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Abst rac t .  We present a typed intermediate language ,~CIL for optimiz- 
ing compilers for function-oriented and polymorphicaUy typed program- 
ming languages (e.g., ML). The language ACIL is a typed lambda calculus 
with product, sum, intersection, and union types as well as function types 
annotated with flow labels. A novel formulation of intersection and union 
types supports encoding flow information in the typed program repre- 
sentation. This flow information can direct optimization. 

1 I n t r o d u c t i o n  

Recently there has been much interest in the view of compilation as a com- 
position of well typed program transformations. In this setting, the compiler 
maintains the invariant that  at each step of the compilation process the inter- 
mediate representation of the source program is well typed. This invariant can 
be observed if the input program is well typed and each compiler transformation 
changes the intermediate representation and its typing in a consistent way. This 
approach requires using one or more typed intermediate languages. 

Explicitly typed intermediate languages offer several benefits to the compiler 
writer [15, 18, 26, 19]. First, type information can guide program analyses and 
transformations. Second, some applications need accurate type information at 
run-time thereby requiring the compiler to preserve it. Finally, typed intermedi- 
ate languages are useful as a debugging aid in the compiler development process. 

This paper introduces a typed intermediate language for optimizing com- 
pilers for higher-order polymorphic programming languages. Our intermediate 
language 1 A oIL is an explicitly typed A-calculus with product,  sum, intersection, 
union as well as function types annotated with flow labels in the style of Heintze 
and Banerjee [12, 5]. 

The flow annotations on function types are sets of term labels that  can encode 
control and data  flow information as it would be computed by one of several 
typed flow analyses in the literature [12, 5]. If a flow analysis determines that  

* Supported by NSF grant CCR-9417382. 
1 In ACIL, "C" is for the Church Project (http://www.cs.bu.edu/groups/church/) and "IL" 

is for "intermediate language." The Church Project is investigating the use of intersection 
and union types in compiling ML-like languages. 
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subterm occurrence M has type a -~ T, then the A-abstractions flowing from M 

are those with labels in r and they flow only to application sites with labels in 
r The sets r and r are sets of potential flow sources and sinks. 

The formulation of )~CIL allows flow information to be separated in a well 
typed manner to expose precise correspondences between sources and sinks of 
flow [8]. A A-abstraction flowing to m application sites can be assigned an inter- 
section type with m conjuncts. This is represented in )~CIL by m virtual copies 
of the term. In a dual manner, an application to which n abstractions might flow 
can be assigned a union type with n disjuncts. This is represented in )~cm by a 
virtual case expression that dispatches to one of n clauses. 

The program representation supported by )CIL can be exploited in generating 
efficient object code. One approach to compiling polymorphism is to generate 
specialized instances of a polymorphic definition based on its uses. Specialization 
not only avoids the overhead of boxing but more importantly enables subsequent 
optimizations such as inlining and common subexpression elimination. Empirical 
evidence suggests that the optimizations enabled by specialization can actually 
lead to smaller object programs than alternative approaches [14]. 

Typically the specialization approach is limited to non-escaping polymorphic 
functions where the required specializations of the definition are determined by 
its uses within the confines of a binding construct such as let [26, 7]. In A oIL, 
the required specializations can be determined by the flow analysis. Escaping 
polymorphic functions can be specialized for their uses in textually remote parts 
of the program. It is also easier in )CIL tO provide multiple representations of a 
function for different types and for particular inputs. Inlining of functions can 
be performed even when multiple functions can flow to a call site. It can also be 
performed on open functions. This is further discussed in [8]. 

2 F l o w - D i r e c t e d  P r o g r a m  T r a n s f o r m a t i o n  

We informally illustrate the features of )~CIL in the context of closure conversion, 
a key program transformation in optimizing compilers for function-oriented and 
object-oriented languages [30, 17, 10]. Closure conversion transforms programs 
that may contain open functions into equivalent programs that contain only 
closed functions. An important technical challenge in closure conversion is to 
generate efficient function representations without violating the invariant that 
all function representations flowing to a particular application site are consistent 
with that site's application protocol. 

The  simplest way to maintain this invariant is to give every function the 
same representation and use the same application protocol at every call site. 
In a nMve strategy, closure conversion maps every source function to a closure, 
a pair of (1) the values of the function's free variables (the environment) and 
(2) a closed form of the function (the code) that takes the environment as an 
additional argument. However, the overhead of creating and applying a closure 
can often be avoided by choosing more efficient function representations. 



759 

We illustrate closure conversion with the following example:  2 

let fint-+int : )~xint X , 2 
gint-+int = )~yint.y + aint  (1) 

in • ( f  @ 5, (if b b~176 t h e n  f else g) @ 7) 

The  closed function (~i"L=.2) flows to  two call sites, the  second of  which is also 
a sink for the  open funct ion (),yi"'.y+a~'~). The  flow of this simple p rogram is 
merely an example of  more  complex flow pa t te rns  arising in real programs.  

A typed  flow analysis of  the  example  in A cIL might  yield the flow graph:  3 

I ~1 X int X ~2 int ..]_ aint  

Each abs t rac t ion  occurrence ( ~  x' .M) is identified by a label 1 and a set of  labels 
r approx imat ing  the set of  appl icat ion occurrences  tha t  can consume it. Each  
applicat ion occurrence (M %* N) is identified by a label k and a set of  abs t rac t ion  
occurrence labels r approx imat ing  the  set of  abs t rac t ion  occurrences  tha t  it can 

consume.  F~nct ion types  "int - ~  int" are also anno ta t ed  with sets of  source and 

sink labels. 4 

Consider closure convert ing our  example.  The  funct ion a}s,4} is a l ready closed, 
so it is desirable to represent it as a funct ion (not a closure) and to  keep @~} as 
a regular  function appl icat ion (not a closure applicat ion).  This opt imiza t ion  is 
called selective closure conversion [30]. However,  since ~}a,4} also flows to  @~,,2} 
along with the open funct ion ~4},2 someth ing  must  be done to  ensure tha t  the 
protocols  a t  the call sites are consis tent  with the  funct ion representat ions  t h a t  
flow to  them.  

The  flow-based features of  A CIL are helpful in dealing with mult iple repre- 
sentat ions tha t  can be desirable in closure conversion. In ,~CIL, a t e rm can be 
t ransformed to  expose correspondences  between sources and sinks via intersec- 
t ion (A) and union (V) types:  5 

2 Remarks on notation- Variables are annotated with types, applications are marked by "@", 
and tuples are marked by "• For readability, types on bound variable occurrences axe 
omitted when the binding is present. We use base types (like int and bool), constants of 
these types, and familiar operators on these types, even though these are not formally 
defined. 

3 To emphasize that our approach addresses complex flow patterns, we present the example's 
flow graph diagramatically, detaching the abstractions and applications from their surround- 
ing context. 

4 For well-typedness, flow-label subtyping coercions may be needed. For readability, we omit 
these from examples. 

5 Notation: A(M1 .. . .  , M,~) constructs a term of intersection type A[T1, .. .  , ~'n] whose compo- 
nents are extracted via ~r~. (in v M) rl constructs a term of union type V[7-1, �9 , ~',~] which 
is analyzed by case v. " " 
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IA(~}~>~'n~.x,2, ~h>=i~.~.2)[ I~,~,,~,~§ I 
,~"'%., \ / tint ~ i n t  ,int 2-~int] 

case v if b b~176 t hen  (in~'/(vr~:])) ~t ~ ~ r  j 
V ~/~/[int'-~int int-~int] "X 

] (71.A ~3{1} 5 ] else (in2 g]) ~[ ' J )  

~,int ~{4}" int) =~ h ~2}  7 

The abstraction occurrence ~}3,4~ has been transformed into a virtual tuple (term 
of intersection type) containing two abstraction occurrences ~}3} and ~}4}- Intu- 
itively, a virtual tuple is a compile-time tuple containing copies of a term that  
differ only in their types. Since all of the components of a virtual tuple behave 
identically, no code will be generated to build or access its slots at run-time. 
Similarly, the application occurrence @~1,2} has been transformed into a virtual 
case expression that  dispatches on the tag of a virtual variant to one of two ap- 
plication occurrences @~1} or ~ 2 }  All of the clauses of a virtual case expression 
will share the same code at run-time. The purpose of virtual tuples and variants 
is to make the term well typed and to provide a place to put  type and flow 
annotations. However, a compiler can transform some virtual tuples (A) to real 
tuples (• and some virtual variants (V) to real variants (+).  

For example, one approach to closure converting our example is to split the 
virtual tuple for the closed function into two distinct functions representations, 
one which flows to @~1} and one which flows ~4 ~1~ . In this case, the virtual product  
becomes a real product,  but  the virtual variant stays virtual: 

X 6 int )~2 int int ,,I I -'+~176 )1 

[caseV(if  bbool then ( i n ~ ) ) v [ o l ,  2] I 

[ o~ ~ ( ~  h) ~ ( ~  h) ~i ~ 7 [ 

w h e r e  o ,  = x  = x  
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Another option is to use only one representation for the closed function, but 
to tag it to distinguish it from the open function representation. In this case, the 
virtual product stays virtual, but a case analysis will distinguish between the 
call protocols of the real variants at run-time: 

1  34,x'~ ~xll/~6 eint )~2 i n t  - -  e ~  7 a i n t )  
t t  .{s} �9 {4}-Y .y-t- ) I 

case + ( i f  b b~176 then  (in~-~:]) 

_ , : _ +  else  [in~- O) ' ) 

int (:} int =~ h 7, binO in( ) 

)CiL can also handle inlining, a vital compiler optimization, as another func- 
tion representation choice. In our example, the code of the open function can be 
inlined at its single call site, and the open function can be represented by the 
value of its sole free variable a rather than as a closure. 

x,~ ,2i {3,4} .x 

\ 

�9 ' }  �9 ~1} bind h i n  (mr (-~}} rot) =>h 7, 
int =~ 7 + h 

Not only does A clL support the inlining of open functions, but the flow annota- 
tions in A c~L expose flow-based inlining opportunities that  may not be apparent 
from the program text. 

Every change from A to x or V to + may lead to a cascade of changes 
necesary to preserve well typedness and meaning. Our calculus aids in automat- 
ically handling these changes. Space does not permit us to specify the closure 
conversion transformations here; for details, see [8]. 

3 Design Issues 

This section discusses some of the goals that  guided the design of our language 
A cII~ and some of the technical challenges that  had to be overcome. 

F i n i t a r y  T y p e s  a n d  Typ lngs -  A central theme of our work is the desire for 
types and typings containing detailed information on the uses of functions and 
data  representations. Some type system designs conflict with these goals. For ex- 
ample, although universal and existential quantifiers are capable of representing 
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strong behavioral guarantees, they tend to inhibit access by the compiler to in- 
formation on implementation decisions. As a result, a standard implementation 
method for languages with universal quantification is boxing, i.e., accessing every 
value that can not fit in a register through a pointer. Boxing is expensive due 
to run-time overhead and compile-time inhibition of optimization. The dynamic 
dispatch problem of object-oriented languages is essentially the same as boxing. 

Implicit or deep subtyping can cause similar problems. Implicit subtyping 
fails to record decisions on the placement of coercions. A use of deep subtyping 
represents a potential coercion which modifies a value at some other location in 
the program which may not even exist yet. This interferes with optimization. 

As an alternative to the approaches mentioned above, we have deliberately 
formulated our language to increase the concrete type information available to 
the compiler and to make typing decisions explicit instead of implicit. Thus, for 
handling code polymorphism and abstractness, we use the finitary intersection 
and union types instead of the infinitary universal and existential types. Finitary 
types allow typing as many or more terms as infinitary types. 

Encod ing  Type  Annota t ions :  Intersection types are ordinarily implicitly 
typed using the following typing rule for introducing an intersection type: 

A F  M : a ;  A F  M : r  
(A intro) 

A ~  M : a A T  

As a result, for any subterm M in a typing, there may be multiple typing deriva- 
tions. Thus, formulating explicit intersection types requires deciding (1) how to 
annotate the types of bound variables, (2) how to combine different typing an- 
notations for the same term, and (3) how to determine if two different type 
annotations are for the same term. The new A-introduction rule will look some- 
thing like this: 

A F M I : a ;  AF M2 :T; 
M1 and M2 are "the same modulo type annotations"; 
M3 is the "combination" of M1 and M2 

A f - M 3 : a A T  

The approach used by Reynolds in the language Forsythe [25] annotates the 
binding of an abstraction (s with a list of types as in ()~x: al l""  la~.M), 
requires the body M of the abstraction to be typable with the same type ~- for 
each possible type a~ of the bound variable x, and then assigns the abstraction 
the type (al -+ ~-) A--- A (a~ --+ ~). Unfortunately, this method is not sufficient 
to represent dependencies between the types of nested variable bindings. Pierce 
gives a more general approach using a special term-level construct to bind a 
type variable to some set of types [20]. For example, using this method the term 
(~x.,~y.x) could be annotated as (for a e {a, v}.~x: a.,~y: a.x) to have the type 
(a --~ a --+ a) A (~" --+ v -+ ~'). However, this method is insufficient to represent 
some typings, e.g., giving the term ()~x.)~y.)~z.(xy, xz)) the type (((a --~ a) A (fl -+ 
f~)) -~ a - +  ~ - ~  (a • ~)) A ((~-~ ~) -~ ~ - ~  ~ -+  (~ x ~)). 
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To provide a place for multiple conflicting type annotations, we altered the 
standard typing rule to "combine" the multiple type-annotated versions of a 
term by simply keeping both versions: 

A F M 1  :a ;  A ~ - M 2 : T ;  
M1 and M2 are "the same modulo type annotations" 

A F A(M1,M2) : O ' A T  

We call the term A(M1,/1//2) a virtual tuple and prefix it with the "A" symbol 
to distinguish it from an ordinary tuple, which we now prefix with "x " .  The 
intended meaning is that  M1, M2, and A(M1,M2) are merely different type- 
annotated versions of the same term. Given this choice, we can then use ordinary 
type annotations on variable bindings. For example, to give the term Ax.x the 
type (a -+ o-) A (T --+ ~-), we annotate  it as A(Ax ~.x ~, AS.x~) .  

One implication of our choice is that  the tree structure of an explicitly typed 
term follows the tree structure of its typing proof instead of the tree structure 
of the untyped term which it represents. A difficulty this introduces is that  
reduction must essentially work on typing derivations, which is non-trivial to 
formulate. Wells [31] has developed an alternative formulation where typed and 
untyped terms have essentially the same tree structure, but  the reduction rules 
are quite complex. 

Di f f icu l t ies  w i t h  U n i o n  T y p e s :  It  is difficult to formulate an implicitly 
typed calculus with union types which has the subject-reduction property. For 
an explicitly typed calculus, this problem manifests itself as a difficulty in guar- 
anteeing that  any computation that  can be performed on an untyped program 
can be duplicated on a typed version of the same program. In an implicitly typed 
calculus, the V-elimination rule is usually formulated as: 

A , x : G F  M : p; A , x : •F  M : p; A F  N :GV-r  
(V elim) 

A ~- M [x:=N] : p 

With this formulation, the subject-reduction property is lost. Barbanera and 
Dezani-Ciancaglini give as an example the term (Ax.Ay.Az.x((At. t)yz)((At. t)yz)) ,  
which can be given the type ((a -+ a --+ T) A (p-+ p--+ T)) ~ (lr --+ (a V p)) --+ zr --+ T, 
but the term (Ax.Ay.Az.x(yz)((At. t)yz))  to which it reduces can not. 

Since the V-elimination rule given above also causes other difficulties in for- 
mulating explicitly typed terms, it seems a solution to this might be to change 
the elimination rule to: 

A , x : G F  M : p; A , x : T F  M : p; A F  N : G v T  
(V elim) 

A F ( A x . M ) N  : p 

The same example above would still have a problem with this because one could 
just perform an extra ~-reduction step. To solve the problem, it is sufficient 
to additionally require call-by-value reduction, if a variable is not considered a 
value. The base values are constants and abstractions and the set of values is 
closed under tuple and variant formation. This ensures that  every reduction at 
the untyped level will have a corresponding reduction at the typed level. 
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4 F o r m a l  L a n g u a g e  D e f i n i t i o n  

4.1 General Notation and Terminology 

A context is a term containing holes. However, in this paper, it is simpler to 
view terms as contexts without holes. The expression C[M1,. . .  ,Mn] denotes 
the result of placing M1, . . . ,  Mn in the n holes of the context C from left to 
right, possibly capturing free variables. For terms, M - N denotes that  M and 
N are the same term after renaming bound variables. For contexts, C1 -= C2 is 
similar but  only allows renaming bound variables whose scopes do not include a 
hole. The s tatement  X ,3 Y means that  the syntactic entity X occurs properly 
within the syntactic entity Y; X <~ Y has the same meaning except X and Y 
may be the same. The expression M [x:=N] denotes the result of replacing all 
free occurrences of x in M by N after first renaming the bound variables of M 
to be distinct from the free variables of N.  The expression FV (M) denotes the 
set of free variables of M. 

Our presentation generalizes notions of reduction (n.o.r.). A simple n.o.r. R 
is a pair (~"R, CR) of a redex/cont rac tum relation ~ R  and a set of reduction 
contexts CR. For a simple n.o.r., M )R N means M is transformed into N by 
contracting R-redexes in positions in M specified by an R-reduction context, i.e., 
there are a context C E CR with k holes and terms M~ and Ni for i E {1 , . . .  , k} 
such that  M - C [ M 1 , . . . , M k ]  and N =- C[N1, . . . ,Nk]  and Mi ~'~R Ni for 
i E {1 , . . .  ,k}. A composite n.o.r. R is a rule composing reduction steps of 
simple n.o.r.'s; in this case M )R N means M and N are related by the rule. 
Writing "----~R" denotes the transitive and reflexive closure of " ~R"- A term 
M is in normal form with respect to R, written R-nf (M),  when there is no 

term N such that  M ----~R N.  The statement M -n~R N means M "R N and 

R-nf (Y). 

4 .2  Untyped Language ,~CIL 

Figure 1 shows the syntax and semantics of the untyped language )CIL " ' I t  " 

T h e o r e m  1 C o n f l u e n c e  o f  Untyped Reduction. Ifi~/I ----~ ]f[1 and ~I 
N2, then there exists 2~/I' such that 2V1 "e ~I' and ]V2 ~ 2VI'. 

4.3 Explicitly Typed Language /~CIL 

Figure 2 shows the syntax of our explicitly typed language t c m .  
Although this presentation omits recursive types, they can be added by ex- 

tending the types to regular trees. This causes no difficulties with the theorems 
given in this paper. Of course, a finite representation must be chosen, e.g., the 

usual #a.~" syntax. 
The  type  erasure ICI of a type-annotated context C (defined in figure 2) is 

the corresponding untyped and unlabelled context. Some contexts do not have 
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U n t y p e d  Syn tax  

E U n t C o n t e x t  ::= [ ] I c [ x [ #x.C [ Ax.C [ C1 @C2 

] in+C t c a s e + C b i n d x i n C 1 , - . - , C ~  

~ / , ~ r E U n t T e r m  = {(~[[  ]r  

E UntValue  

U n t y p e d  Reduc t ion  

::=c l io:  

M 

case + (in+l bind x Mi [x:=V] 
i f l < i < n  

i f l < i < n  

Reduction contexts: C~ = { C I C E U n t C o n t e x t  and C has exactly one hole } 

Fig .  1. Untyped language A CIL. 

a type erasure, i.e., those containing virtual tuples like A(CI , . . .  , C~) or virtual 
case expressions like 

c a s e  v C b i n d  x i n  7"1 ~ C 1 , . . .  , ~-1 ~ C1 

where the type erasures of C1, . . . ,  Cn are not identical. 
Figure 3 gives the typing rules of Acm. A type environment is a finite mapping 

from term variables to types, i.e., a set of variable/ type pairs. If A is a type 
environment, then A, x:T denotes A extended to map x to type T. The domain 
of definition of A is DomDef (A). A triple A t- M : T is a judgement. A derivation 
79 in language X is a sequence of judgements, each obtained from the previous 
ones by the typing rules of X.  We write "A ~-x M : ~- via 79" to mean derivation 
79 is valid in language X and 79 ends with A t- M : T. In this case, 79 is a typing 
for M in X and M is well typed in X.  The statement A t-~c~L M : T means there 
exists some 79 such that  A ~-~c~L M : T via 79. 

The (A intro) rule requires the equivalence of the type erasure of all compo- 
nents of the virtual tuple, while the (V elim) rule requires the equivalence of the 
type erasures of all clause bodies of a case  v expression. These two rules formalize 
the restrictions on virtual tuples and virtual variants mentioned earlier. 

T h e o r e m  2 U n i q u e n e s s  o f  T y p i n g s  in Acm. For M E T e r m ,  there is at 
most one type environment A and type T such that DomDef (A) = F V ( M )  
and A ~xc~L M : ~-. 

The call-by-value reduction rules for our typed language A oIL are in figure 4. 
The main notion of reduction, r-reduction, is divided into three steps: simplifying 
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S y n t a x  Sha red  b e t w e e n  T y p e s  and  Terms  

Q::=PIS S : : = v l +  P : : = ^  I x 

I , k � 9  O r 1 6 2 1 6 2  

T y p e s  
p,o-,-,- ::= o I o @ ~  - t Q['Tt,..., 'r,~ l 

T y p e - A n n o t a t e d  C o n t e x t s  

C � 9  C o n t e x t  ::= [ ] I c I x" I #x~.C I Acxl ~.C I 61@~r 62 
I P(C1,... ,Cn) lTriPVtcoerce(cr,~-)C 
I ( ins  C)" ] case s C b ind  x in rl ~ e l , . . .  , Vn ~ Cn 

T y p e  E r a s u r e  (a partial function) 

I[ 11 - [ ] Icl . c 

Ix"l = = Iff=".Cl - ~x.lCl 

I)r - .X=.lCI cl @~ C2 = ICll @ levi 

Ix(C1, . . . ,  C, , ) l - -  x( ICl t  , . . . ,  IC,,I) Icoerce (o', r ) C I -  ICI 
I ~  C] - ~ ICl I ~  e l  " ICI 
I(in+ C)~I - in+lCI I(in v C)" I - t C I  

Icase+  C b i n d  x in  r l  ~ C1, . . .  ,r,~ ~ C,~ I = c a s e  + tCI b i n d  x in  I C q , . . ,  ICnl 
( 

Icase  v C b i n d  x i n  r l  ~ C1, . . .  ,r,~ ~ C,d - / @ IcI if Ic , I  tC,~l: 

[ undefined otherwise. 

~1Cll if 1611- - . . -=  IC~l, 
IA(C~,... ~Cn)l / 

[ undefined otherwise. 

T y p e - A n n o t a t e d  Terms~ Values~ Para l le l  C o n t e x t s  

M,N e T e r m  = {C I the type erasure ICI e U n t T e r m }  

V �9 Value  = {C I the type erasure ICI �9 Un tVa lue  } 
Cp �9 P a r e o n t e x t  = { C I the type erasure ICI has exactly one hole} 

Syn tac t i c  Sugar  for E x a m p l e s  

boo l=  +[x[] ,  x[]] t r u e -  (in + x ())boo1 fa lse_  = (in + X ())bool 

(if M1 t h e n  M2 else M3) -- case + M1 b ind  x in x[ ] =~ M2, x[ ] :=~ M3 (fresh x) 

(let x r = N in M) -- ((,k~kix*.M) @~} N)  (fresh l,k) 

F i g .  2. Syntax  of explicitly typed  language A oIL. 
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(vax) (const) A ~- c : o 

A F - M : a  {~k} "r; A F  N : a  
(--+ elim) (--+ intro) 

A [ - M @ C N : T  

Y~-l .  A F M~ : 7i 
(• intro) (coerce) 

Ab- •  X[T1, . . . ,Tn] 

Vi~l. A~- Mi : ~-i; I M ~ I - - ' " - I M ~ I  
(A intro) (recurse) 

A ~- A(M1,. . . ,Mn):  A[T1,...,~'~] 

A t- M : P[-rl , . . . ,-r~]; l < i < n  
(x,A elim) (arrow-<:) 

A F-1rP M : ~-I 

A F - M : 7 ~ ;  l < i < n  
(+,V intro) 

(+ elim) 

(V elim) 

A F- (in s M)s[r ....... ]: S [ r l , . . . , r ~ ]  

A b - M : + [ r l ,  ..,r~]; V ~ �9 i=1. A ,x :v i  f- Mi : v 

A~x:7 ~- x r : T 

A , x : a  f- M : "c 

A F AcX .M : a 7 

A F  M :a; a < ' c  

A F- coerce (a, ~') M : T 

A, x :v  F M : r 

A F # x ~ . M  : r 

r c_ r r c_ r 

A I- c a s e  + M b i n d  x i n  T1 =~ M1,. . . ,  Tn =~ Mn : r 

Ab- M :  V[T1,...,~-~]; Y~_ 1. A,x:Ti  ~- Mi :-r; [MI[ = " ' "  = IMn] 

A F- c a s e  v M b i n d  x i n  ~-1 =~ M1, . . . ,  T,~ =r M,~ : T 

Fig.  3. Typing rules of explicitly typed language/~CIL. 

type annotations, performing a computation step, and then simplifying type 
annotations again. Type annotations that  might block a computation step are 
removed by t-reduction. Since t-reduction is terminating, it is convenient to go to 
t-normal form before and after computation steps. The notion of c-reduction 
performs real computation steps. In our term formulation, parallel c-redexes 
(i.e., different type-annotated versions of the s a m e  program phrase) must be 
contracted simultaneously. This is formalized using parallel  contex ts  (members 
of P a r C o n t e x t ) ,  which require parallel c-redexes to fill holes that  map to the 
same hole in the type-erased program. 

T h e o r e m 3  S u b j e c t  R e d u c t i o n  for A cIL. I f  M 
then  A F~c~L N : 7-. 

~r N and A b-~c~L M : T, 

T h e o r e m 4  T y p e d / U n t y p e d  R e d u c t i o n  C o r r e s p o n d e n c e .  
I f  A F~c~L M : 7-, t hen  

1. I f  M )r N ,  then  IMI - - - ~  INI.  

2. I f  [MI -----~ fi[, t hen  there exists  a t e r m  N where M "--+r N and  [NI - N .  
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Main  Notion of Reduct ion for Type-Anno ta t ed  Terms 

M---+, N iff 3M',N'. ( M - ~ t  M' ---% N' -~ ,  N) 

Computa t ion  Reduct ion 

(A~x~.M) ~r V - ~  M [x:=V] 
~x x ( y l , . . .  ,y,~) -,~ 
case + (in + V) * bind x in "T 1 ~ M t , . . . ,  ~'= =:~ M~ ~c  M, [x:=V] 
~x~.V .~o y [~:=(~.v)] 
Reduction contexts: Cc = Pa rCon tex t  

i f l < i < n  
i f l < i < n  

Type-Annotat lon-Simplif icat ion Reduct ion  

~r~ A(M1,..., M~) ~-*~ Mi if 1 < i < n 
1 r l  (case v(in v N )  ~ b l n d x i n  ~'~t (A{1}x .Mi) @~1} N i f l < i < n  

T1 ==~ M 1 , . . . , T n  :=~ Mn) 

(coerce (a, r) (AZcxP.M)) ~r N -~'~t (A~k)xP.M) @~l} g 
coerce (al, r) coerce (p, a2) M ~-~t coerce (p, r) M 

Reduction contexts: Ct = { C ] C C Context  and C has exactly one hole } 

Fig .  4. Reduction rules of explicitly typed language ACIL 

T h e o r e m 5  C o n f l u e n c e  o f  T y p e d  R e d u c t i o n .  I/ M "r 241 and M "r 
N~, then there exist M~ and M~ such that IM~I =- IM~I and N1 ----~ M~ and 
N2 ,~, M~. 

4 .4  I m p l i c i t l y  T y p e d  L a n g u a g e  ),OIL 

The implicitly typed language AGL is automatically obtained from Acre and 
,CIL The syntax and semantics of ~/CIL a re  the same as ~CIL as given in figure 1. 

U ~ " ' U  

The typing rules of  ~?IL are the rules of figure 3 modified by replacing every 
judgement A P M : ~- mentioned in a rule by A P IMI : ~-, using the type erasure 

rules from figure 2. 

T h e o r e m  6 S u b j e c t  R e d u c t i o n  for  ~CIL /f j~ )~ .f/ and A ~-~.cIL 2VI : % 

then A t-~ciL /V : "r. 

5 R e l a t e d  Work  

Typed intermediate languages are used in several experimental compilers. Most 
typed intermediate languages for polymorphic programming languages can be 
seen as variants of the Girard/Reynolds )~-calculus, System F [9, 24]. 

Recent versions of the Standard ML of New Jersey (SML/NJ) compiler [3, 27] 
use a variant of system F as the representation in the front-end of the compiler. In 
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SML/NJ, type inference annotates polymorphic functions with universally quan- 
tified types and annotates function applications with the simple types to which 
the polymorphic types are instantiated. The compiler uses the type information 
to select efficient data representations and to minimize boxing coercions [16]. 
The SML/NJ compiler also uses minimal typing derivations [7] to reduce box- 
ing coercions for let-polymorphic definitions. The compiler uses a simply typed 
representation in later stages of the compiler. 

The Glasgow Haskell Compiler (GHC) [15] also uses a variant of System F. 
In GHC, type inference annotates polymorphic functions with type abstractions 
and uses of polymorphic functions with type arguments. This allows the compiler 
to preserve the well-typedness of the intermediate representation across program 
transformations. The type information is used in the later stages of the compiler 
to improve code generation. 

System F can also be seen as the basis of the typed intermediate language 
~/ML of the TIL compiler for Standard ML [18, 17]. The calculus )ML is a pred- 
icative variant of System F extended with intensional polymorphism [11]. The 
key feature is the support for dynamic type dispatch at run-time. This aids in 
efficient compilation of polymorphism without sacrificing separate compilation. 
A use of a polymorphic function can dispatch on a type argument to yield a 
monomorphic routine suitable for the type. This approach to compiling poly- 
morphism yields excellent results [28] since many type dispatch redexes can be 
eliminated at compile-time and the compiler can then gain the resulting benefits 
of type specialization including in-lining and common subexpression elimination. 

Our intermediate language A cIL was inspired by the earlier work on rank- 
2 intersection types of Jim [13]. As we have shown in this paper, intersection 
types naturally lead to a flow-directed approach to compilation. Our flow labels 
encode information about the operational behavior of the program that can- 
not be obtained from types without flow labels. At the same time, intersection 
and union types support a natural encoding of polyvariant flow information [5]. 
While it is clearly possible to compute, record, and use the flow and type in- 
formation separately, we believe that a single representation is more natural for 
compilation. 

General research into intersection types that has influenced our thinking in- 
cludes the work of Van Bakel [4] and Jim [13]. Research on both intersection 
and union types that we have consulted includes the work by Pierce [20], Aiken, 
Wimmers, and Lakshman [1, 2], Barbanera and Dezani-Ciancaglini [6], and Tri- 
fonov and Smith [29]. Of the above, only Pierce considers intersection and union 
types in an explicitly typed language. Even that is somewhat distant from our 
work because Pierce includes a general subtyping relation on intersection and 
union types which we have deliberately avoided. 

6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We have presented A cIL, a typed intermediate language suitable for optimizing 
compilers for higher-order polymorphic programming languages such as ML. The 
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intermediate language is designed to facilitate verifiable flow-directed compiling. 
Based on )CIL we have developed a framework for typed-directed flow-based 
representation transformations, and have illustrated this framework in a closure 
conversion application that supports multiple function representations, includ- 
ing the inlining of open functions [8]. This application (informally sketched in 
section 2) is an example of how ACIL supplies the compiler writer both important 
information and great flexibility in making optimization decisions. 

Below, we outline some of the work ahead. 
Label l ing All Terms:  In this presentation, only abstractions, applications, 

and function types were given flow labels. In order to track the flows of non- 
function values, it will be necessary to to annotate all terms and types in the 

language. 
Compi l ing  P o l y m o r p h i s m  by Specialization: The ACIL-calcutus sug- 

gests an approach to compiling polymorphism of flow-directed specialization. 
The number of specializations required for a given definition can be minimized 
if they are determined by representation types rather than source types. We are 
currently studying the issue of representation types. 

Separa te  Compi la t ion :  If a program is compiled as a single unit, it is pos- 
sible to express all instances of polymorphism and data abstraction in terms of 
intersection and union types. However, if a program is decomposed into sepa- 
rately compiled modules, universal and existential types may be necessary to 
model the module interfaces. )~cm will need to be extended in order to sup- 
port separate compilation. Additionally, flow-directed specialization is difficult 
to extend to separately compiled modules. We are currently studying link-time 
specialization in which the linker determines whether new specializations of a 

definition are required. 
Flow Analysis :  The typed control flow analyses alluded to in this paper 

are limited by our shallow subtyping relation. We would like to weaken this 
restriction to permit more powerful control flow analysis algorithms. 

Te rm Dupl ica t ion:  An important practical consideration in compiling with 
types is controlling the size of the intermediate representations. Our current lan- 
guage duplicates terms when it duplicates types. While this language is concep- 
tually convenient for specification, for implementation purposes a considerable 
size savings can be obtained by using a typed calculus with intersection and 

union types in the style of [31]. 
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