
A Typed Intermediate Language for
Flow-Directed Compilation

J. B. Wells .1 , Allyn Dimock 2, Robert Muller 3, and Franklyn Turbak 4

1 Boston University, Boston MA 02215, USA
2 Harvard University, Cambridge MA 02138, USA
3 Boston College, Chestnut Hill MA 02167, USA
4 Wellesley College, Wellesley MA 02181, USA

Abst rac t . We present a typed intermediate language ,~CIL for optimiz-
ing compilers for function-oriented and polymorphicaUy typed program-
ming languages (e.g., ML). The language ACIL is a typed lambda calculus
with product, sum, intersection, and union types as well as function types
annotated with flow labels. A novel formulation of intersection and union
types supports encoding flow information in the typed program repre-
sentation. This flow information can direct optimization.

1 I n t r o d u c t i o n

Recently there has been much interest in the view of compilation as a com-
position of well typed program transformations. In this setting, the compiler
maintains the invariant that at each step of the compilation process the inter-
mediate representation of the source program is well typed. This invariant can
be observed if the input program is well typed and each compiler transformation
changes the intermediate representation and its typing in a consistent way. This
approach requires using one or more typed intermediate languages.

Explicitly typed intermediate languages offer several benefits to the compiler
writer [15, 18, 26, 19]. First, type information can guide program analyses and
transformations. Second, some applications need accurate type information at
run-time thereby requiring the compiler to preserve it. Finally, typed intermedi-
ate languages are useful as a debugging aid in the compiler development process.

This paper introduces a typed intermediate language for optimizing com-
pilers for higher-order polymorphic programming languages. Our intermediate
language 1 A oIL is an explicitly typed A-calculus with product, sum, intersection,
union as well as function types annotated with flow labels in the style of Heintze
and Banerjee [12, 5].

The flow annotations on function types are sets of term labels that can encode
control and data flow information as it would be computed by one of several
typed flow analyses in the literature [12, 5]. If a flow analysis determines that

* Supported by NSF grant CCR-9417382.
1 In ACIL, "C" is for the Church Project (http://www.cs.bu.edu/groups/church/) and "IL"

is for "intermediate language." The Church Project is investigating the use of intersection
and union types in compiling ML-like languages.

758

subterm occurrence M has type a -~ T, then the A-abstractions flowing from M

are those with labels in r and they flow only to application sites with labels in
r The sets r and r are sets of potential flow sources and sinks.

The formulation of)~CIL allows flow information to be separated in a well
typed manner to expose precise correspondences between sources and sinks of
flow [8]. A A-abstraction flowing to m application sites can be assigned an inter-
section type with m conjuncts. This is represented in)~CIL by m virtual copies
of the term. In a dual manner, an application to which n abstractions might flow
can be assigned a union type with n disjuncts. This is represented in)~cm by a
virtual case expression that dispatches to one of n clauses.

The program representation supported by)CIL can be exploited in generating
efficient object code. One approach to compiling polymorphism is to generate
specialized instances of a polymorphic definition based on its uses. Specialization
not only avoids the overhead of boxing but more importantly enables subsequent
optimizations such as inlining and common subexpression elimination. Empirical
evidence suggests that the optimizations enabled by specialization can actually
lead to smaller object programs than alternative approaches [14].

Typically the specialization approach is limited to non-escaping polymorphic
functions where the required specializations of the definition are determined by
its uses within the confines of a binding construct such as let [26, 7]. In A oIL,
the required specializations can be determined by the flow analysis. Escaping
polymorphic functions can be specialized for their uses in textually remote parts
of the program. It is also easier in)CIL tO provide multiple representations of a
function for different types and for particular inputs. Inlining of functions can
be performed even when multiple functions can flow to a call site. It can also be
performed on open functions. This is further discussed in [8].

2 F l o w - D i r e c t e d P r o g r a m T r a n s f o r m a t i o n

We informally illustrate the features of)~CIL in the context of closure conversion,
a key program transformation in optimizing compilers for function-oriented and
object-oriented languages [30, 17, 10]. Closure conversion transforms programs
that may contain open functions into equivalent programs that contain only
closed functions. An important technical challenge in closure conversion is to
generate efficient function representations without violating the invariant that
all function representations flowing to a particular application site are consistent
with that site's application protocol.

The simplest way to maintain this invariant is to give every function the
same representation and use the same application protocol at every call site.
In a nMve strategy, closure conversion maps every source function to a closure,
a pair of (1) the values of the function's free variables (the environment) and
(2) a closed form of the function (the code) that takes the environment as an
additional argument. However, the overhead of creating and applying a closure
can often be avoided by choosing more efficient function representations.

759

We illustrate closure conversion with the following example: 2

let fint-+int :)~xint X , 2
gint-+int =)~yint.y + aint (1)

in • (f @ 5, (if b b~176 t h e n f else g) @ 7)

The closed function (~i"L=.2) flows to two call sites, the second of which is also
a sink for the open funct ion (),yi"'.y+a~'~). The flow of this simple p rogram is
merely an example of more complex flow pa t te rns arising in real programs.

A typed flow analysis of the example in A cIL might yield the flow graph: 3

I ~1 X int X ~2 int ..]_ aint

Each abs t rac t ion occurrence (~ x' .M) is identified by a label 1 and a set of labels
r approx imat ing the set of appl icat ion occurrences tha t can consume it. Each
applicat ion occurrence (M %* N) is identified by a label k and a set of abs t rac t ion
occurrence labels r approx imat ing the set of abs t rac t ion occurrences tha t it can

consume. F~nct ion types "int - ~ int" are also anno ta t ed with sets of source and

sink labels. 4

Consider closure convert ing our example. The funct ion a}s,4} is a l ready closed,
so it is desirable to represent it as a funct ion (not a closure) and to keep @~} as
a regular function appl icat ion (not a closure applicat ion). This opt imiza t ion is
called selective closure conversion [30]. However, since ~}a,4} also flows to @~,,2}
along with the open funct ion ~4},2 someth ing must be done to ensure tha t the
protocols a t the call sites are consis tent with the funct ion representat ions t h a t
flow to them.

The flow-based features of A CIL are helpful in dealing with mult iple repre-
sentat ions tha t can be desirable in closure conversion. In ,~CIL, a t e rm can be
t ransformed to expose correspondences between sources and sinks via intersec-
t ion (A) and union (V) types: 5

2 Remarks on notation- Variables are annotated with types, applications are marked by "@",
and tuples are marked by "• For readability, types on bound variable occurrences axe
omitted when the binding is present. We use base types (like int and bool), constants of
these types, and familiar operators on these types, even though these are not formally
defined.

3 To emphasize that our approach addresses complex flow patterns, we present the example's
flow graph diagramatically, detaching the abstractions and applications from their surround-
ing context.

4 For well-typedness, flow-label subtyping coercions may be needed. For readability, we omit
these from examples.

5 Notation: A(M1 , M,~) constructs a term of intersection type A[T1, .. . , ~'n] whose compo-
nents are extracted via ~r~. (in v M) rl constructs a term of union type V[7-1, �9 , ~',~] which
is analyzed by case v. " "

760

IA(~}~>~'n~.x,2, ~h>=i~.~.2)[I~,~,,~,~§ I
,~"'%., \ / tint ~ i n t ,int 2-~int]

case v if b b~176 t hen (in~'/(vr~:])) ~t ~ ~ r j
V ~/~/[int'-~int int-~int] "X

] (71.A ~3{1} 5] else (in2 g]) ~[' J)

~,int ~{4}" int) =~ h ~2} 7

The abstraction occurrence ~}3,4~ has been transformed into a virtual tuple (term
of intersection type) containing two abstraction occurrences ~}3} and ~}4}- Intu-
itively, a virtual tuple is a compile-time tuple containing copies of a term that
differ only in their types. Since all of the components of a virtual tuple behave
identically, no code will be generated to build or access its slots at run-time.
Similarly, the application occurrence @~1,2} has been transformed into a virtual
case expression that dispatches on the tag of a virtual variant to one of two ap-
plication occurrences @~1} or ~ 2 } All of the clauses of a virtual case expression
will share the same code at run-time. The purpose of virtual tuples and variants
is to make the term well typed and to provide a place to put type and flow
annotations. However, a compiler can transform some virtual tuples (A) to real
tuples (• and some virtual variants (V) to real variants (+).

For example, one approach to closure converting our example is to split the
virtual tuple for the closed function into two distinct functions representations,
one which flows to @~1} and one which flows ~4 ~1~ . In this case, the virtual product
becomes a real product, but the virtual variant stays virtual:

X 6 int)~2 int int ,,I I -'+~176)1

[caseV(if bbool then (i n ~)) v [o l , 2] I

[o~ ~ (~ h) ~ (~ h) ~i ~ 7 [

w h e r e o , = x = x

761

Another option is to use only one representation for the closed function, but
to tag it to distinguish it from the open function representation. In this case, the
virtual product stays virtual, but a case analysis will distinguish between the
call protocols of the real variants at run-time:

1 34,x'~ ~xll/~6 eint)~2 i n t - - e ~ 7 a i n t)
t t .{s} �9 {4}-Y .y-t-) I

case + (i f b b~176 then (in~-~:])

_ , : _ + else [in~- O) ')

int (:} int =~ h 7, binO in()

)CiL can also handle inlining, a vital compiler optimization, as another func-
tion representation choice. In our example, the code of the open function can be
inlined at its single call site, and the open function can be represented by the
value of its sole free variable a rather than as a closure.

x,~ ,2i {3,4} .x

\

�9 ' } �9 ~1} bind h i n (mr (-~}} rot) =>h 7,
int =~ 7 + h

Not only does A clL support the inlining of open functions, but the flow annota-
tions in A c~L expose flow-based inlining opportunities that may not be apparent
from the program text.

Every change from A to x or V to + may lead to a cascade of changes
necesary to preserve well typedness and meaning. Our calculus aids in automat-
ically handling these changes. Space does not permit us to specify the closure
conversion transformations here; for details, see [8].

3 Design Issues

This section discusses some of the goals that guided the design of our language
A cII~ and some of the technical challenges that had to be overcome.

F i n i t a r y T y p e s a n d Typ lngs - A central theme of our work is the desire for
types and typings containing detailed information on the uses of functions and
data representations. Some type system designs conflict with these goals. For ex-
ample, although universal and existential quantifiers are capable of representing

762

strong behavioral guarantees, they tend to inhibit access by the compiler to in-
formation on implementation decisions. As a result, a standard implementation
method for languages with universal quantification is boxing, i.e., accessing every
value that can not fit in a register through a pointer. Boxing is expensive due
to run-time overhead and compile-time inhibition of optimization. The dynamic
dispatch problem of object-oriented languages is essentially the same as boxing.

Implicit or deep subtyping can cause similar problems. Implicit subtyping
fails to record decisions on the placement of coercions. A use of deep subtyping
represents a potential coercion which modifies a value at some other location in
the program which may not even exist yet. This interferes with optimization.

As an alternative to the approaches mentioned above, we have deliberately
formulated our language to increase the concrete type information available to
the compiler and to make typing decisions explicit instead of implicit. Thus, for
handling code polymorphism and abstractness, we use the finitary intersection
and union types instead of the infinitary universal and existential types. Finitary
types allow typing as many or more terms as infinitary types.

Encod ing Type Annota t ions : Intersection types are ordinarily implicitly
typed using the following typing rule for introducing an intersection type:

A F M : a ; A F M : r
(A intro)

A ~ M : a A T

As a result, for any subterm M in a typing, there may be multiple typing deriva-
tions. Thus, formulating explicit intersection types requires deciding (1) how to
annotate the types of bound variables, (2) how to combine different typing an-
notations for the same term, and (3) how to determine if two different type
annotations are for the same term. The new A-introduction rule will look some-
thing like this:

A F M I : a ; AF M2 :T;
M1 and M2 are "the same modulo type annotations";
M3 is the "combination" of M1 and M2

A f - M 3 : a A T

The approach used by Reynolds in the language Forsythe [25] annotates the
binding of an abstraction (s with a list of types as in ()~x: al l"" la~.M),
requires the body M of the abstraction to be typable with the same type ~- for
each possible type a~ of the bound variable x, and then assigns the abstraction
the type (al -+ ~-) A--- A (a~ --+ ~). Unfortunately, this method is not sufficient
to represent dependencies between the types of nested variable bindings. Pierce
gives a more general approach using a special term-level construct to bind a
type variable to some set of types [20]. For example, using this method the term
(~x.,~y.x) could be annotated as (for a e {a, v}.~x: a.,~y: a.x) to have the type
(a --~ a --+ a) A (~" --+ v -+ ~'). However, this method is insufficient to represent
some typings, e.g., giving the term ()~x.)~y.)~z.(xy, xz)) the type (((a --~ a) A (fl -+
f~)) -~ a - + ~ - ~ (a • ~)) A ((~-~ ~) -~ ~ - ~ ~ -+ (~ x ~)).

763

To provide a place for multiple conflicting type annotations, we altered the
standard typing rule to "combine" the multiple type-annotated versions of a
term by simply keeping both versions:

A F M 1 :a ; A ~ - M 2 : T ;
M1 and M2 are "the same modulo type annotations"

A F A(M1,M2) : O ' A T

We call the term A(M1,/1//2) a virtual tuple and prefix it with the "A" symbol
to distinguish it from an ordinary tuple, which we now prefix with "x " . The
intended meaning is that M1, M2, and A(M1,M2) are merely different type-
annotated versions of the same term. Given this choice, we can then use ordinary
type annotations on variable bindings. For example, to give the term Ax.x the
type (a -+ o-) A (T --+ ~-), we annotate it as A(Ax ~.x ~, AS.x~) .

One implication of our choice is that the tree structure of an explicitly typed
term follows the tree structure of its typing proof instead of the tree structure
of the untyped term which it represents. A difficulty this introduces is that
reduction must essentially work on typing derivations, which is non-trivial to
formulate. Wells [31] has developed an alternative formulation where typed and
untyped terms have essentially the same tree structure, but the reduction rules
are quite complex.

Di f f icu l t ies w i t h U n i o n T y p e s : It is difficult to formulate an implicitly
typed calculus with union types which has the subject-reduction property. For
an explicitly typed calculus, this problem manifests itself as a difficulty in guar-
anteeing that any computation that can be performed on an untyped program
can be duplicated on a typed version of the same program. In an implicitly typed
calculus, the V-elimination rule is usually formulated as:

A , x : G F M : p; A , x : •F M : p; A F N :GV-r
(V elim)

A ~- M [x:=N] : p

With this formulation, the subject-reduction property is lost. Barbanera and
Dezani-Ciancaglini give as an example the term (Ax.Ay.Az.x((At. t)yz)((At. t)yz)) ,
which can be given the type ((a -+ a --+ T) A (p-+ p--+ T)) ~ (lr --+ (a V p)) --+ zr --+ T,
but the term (Ax.Ay.Az.x(yz)((At. t)yz)) to which it reduces can not.

Since the V-elimination rule given above also causes other difficulties in for-
mulating explicitly typed terms, it seems a solution to this might be to change
the elimination rule to:

A , x : G F M : p; A , x : T F M : p; A F N : G v T
(V elim)

A F (A x . M) N : p

The same example above would still have a problem with this because one could
just perform an extra ~-reduction step. To solve the problem, it is sufficient
to additionally require call-by-value reduction, if a variable is not considered a
value. The base values are constants and abstractions and the set of values is
closed under tuple and variant formation. This ensures that every reduction at
the untyped level will have a corresponding reduction at the typed level.

764

4 F o r m a l L a n g u a g e D e f i n i t i o n

4.1 General Notation and Terminology

A context is a term containing holes. However, in this paper, it is simpler to
view terms as contexts without holes. The expression C[M1,. . . ,Mn] denotes
the result of placing M1, . . . , Mn in the n holes of the context C from left to
right, possibly capturing free variables. For terms, M - N denotes that M and
N are the same term after renaming bound variables. For contexts, C1 -= C2 is
similar but only allows renaming bound variables whose scopes do not include a
hole. The s tatement X ,3 Y means that the syntactic entity X occurs properly
within the syntactic entity Y; X <~ Y has the same meaning except X and Y
may be the same. The expression M [x:=N] denotes the result of replacing all
free occurrences of x in M by N after first renaming the bound variables of M
to be distinct from the free variables of N. The expression FV (M) denotes the
set of free variables of M.

Our presentation generalizes notions of reduction (n.o.r.). A simple n.o.r. R
is a pair (~"R, CR) of a redex/cont rac tum relation ~ R and a set of reduction
contexts CR. For a simple n.o.r., M)R N means M is transformed into N by
contracting R-redexes in positions in M specified by an R-reduction context, i.e.,
there are a context C E CR with k holes and terms M~ and Ni for i E {1 , . . . , k}
such that M - C [M 1 , . . . , M k] and N =- C[N1, . . . ,Nk] and Mi ~'~R Ni for
i E {1 , . . . ,k}. A composite n.o.r. R is a rule composing reduction steps of
simple n.o.r.'s; in this case M)R N means M and N are related by the rule.
Writing "----~R" denotes the transitive and reflexive closure of " ~R"- A term
M is in normal form with respect to R, written R-nf (M), when there is no

term N such that M ----~R N. The statement M -n~R N means M "R N and

R-nf (Y).

4 .2 Untyped Language ,~CIL

Figure 1 shows the syntax and semantics of the untyped language)CIL " ' I t "

T h e o r e m 1 C o n f l u e n c e o f Untyped Reduction. Ifi~/I ----~]f[1 and ~I
N2, then there exists 2~/I' such that 2V1 "e ~I' and]V2 ~ 2VI'.

4.3 Explicitly Typed Language /~CIL

Figure 2 shows the syntax of our explicitly typed language t c m .
Although this presentation omits recursive types, they can be added by ex-

tending the types to regular trees. This causes no difficulties with the theorems
given in this paper. Of course, a finite representation must be chosen, e.g., the

usual #a.~" syntax.
The type erasure ICI of a type-annotated context C (defined in figure 2) is

the corresponding untyped and unlabelled context. Some contexts do not have

765

U n t y p e d Syn tax

E U n t C o n t e x t ::= [] I c [x [#x.C [Ax.C [C1 @C2

] in+C t c a s e + C b i n d x i n C 1 , - . - , C ~

~ / , ~ r E U n t T e r m = {(~[[]r

E UntValue

U n t y p e d Reduc t ion

::=c l io:

M

case + (in+l bind x Mi [x:=V]
i f l < i < n

i f l < i < n

Reduction contexts: C~ = { C I C E U n t C o n t e x t and C has exactly one hole }

Fig . 1. Untyped language A CIL.

a type erasure, i.e., those containing virtual tuples like A(CI , . . . , C~) or virtual
case expressions like

c a s e v C b i n d x i n 7"1 ~ C 1 , . . . , ~-1 ~ C1

where the type erasures of C1, . . . , Cn are not identical.
Figure 3 gives the typing rules of Acm. A type environment is a finite mapping

from term variables to types, i.e., a set of variable/ type pairs. If A is a type
environment, then A, x:T denotes A extended to map x to type T. The domain
of definition of A is DomDef (A). A triple A t- M : T is a judgement. A derivation
79 in language X is a sequence of judgements, each obtained from the previous
ones by the typing rules of X. We write "A ~-x M : ~- via 79" to mean derivation
79 is valid in language X and 79 ends with A t- M : T. In this case, 79 is a typing
for M in X and M is well typed in X. The statement A t-~c~L M : T means there
exists some 79 such that A ~-~c~L M : T via 79.

The (A intro) rule requires the equivalence of the type erasure of all compo-
nents of the virtual tuple, while the (V elim) rule requires the equivalence of the
type erasures of all clause bodies of a case v expression. These two rules formalize
the restrictions on virtual tuples and virtual variants mentioned earlier.

T h e o r e m 2 U n i q u e n e s s o f T y p i n g s in Acm. For M E T e r m , there is at
most one type environment A and type T such that DomDef (A) = F V (M)
and A ~xc~L M : ~-.

The call-by-value reduction rules for our typed language A oIL are in figure 4.
The main notion of reduction, r-reduction, is divided into three steps: simplifying

766

S y n t a x Sha red b e t w e e n T y p e s and Terms

Q::=PIS S : : = v l + P : : = ^ I x

I , k � 9 O r 1 6 2 1 6 2

T y p e s
p,o-,-,- ::= o I o @ ~ - t Q['Tt,..., 'r,~ l

T y p e - A n n o t a t e d C o n t e x t s

C � 9 C o n t e x t ::= [] I c I x" I #x~.C I Acxl ~.C I 61@~r 62
I P(C1,... ,Cn) lTriPVtcoerce(cr,~-)C
I (ins C)"] case s C b ind x in rl ~ e l , . . . , Vn ~ Cn

T y p e E r a s u r e (a partial function)

I[11 - [] Icl . c

Ix"l = = Iff=".Cl - ~x.lCl

I)r - .X=.lCI cl @~ C2 = ICll @ levi

Ix(C1, . . . , C, ,) l - - x(ICl t , . . . , IC,,I) Icoerce (o', r) C I - ICI
I ~ C] - ~ ICl I ~ e l " ICI
I(in+ C)~I - in+lCI I(in v C)" I - t C I

Icase+ C b i n d x in r l ~ C1, . . . ,r,~ ~ C,~ I = c a s e + tCI b i n d x in I C q , . . , ICnl
(

Icase v C b i n d x i n r l ~ C1, . . . ,r,~ ~ C,d - / @ IcI if Ic , I tC,~l:

[undefined otherwise.

~1Cll if 1611- - . . -= IC~l,
IA(C~,... ~Cn)l /

[undefined otherwise.

T y p e - A n n o t a t e d Terms~ Values~ Para l le l C o n t e x t s

M,N e T e r m = {C I the type erasure ICI e U n t T e r m }

V �9 Value = {C I the type erasure ICI �9 Un tVa lue }
Cp �9 P a r e o n t e x t = { C I the type erasure ICI has exactly one hole}

Syn tac t i c Sugar for E x a m p l e s

boo l= +[x[] , x[]] t r u e - (in + x ())boo1 fa lse_ = (in + X ())bool

(if M1 t h e n M2 else M3) -- case + M1 b ind x in x[] =~ M2, x[] :=~ M3 (fresh x)

(let x r = N in M) -- ((,k~kix*.M) @~} N) (fresh l,k)

F i g . 2. Syntax of explicitly typed language A oIL.

767

(vax) (const) A ~- c : o

A F - M : a {~k} "r; A F N : a
(--+ elim) (--+ intro)

A [- M @ C N : T

Y~-l . A F M~ : 7i
(• intro) (coerce)

Ab- • X[T1, . . . ,Tn]

Vi~l. A~- Mi : ~-i; I M ~ I - - ' " - I M ~ I
(A intro) (recurse)

A ~- A(M1,. . . ,Mn): A[T1,...,~'~]

A t- M : P[-rl , . . . ,-r~]; l < i < n
(x,A elim) (arrow-<:)

A F-1rP M : ~-I

A F - M : 7 ~ ; l < i < n
(+,V intro)

(+ elim)

(V elim)

A F- (in s M)s[r]: S [r l , . . . , r ~]

A b - M : + [r l , ..,r~]; V ~ �9 i=1. A ,x :v i f- Mi : v

A~x:7 ~- x r : T

A , x : a f- M : "c

A F AcX .M : a 7

A F M :a; a < ' c

A F- coerce (a, ~') M : T

A, x :v F M : r

A F # x ~ . M : r

r c_ r r c_ r

A I- c a s e + M b i n d x i n T1 =~ M1,. . . , Tn =~ Mn : r

Ab- M : V[T1,...,~-~]; Y~_ 1. A,x:Ti ~- Mi :-r; [MI[= " ' " = IMn]

A F- c a s e v M b i n d x i n ~-1 =~ M1, . . . , T,~ =r M,~ : T

Fig. 3. Typing rules of explicitly typed language/~CIL.

type annotations, performing a computation step, and then simplifying type
annotations again. Type annotations that might block a computation step are
removed by t-reduction. Since t-reduction is terminating, it is convenient to go to
t-normal form before and after computation steps. The notion of c-reduction
performs real computation steps. In our term formulation, parallel c-redexes
(i.e., different type-annotated versions of the s a m e program phrase) must be
contracted simultaneously. This is formalized using parallel contex ts (members
of P a r C o n t e x t) , which require parallel c-redexes to fill holes that map to the
same hole in the type-erased program.

T h e o r e m 3 S u b j e c t R e d u c t i o n for A cIL. I f M
then A F~c~L N : 7-.

~r N and A b-~c~L M : T,

T h e o r e m 4 T y p e d / U n t y p e d R e d u c t i o n C o r r e s p o n d e n c e .
I f A F~c~L M : 7-, t hen

1. I f M)r N , then IMI - - - ~ INI.

2. I f [MI -----~ fi[, t hen there exists a t e r m N where M "--+r N and [NI - N .

768

Main Notion of Reduct ion for Type-Anno ta t ed Terms

M---+, N iff 3M',N'. (M - ~ t M' ---% N' -~ , N)

Computa t ion Reduct ion

(A~x~.M) ~r V - ~ M [x:=V]
~x x (y l , . . . ,y,~) -,~
case + (in + V) * bind x in "T 1 ~ M t , . . . , ~'= =:~ M~ ~c M, [x:=V]
~x~.V .~o y [~:=(~.v)]
Reduction contexts: Cc = Pa rCon tex t

i f l < i < n
i f l < i < n

Type-Annotat lon-Simplif icat ion Reduct ion

~r~ A(M1,..., M~) ~-*~ Mi if 1 < i < n
1 r l (case v(in v N) ~ b l n d x i n ~'~t (A{1}x .Mi) @~1} N i f l < i < n

T1 ==~ M 1 , . . . , T n :=~ Mn)

(coerce (a, r) (AZcxP.M)) ~r N -~'~t (A~k)xP.M) @~l} g
coerce (al, r) coerce (p, a2) M ~-~t coerce (p, r) M

Reduction contexts: Ct = { C] C C Context and C has exactly one hole }

Fig . 4. Reduction rules of explicitly typed language ACIL

T h e o r e m 5 C o n f l u e n c e o f T y p e d R e d u c t i o n . I/ M "r 241 and M "r
N~, then there exist M~ and M~ such that IM~I =- IM~I and N1 ----~ M~ and
N2 ,~, M~.

4 .4 I m p l i c i t l y T y p e d L a n g u a g e),OIL

The implicitly typed language AGL is automatically obtained from Acre and
,CIL The syntax and semantics of ~/CIL a re the same as ~CIL as given in figure 1.

U ~ " ' U

The typing rules of ~?IL are the rules of figure 3 modified by replacing every
judgement A P M : ~- mentioned in a rule by A P IMI : ~-, using the type erasure

rules from figure 2.

T h e o r e m 6 S u b j e c t R e d u c t i o n for ~CIL /f j~)~ .f/ and A ~-~.cIL 2VI : %

then A t-~ciL /V : "r.

5 R e l a t e d Work

Typed intermediate languages are used in several experimental compilers. Most
typed intermediate languages for polymorphic programming languages can be
seen as variants of the Girard/Reynolds)~-calculus, System F [9, 24].

Recent versions of the Standard ML of New Jersey (SML/NJ) compiler [3, 27]
use a variant of system F as the representation in the front-end of the compiler. In

769

SML/NJ, type inference annotates polymorphic functions with universally quan-
tified types and annotates function applications with the simple types to which
the polymorphic types are instantiated. The compiler uses the type information
to select efficient data representations and to minimize boxing coercions [16].
The SML/NJ compiler also uses minimal typing derivations [7] to reduce box-
ing coercions for let-polymorphic definitions. The compiler uses a simply typed
representation in later stages of the compiler.

The Glasgow Haskell Compiler (GHC) [15] also uses a variant of System F.
In GHC, type inference annotates polymorphic functions with type abstractions
and uses of polymorphic functions with type arguments. This allows the compiler
to preserve the well-typedness of the intermediate representation across program
transformations. The type information is used in the later stages of the compiler
to improve code generation.

System F can also be seen as the basis of the typed intermediate language
~/ML of the TIL compiler for Standard ML [18, 17]. The calculus)ML is a pred-
icative variant of System F extended with intensional polymorphism [11]. The
key feature is the support for dynamic type dispatch at run-time. This aids in
efficient compilation of polymorphism without sacrificing separate compilation.
A use of a polymorphic function can dispatch on a type argument to yield a
monomorphic routine suitable for the type. This approach to compiling poly-
morphism yields excellent results [28] since many type dispatch redexes can be
eliminated at compile-time and the compiler can then gain the resulting benefits
of type specialization including in-lining and common subexpression elimination.

Our intermediate language A cIL was inspired by the earlier work on rank-
2 intersection types of Jim [13]. As we have shown in this paper, intersection
types naturally lead to a flow-directed approach to compilation. Our flow labels
encode information about the operational behavior of the program that can-
not be obtained from types without flow labels. At the same time, intersection
and union types support a natural encoding of polyvariant flow information [5].
While it is clearly possible to compute, record, and use the flow and type in-
formation separately, we believe that a single representation is more natural for
compilation.

General research into intersection types that has influenced our thinking in-
cludes the work of Van Bakel [4] and Jim [13]. Research on both intersection
and union types that we have consulted includes the work by Pierce [20], Aiken,
Wimmers, and Lakshman [1, 2], Barbanera and Dezani-Ciancaglini [6], and Tri-
fonov and Smith [29]. Of the above, only Pierce considers intersection and union
types in an explicitly typed language. Even that is somewhat distant from our
work because Pierce includes a general subtyping relation on intersection and
union types which we have deliberately avoided.

6 C o n c l u s i o n s a n d F u t u r e W o r k

We have presented A cIL, a typed intermediate language suitable for optimizing
compilers for higher-order polymorphic programming languages such as ML. The

770

intermediate language is designed to facilitate verifiable flow-directed compiling.
Based on)CIL we have developed a framework for typed-directed flow-based
representation transformations, and have illustrated this framework in a closure
conversion application that supports multiple function representations, includ-
ing the inlining of open functions [8]. This application (informally sketched in
section 2) is an example of how ACIL supplies the compiler writer both important
information and great flexibility in making optimization decisions.

Below, we outline some of the work ahead.
Label l ing All Terms: In this presentation, only abstractions, applications,

and function types were given flow labels. In order to track the flows of non-
function values, it will be necessary to to annotate all terms and types in the

language.
Compi l ing P o l y m o r p h i s m by Specialization: The ACIL-calcutus sug-

gests an approach to compiling polymorphism of flow-directed specialization.
The number of specializations required for a given definition can be minimized
if they are determined by representation types rather than source types. We are
currently studying the issue of representation types.

Separa te Compi la t ion : If a program is compiled as a single unit, it is pos-
sible to express all instances of polymorphism and data abstraction in terms of
intersection and union types. However, if a program is decomposed into sepa-
rately compiled modules, universal and existential types may be necessary to
model the module interfaces.)~cm will need to be extended in order to sup-
port separate compilation. Additionally, flow-directed specialization is difficult
to extend to separately compiled modules. We are currently studying link-time
specialization in which the linker determines whether new specializations of a

definition are required.
Flow Analysis : The typed control flow analyses alluded to in this paper

are limited by our shallow subtyping relation. We would like to weaken this
restriction to permit more powerful control flow analysis algorithms.

Te rm Dupl ica t ion: An important practical consideration in compiling with
types is controlling the size of the intermediate representations. Our current lan-
guage duplicates terms when it duplicates types. While this language is concep-
tually convenient for specification, for implementation purposes a considerable
size savings can be obtained by using a typed calculus with intersection and

union types in the style of [31].

References

1. A. S. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. In FPCA
'93, Conf. Funct. Program. Lang. Comput. Arch., pp. 31-41. ACM, 1993.

2. A. S. Aiken, E. L. Wimmers , and T. K. Lakshman. Soft typing with conditional types.

In POPL '94 [22], pp. 163-173.
3. A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

4. S. van Bakel. Intersection Type Disciplines in Lambda Calculus and Applicative Term
Rewriting Systems. PhD thesis, University of Nijmegen, 1993.

771

5. A. Banerjee. A modular, polyvariant, and type-based closure analysis. Manuscript, Nov.
1996.

6. F. Barbanera and M. Dezani-Ciancaglini. Intersection and union types: Syntax and se-
mantics. Information and Computation, 119:202-230, 1995.

7. N. S. Bjorner. Minimal typing derivations. In ACM SIGPLAN Workshop on ML and its
Applications, pp. 120-126, 1994.

8. A. Dimock, R. Muller, F. Turbak, and J. B. Wells. Strongly typed flow-
directed representation transformations (extended abstract) . Submitted. See
ht tp : / /www.cs .bu.edu/groups/church, Nov. 1996.

9. J.-Y. Girard. Interprdtation Fonctionnellc et Elimination des Coupures de l'Arithmdtique
d'Ordre Supdrieur. Th~se d 'Eta t , Universitd de Paris VII, 1972.

10. J. Hannan. Type systems for closure conversion. In Workshop on Types for Program
Analysis, pp. 48-62, 1995. DAIMI PB-493.

11. R. Harper and G. Morrisett . Compiling polymorphism using intensional type analysis. In
Conf. Rcc. 22nd Ann. ACM Syrup. Principles of Programming Languages, 1995.

12. N. Heintze. Control-flow analysis and type systems. In Proc. 2nd Int'l Static Analysis
Syrup., pp. 189-206, 1995.

13. T. Jim. Wha t are principal typings and what are they good for? In POPL '96 [23].

14. M.P. Jones. Dictionary-free overloading by partial evaluation. In ACM SIGPLAN Work-
shop on Partial Eval. ~ Semantics-Based Prog. Manipulation, 1994.

15. S. L. P. Jones. Compiling Haskell by program transformation: a report from the trenches.
In Proc. European Syrup. on Programming, 1996.

16. X. Leroy. Unboxed objects and polymorphic typing. In Conf. Rcc. 19th Ann. ACM Syrup.
Principles of Programming Languages, pp. 177-188, 1992.

17. Y. Minamide, G. Morrisett , and R. Harper. Typed closure conversion. In POPL '96 [23].

18. G. Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University, 1995.

19. S. Peyton Jones and E. Meijer. Henk: A typed intermediate language. Submitted, Jan.
1997.

20. B. C. Pierce. Programming with intersection types, union types, and polymorphism.
Technical Report CMU-CS-91-106, Carnegie Mellon University, Feb. 1991.

21. Proc. ACM SIGPLAN '95 Conf. Prog. Language Design ~J Implementation, 1995.

22. Conf. Rec. 21st Ann. ACM Syrup. Principles of Programming Languages, 1994.

23. Conf. Rec. POPL '96: 23rd ACM Symp. Principles of Prog. Languages, 1996.

24. J. C. Reynolds. Towards a theory of type structure. In Colloque sur la Programmation,
vol. 19 of LNCS, pp. 408-425, Paris, France, 1974. Springer-Verlag.

25. J. C. Reynolds. Design of the programming language Forsythe. In P. O'Hearn and R. D.
Tennent, eds., Algol-like Languages. Birkhauser, 1996.

26. Z. Shao. Compiling Standard ML for E~cient Execution on Modern Machines. PhD
thesis, Princeton University, 1994.

27. Z. Shao and A. Appel. A type-based compiler for Standard ML. In PLDI '95 [21].

28. D. Tarditi, G. Morrisett , P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed
optimizing compiler for ML. In PLDI '95 [21].

29. V. Trifonov and S. Smith. Subtyping constrained types. Revised Draft, May 1996.

30. M. Wand and P. Steckler. Selective and lightweight closure conversion. In POPL '94 [22],
pp. 435-445.

31. J. B. Wells. Intersection types revisited in the Church style. Manuscript, June 1996.

