom the  wel l - formedness  cons t ra in t s  der ived  f rom ,4 and  

the  in i t ia l  b ind ing  t imes ,  i.e., bi ~ flx~. 

- Solve the  B T C  set to  ob t a in  a min ima l  wel l - formed b t  a n n o t a t i o n  of A.  

F r o m  the  cons t ruc t ion  of the  a u t o m a t o n  ,4 we know t h a t  each express ion  e ~ 
of  t he  or ig inal  t e r m  is a s soc ia ted  to  a s t a t e  r = M(~)  of ,4 which in t u r n  is 
a s soc ia t ed  wi th  a b ind ing - t ime  a n n o t a t i o n  fie = B(r  Using th is  a s soc ia t ion  we 
can  t r ans fo rm a p r o g r a m  into a comple t ion  as shown in Fig.  3. The  j u d g e m e n t  
F F e ~,z E : p r eads  "under  t ype  a s sumpt ion  F t e r m  e t r ans l a t e s  to  a n n o t a t e d  
t e r m  E of wel l - formed a n n o t a t e d  t y p e  p." 

2.2 Local Variant 

A local  B T A  associa tes  a local  t y p e  a u t o m a t o n  wi th  each p r o g r a m  po in t  and  
decora tes  i t  wi th  b ind ing - t ime  informat ion .  The  local  a u t o m a t o n  Ae for expres-  
sion e ~ is the  s u b a u t o m a t o n  of ,4 wi th  in i t ia l  s t a t e  M(~) .  Each  of these  local  
a u t o m a t a  ,4e has  i ts own b ind ing - t ime  a n n o t a t i o n  Be : �9 -+ BT.  Obviously ,  
each of t h e m  mus t  be well-formed,  accord ing  to  Def. 3. 

F u r t h e r m o r e ,  we now have to  specify phase  cons t ra in ts .  Th is  a m o u n t s  to  

b p~ (read:  the re  is a b t  coerc ion f rom hav ing  b ind ing - t ime  (bt)  coercions p 

p to  p~, see Fig.  5) in the  defini t ion of we l l -anno ta tedness .  The  co r r e spond ing  
t r a n s l a t i o n  rule is: 

F F e, , ,z  E : p p b~ p l 

F ~- e ,-,,z (p b~ p ' ) E  : p' 

where  p ranges  over  a n n o t a t e d  types .  A b t  coercion enables  us to  use a s t a t i c  
func t ion  in a d y n a m i c  contex t  w i thou t  compromis ing  the  s ta t icness  of  the  func- 
t ion.  Bt  coercions  do not  change the  shape  of the  unde r ly ing  type .  F igu re  4 
defines the  coercion re la t ion  be tween  b t  a n n o t a t e d  types ,  which gives rise to  t he  
phase  cons t ra in t s .  



748 

Z < Z '  

P ~ P int~ ,~b int~, 

p~s p~s  /3<Z' w f t p ~ ' p ~  w f t p ~ z ' p ~  
p~ --~n p~ ~ p~ -+~' p~ 

p~ • p~ ~ p~ • p~ 

Fig.  4. Binding-Time Coercion Relation 

<p ,,-, p> = A z . z  

<int ~ -~z int~'} = Ay.lift ~'~' z 
! i O 

<p~ • p~ ~ p~ • p~> = ~ (<~ ~ ~ > ~ ,  <~ ~ ~>=~z)Z' 

Fig.  5. Higher-Order Binding-Time Coercions 

Figure 5 shows an implementa t ion  of bt  coercions (cf. [8-10]). Coercions can 
also be defined for sums and some recursive types (e.g., lists). 

W h e n  generat ing the phase constraints  we refer to the normalized t ransla-  
t ion rules given in Fig. 6. In all cases where the binding-t ime annota t ions  mus t  
coincide, we equate the annota t ions  of two au tomata .  Wherever  coercions are 
allowed, we relate the annota t ions  as prescribed in Fig. 4. Bo th  result in obvi- 
ous a lgori thms which traverse two a u t o m a t a  s imultaneously and generate  con- 
straints.  The  number  of constraints  is bounded  by the p roduc t  of the  number  of 
s tates  of the au tomata .  Each  of these is bounded  by the number  of s tates  of the  
global au tomaton ,  which is bounded  by the size of the  program.  

Definition 8 Local Equational Binding-Time Analysis. 
- Cons t ruc t  ,4 by type  reconst ruct ion for simple types with recursion. 

F ~- e,,., E : v r 
P { x : p } t - x ~ x : P  F F - 0 " ~ 0 : i n t  o FF-succ e ~ s u c c  z E : i n t  ~ 

r{x  : p2} ~- e -,~ E : pl 
F t- l x . e  ",-* AOx.E : p2 _+u p l  

F ~- el  "~z E I  : p~ -+~ Pl F t- e~",z  E2 : p2 p2 " z  P~ 
! 

F ~- e l s e 2  ~ EI@~((P~  ,,,z p2>E2) : pl 
F b e l , , , z E l : p l  F F- e2"~z E2 : p2 F F - e " - * E : p l x ~ P 2  

F ~ _ ( e l , e 2 ) , , , ~ ( E ~ , E 2 ) ~ 1 7 6  F F ~ i e ' , ~ r ~ E : P ~  

F ~- e l  ~ E1 : V ~ F ~- e2 ,~z E2 : p2 F ~- e3 "~ E~ : p3 p~ "~ p p3 ~ P 

r F if0 e~ e~ e~ ~ if0 ' E~ (<p~ ~ p>E~) (<p~ ~ p>E~) : p 

Fig.  6. Normalized Traz~slation Rules for Local Equational BTA 
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- For each subexpression e e of the program build a local automaton ,4~ as the 
subautomaton of .4 with initial state M(~). 

- Build a BTC set from the well-formedness constraints derived from all .4e, 
the phase constraints, and the initial binding times, i.e., bi </~x~- 

- Solve the BTC set giving well-formed binding-time annotations for each .4~. 
The binding-time annotations also satisfy the phase constraints. 

The complexity of the algorithm is dominated by the cost of generating the 
phase constraints. Let s be the size of the program. Flow type inference takes 
O(s .  a(s)) time [18], generating the well-formedness BTCs takes O(s 2) time, 
generating the phase BTCs takes O(s 2) time for each program point resulting 
in a total  of O(sa). Solving the BTC set is linear in the size of the constraint 
set. Hence, the overall time complexity is O(s3). 

2.3 C o m p a r i s o n  

In this section we compare the power of the global and local variants of equational 
BTA. As any global annotation can be considered a local annotation it is clear 
that  the local variant cannot yield worse results than the global variant (see 
Sec. 1.3). The following example term shows that  the inclusion is proper: 

let f = Az.z in f@((if0 0 f g)@0) (1) 

is analyzed with g : i n t  D __+D int D ' a dynamic function. Such a situation arises, 
for example, if g is a dynamic parameter of the goal function. The global anno- 
tation scheme translates this term to 

let D f = ADz.z in fQD((if00 0 f g)@D(lift 0)) (2) 

where everything except the conditional is dynamic. The specialized term is 

let f = Az.z in f@(f@O). (3) 

The local annotation scheme translates the same term to 

let ~ f = ~~ in f@~176 0 (,kDw.f@~ g)@D(lift 0)) (4) 

which specializes to 

(~w.w)@0. (5) 

Hence, we have the following lemma. 

L e m m a 9 .  The local variant of the equational BTA classifies strictly more pro- 
gram points as static than the global variant. 
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F ~- e : int 
(t-const) F ~- 0 : T (t-succl) F FFsuccF e : eT: T (t-succ2) F ~- succ e : T 

(t-abs) F ~ ; T }  b - e T T - -  (t-app) P F e l : T  F F e 2 : T  
Ax.e : F F el@e2 : T 

F F e l : T  F F e 2 : T  F F e :  
(t-pair) F F (el, e2): T (t-proj) P F 7rie: T 

F F e l : T  F F e 2 : T  F t - e 3 : r  
(t-if) F ~- if0 el e2 ea : T 

Fig. 7. Additional Partial Typing Rules 

2.4 M o r e  P r e c i s i o n  

The example from the preceding subsection can be improved by eta-expanding 
g before placing the annotations [9]: 

let ~ f = A~ in f@~ ~ 0 (A~176  (A~176 0)) 

This completion reduces to 0. Below we sketch an algorithm to produce this 
result. First, we need a definition. 

D e f i n i t i o n  10 E t a - E x p a n s o r s  [11]. 

{ ) ~ z . z  7- = int 

D e f i n i t i o n  11 I m p r o v e d  L o c a l  E q u a t i o n a l  B i n d i n g - T i m e  A n a l y s i s .  

- Perform equational flow-type reconstruction. 
- For all expressions e appearing as arguments of function calls, branches of 

conditionals, or arguments of primitive operations do simultaneously: 
�9 Replace e of type ~- -- 7"1 --~ ~-2 which is not a lambda expression by 

A~Oe. 
�9 Replace e of type ~- = Tt x ~-2 tha t  is not a pair construction by A~Qe. 

- Continue as in Local Equational  Binding-Time Analysis. 

2.5 A n o t h e r  V a r i a t i o n  o f  E q u a t i o n a l  B T A  

We can also express Gomard ' s  BTA, which is based on partial  types, in our 
framework. I t  adds the type T to the current system and the rules in Fig. 7. The  
motivat ion behind these rules is the desire to type all terms regardless whether 
their execution yields an error or not. Using this system as a basis for a BTA 
intends to defer all program parts  tha t  are possibly erroneous (have type T)  to 
run time. Additionally, Gomard ' s  BTA allows for first-order bt  coercions of the 

form int ~ b int3' for ~ _< /3'. So we can say tha t  Gomard ' s  BTA consists of 
part ial  (equational) type inference with a local annotat ion scheme restricted to 
first-order bt  coercions. Henglein's algorithm [18] performs the entire reconstruc- 
tion for this system in almost-linear time. Strictly speaking, we are discussing 
Mogensen's system [25] because Gomard  and Henglein disallow recursive types. 
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_L "4 t T T -4 ~ T r 4_ t T 

TI --~ T2 "~t_ T I' --~ T2 

Fig. 8. Type Coercions 

T1 -Xt T2 T2"Xt T3 

T l - ~ t  T3 

T1 )<7"2 " ~  t t _ T1 X T 2  

..1_ 0 ~ g  fl P "~g p V D ~ g  T D 

int ~ _g int ~' pl --+~ p~ _g p~ __+z p~ 

Fig. 9. Coercion Relation for the Global Variant 

pl  ~__g p2 p2-'<g p3 

pl __g p3 
pl_____gp~ p2_____gp~ 

3 Inclusion-Based Binding-Time Analysis 

Equational flow analysis and BTA ignore the direction in which values flow. 
This sometimes deteriorates binding-time annotations because the analysis can 
equate program points that  never flow together. 

Hence, the inclusion-based BTA builds on an extension of the equational 
flow-type system with subtyping, _L, and T types. The resulting system of sim- 
ple types with recursion and subtyping originates from work by Amadio and 
Cardelli [1]. It only adds the subsumption rule to the typing rules of Fig. 2. 

P F e : T  T -'~t T ! 
(sub) r t- e : T' 

The coercion relation for types ~t  shown in Fig. 8 is standard. Typabili ty for 
that  system can be decided in polynomial time [17, 29], however type recon- 
struction requires exponential time [29]. The result of that  algorithm is a global 
type automaton as in Sec. 2. On top of that  automaton, we define our BTA. 

As in Sec. 2, there are two ways to add binding-time annotations to the 
automaton: the global and the local strategy. For both strategies, we reuse Def. 3 
for well-formed binding-time annotations. Only the phase constraints differ. 

3.1 Global  Variant 

In the global setting, we can reuse all annotated translation rules from the equa- 
tional setting. We only have to define an annotated translation rule for the rule 
(sub) of type subsumption. It is based on the coercion relation -~g on annotated 
types defined in Fig. 9. It leads to the following annotated trans-lation rule. 

F ~- e . ~  E : p p -4 g p' 

r ~ ~ ~ <p ~ p ' ) E :  p' 

This system has two problems. First, although we can coerce types we cannot 
coerce their binding-time annotations (except for type int). Second, the axiom 
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v D --<g T D means if we want to forget the structure of a type, the binding t ime 
of the whole structure must  be dynamic. Taken together, we find tha t  a value 
which is used at type T anywhere in the program is annotated as dynamic in 
the whole program, even in places were its type is known. In consequence, we 
gain nothing compared to the globM equational analysis. 

Define ~t for an annotated type p by 

- -  t 
V Dt = T D  Pl __+0 P2 = - ~ t  _.+0-~-~ 

int ~ = i n t  o Pl • = ~ - t  • 

L e m m a 1 2 .  Any  annotated translation F F e ~,~ E : p in the global inclusion- 
-- t  --t -~t 

based system gives rise to a translation A , F ~- e ~,~ E : in the global equa- 
tional system with partial types. 

Proof. Induction on the structure of a translation. 

T h e o r e m  13. The translations induced by global inclusion-based BTA and by 
global equational B T A  with partial types are identical. 

Proof. Lemma 12 gives us for each inclusion-based translation an equational 
t ranslat ion which achieves the same effect. The other implication is obvious as 
each derivation in the system of simple recursive types without subtyping is 
trivially also a derivation in the system with subtyping. 

..Lo .~l p P ..~l p vD ~l T D 
fll Kt f13 

p~ ~Ipl ,o2~p~ Z~fl' wftpl--->~,o2 
p~ -~ p2 _-_K z p~ - ~ '  P~ 

p~_~p~ p2~tp~ ~</~' wftp~x ~p2 
p~x ~p2-_K_ ~p~x ~'p~ 

Fig. 10. Combined Type and Binding-Time Coercion Relation 

int~ -K ~ int ~' 
wft p~ -+~' p~ 

3.2 L o c a l  V a r i a n t  
In the local view, we adopt the position tha t  every subexpression has its own 
type au tomaton  and its own annotation. The annotations of neighboring types 
are related using bt  coercions on top of the type coercions. In fact, the only 
change is in the coercion rules for type constructors. Now they can increase 
the binding t ime of the constructed value. Figure 10 defines the combined bt  
and type  coercion relation -K 1 �9 The additional power with respect to the global 
equational system stems from coercions like p -K 1 T D, which coerces a value of 
a sensible type to a dynamic type error. In the equational system, the T type 
would have spread its dynamic binding t ime beyond the cause of the error. 
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3.3 C o m p a r i s o n  o f  t h e  I n c l u s i o n - B a s e d  B T A s  

In this section we compare the power of the global and local variants of inclusion- 
based BTA. We have already proved that  global inclusion-based BTA is equiv- 
alent to global equational BTA (see Theorem 13). Again, in the inclusion-based 
framework, any global annotation can be considered a local annotation. Hence, it 
is clear that  the local variant cannot yield worse results than the global variant. 
Our previous example term (1) demonstrates that  the inclusion is proper. 

let f = ;~z.z in fQ(( i f0  0 f g)@0). (6) 

For the assumption g : T ~ the results of global and local equational BTA coin- 
cide (cf. (2)): 

let D f = A"z.z in f@D((if00 0 f g)@D(lift 0)) (7) 

However, the local inclusion based variant produces (cf. 4) 

let ~ f = ~~ in fQ~176 0 (ADw.fQ~ g)@D(lift 0)), (8) 

where we can perform more reductions statically. 

()~w.w)@O (9) 

Hence the following lemma. 

L e m m a  14. The local inclusion-based BTA produces strictly better results than 
its global counterpart. 

3.4 C o m p a r i s o n  o f  t h e  E q u a t i o n a l  a n d  I n c l u s i o n - B a s e d  B T A s  

Finally, we need to compare the local variants of the equational and the inclusion- 
based frameworks. Every type derivation of the equational system is also a type 
derivation of the inclusion-based system, without type coercions. To show that  
the inclusion is proper we consider the term 

let g = Ax.x in let f = Az.g in (f@O)@f@g@O 

The local inclusion-based BTA constructs the completion 

let ~ g = ;~~ in let ~ f = A~ in (f@~176176176 

which reduces statically to 0. In contrast, the local equational BTA yields 

let D g = ADx.x in let ~ f = A~ in (f@~176 

which reduces statically to 

(10) 

let g = Ax.x in g@(g@O) 
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4 R e l a t e d  W o r k  

Here, we only discuss additional work that has not been discussed in the body 
of the paper. 

Mogensen [25] was the first one to consider BTA based on recursive types. 
His motivation was typing Y in order to unfold fixpoints statically. Gomard's 
system assigns type T D to Y, thus it defers all occurrences of Y to run time. 

Palsberg and Schwartzbach [30] compare BTAs based on abstract interpre- 
tation (ai) with type-based BTAs. They show that their ai-based approach is 
more powerful than Mogensen's approach [25] which is more powerful than Go- 
mard's [14] approach. In view of the current work, the latter is not surprising 
because more terms are typable in the presence of recursive types. Due to the 
result of Heintze, Palsberg, and O'Keefe [17,29] we conjecture that their ai-based 
algorithm is equivalent to the local inclusion-based system presented here. 

The ML partial evaluator Pell-Mell [24] employs a BTA based on set-based 
analysis [16]. There are significant parallels between set-based analysis and the 
simple type system with subtyping and recursion [17]. These parallels again 
suggest that the BTA of Pell-Mell is also equivalent to the local inclusion-based 
system presented here. 

Launchbury [22] considers BTA based on projections. This BTA has parallels 
with our equational system, but appears to be more restrictive because it insists 
on uniform properties of recursive types. 

The present author [34] has considered a BTA augmented with representation 
analysis that removes some of the restrictions of the current BTA frameworks 
and keeps track of additional information. This work can be recast in the present 
framework by including additional layers of annotations. 

Solberg, in her PhD thesis [33], gives a general overview of the use of an- 
notated type systems in program analysis. She considers BTA in the style of 
Nielson and Nielson [27]. She shows how that particular analysis fits into the 
general framework, but does not compare different alternatives for BTA and her 
work is not geared towards partial evaluation. 

Nielson and Nielson [28] give a systematic description of different multi-level 
lambda-calculi using algebraic methods. Their interest lies in the different well- 
formedness criteria for expressions. In our current work, we are concerned with 
combining different type systems with different annotation strategies. The well- 
formedness criterion of expressions remains fixed. 

5 C o n c l u s i o n s  

With the exception of the work of Palsberg and Schwartzbach [30], BTAs have 
lead fairly separate lives. They could not be compared because they relied on 
different frameworks (abstract interpretation, type inference, set-based analysis, 
projections, and so on). We have constructed a general BTA framework based 
on annotated type systems that allows such comparisons in a clean and simple 
way. Beyond that, our systematic approach has identified three novel BTAs. 
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