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Abs t rac t .  We present an approach for automatically generating rele- 
vant, focused questions to be asked during code inspection sessions. 
The method is based on Hoare-logic. The novel key idea is the intro- 
duction of informal predicates, which, though not having a formal def- 
inition, may have a perfectly legal and unique informal interpretation. 
Such predicates make it easier to express requirements in terms of as- 
sertions, while still allowing for the automatic derivation of verification 
conditions. Moreover, informal predicates enable reasoning about asser- 
tions and verifying verification conditions at a level which is suitable for 
man rather than machine. 

1 I n t r o d u c t i o n  

In November 1995 the project "Automat ion  Verification in Software Develop- 
ment" was commenced. The project is one of several projects within the compe- 
tence center ISIS (Information Systems for Industrial Control and Supervision), 
and is carried out in cooperation between ABB Industrial Systems and the Real- 
Time Systems Laboratory at IDA, LinkSping University. 

The general goal of the project is to develop practicM means for increas- 
ing confidence in software correctness. Our strategy is to provide semi-formal 
support both for the development of code, and for its inspection. The latter 
is achieved by supporting the automatic  compilation of those questions which 
are relevant for the correctness of the code, and whose answers hence provide a 
systematic explanation of why the code works as intended. Such an explanation 
constitutes the heart  of code inspection, and helps either in pinpointing errors, 
or in convincing the inspection team of the correctness of the code. 

This article reports on ongoing work in the project. The purpose is to present 
the basic principles of the COMPASS method,  to explain the rationale behind 
these principles in terms of the general goal, and to also present our plans for 
the continued development. The style of presentation is chosen rather to give a 
flavour of COMPASS, than to present its formal underpinnings. 

The cornerstones on which COMPASS is based are (1) Hoares method for 
proving programs correct [14] (and hence, to a certain extent, Floyds intermedi- 
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ate assertion method [10]), (2) Dijkstras discipline for program development [6], 
and (3) Fagans work on code inspection [8]. 

COMPASS thus has its foundation in well-known theories for so called asser- 
tional programming. An assertion expresses a condition on the program variables, 
which is supposed to hold each time a certain point in the execution of the pro- 
gram is reached. By associating with a procedure two special assertions called 
the pre- and the postcond~tion of the procedure, assertions may be used to spec- 
ify the intended result of executing the procedure. Hoare introduced in 1969 [14] 
a logic for reasoning about assertions. The formulae of the logic are so called 
Hoare triples {P}C{Q},  where P and Q are assertions, and C is a piece of code. 
It is to be read "if C starts executing in a state where P holds, and if the exe- 
cution of C terminates, then Q holds upon termination". The method proposed 
by Hoare for proving such formulae, presupposes the existence of proof rules for 
the programming language under consideration. The method may be considered 
to consist of three phases: (1) Development of asserted code (i.e. code decorated 
with assertions), (2) Derivation of a set of verification conditions, using the proof 
rules of the programming language, and (3) A formal proof of the verification 
conditions, using axioms and proof rules for the domain over which the program 
variables range. 

Dijkstra [6] noted that verifying code after it has been developed is not 
entirely realistic. Dijkstra instead proposed that code should be developed along 
with arguments for its correctness. For this purpose he suggested a discipline of 
programming, based on Hoare-logic, where one states the assertions the code is 
to establish, and then uses the assertions to guide the development of the code. 

Both Hoares method (see e.g. [1]) and Dijkstras program development disci- 
pline are, within academia, well established since a very long time, and are also 
recognized to be the predominant methods for formal development and verifi- 
cation of sequential programs in imperative languages. In this perspective, it is 
quite remarkable that the methods are hardly known by industry, and even less 
used. Indeed, to the extent asserted programs are developed at all, the assertions 
are mostly used as run-time checks during debugging and testing (e.g. [18]). We 
believe this lack of understanding of Hoares and Dijkstras ideas is due to the 
fact that, though vast in quantity, most expositions approach the subject from 
a quite formalistic point of view, and thus give the feeling that full formality is 

a requirement for its applicability. 
Our basic hypothesis is that a method which is more easily used in practice, 

and which remains to be partially mechanizable, may be achieved by relaxing 
the requirements on formal rigour in a controlled manner. The novel key idea in 
COMPASS concerns predicates ranging over the domain of program variables, 
and which hence are used for expressing assertions; COMPASS allows such pred- 
icates to occur without an associated formal definition (axiomatization). They 
are instead expected to be defined in normal prose in a special kind of comments. 
Thus assertions have a formal syntax, but an informal semantics. The point is 
that such informal predicates may still have a perfectly legal and unique informal 
interpretation, expressible e.g. as a comment in the code. 
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Our experience so far is that informal predicates (a) enables expressing asser- 
tions at a high level which makes the algorithmic contents of a program explicit, 
and (b) enables reasoning about assertions and verification conditions at a level 
which is suitable for man rather than machine. This should be contrasted to the 
case when a formal axiomatization is required for each predicate. Such axioma- 
tizations do often have a non-obvious connection to the intuitive understanding 
of the property the predicate is to represent. As a consequence, they are both 
difficult to state and to reason about. 

The resulting method thus simplifies the formulation of assertions in phase 
(1) of Hoares method. Furthermore, phase (2) is not dependent on the meaning 
of the predicates involved. Thus verification conditions sufficient for the correct- 
ness of the program are automatically derived. These conditions will in general 
themselves contain informal predicates, thus disabling the possibility of formal 
proof. We therefore propose that step (3) above be substituted for an inspection 
session. In addition to justifying the validity of the verification conditions, both 
the informal definitions of predicates and the adequacy of the assertions should 
be examined during the inspection. Hence the somewhat loosely defined steps 
of Fagans code inspection method [8] are filled with a very concrete contents, 
specifying a highly structured and machine supported protocol for inspecting 
the code. 

We are presently developing a tool for the automatic derivation of verification 
conditions, and for presenting these conditions in a way suitable to form a basis 
for code inspection. In order to evaluate our method in a real industrial setting, 
we have adapted it to the C programming language. Certain restrictions of the 
language are of course needed. Furthermore, for the safe use of the method, the 
programmer is expected to develop the asserted code in a way compatible with 
the discipline of Dijkstra. 

The rest of this paper is organized as follows: In Sect. 2, the principles behind 
the COMPASS method are elaborated. This includes both the principles for code 
development and inspection. In Sect. 3, the method is exemplified in terms of 
the development and inspection of Quicksort. Section 4 presents and compares 
with related work. Finally, Sect. 5 contains conclusions and future work. 

2 T h e  C O M P A S S  a p p r o a c h  

The primary aim of the COMPASS approach is to give systematic support for 
generating relevant, focused questions to be asked during code inspection ses- 
sions. The questions should clearly reflect, and hence make explicit, the program- 
mers intentions and thoughts during code development. Our method is based on 
Hoare logic. The novel key idea is the introduction of informal predicates, which 
(1) enables expressing assertions at a level which makes the algorithmic contents 
of a program explicit, (2) makes possible the automatic derivation of verification 
conditions, and (3) enables reasoning about assertions and verifying verification 
conditions at a level which is suitable for man rather than machine. 
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It should be clear that  not any program nor any property is amenable to ver- 
ification along the principles of this method.  To start  with we restrict attention 
to properties representable as relations between program variables. Furthermore,  
the code has to be well-structured in order for the method to be applicable. Our 
aim is to convey the discipline of Dijkstra along with our ideas of semi-formal as- 
sertions, and hence provide a guide for the development of correct code together 
with automat ic  support  for its inspection. 

2.1 T h e  L a n g u a g e  o f  A s s e r t i o n s  

Before we go on, we will briefly describe the language in which to express the 
assertions and the notation which we use. The language of assertions is similar 

to tha t  of predicate logic. 
A p r e d i c a t e  expresses that  a certain relation holds between its arguments. 

Predicates constitute the core of assertions. Characteristic to our approach is 
that  we do not formalize the meaning of such a predicate, i.e. we do not formally 
define what relation it represents. Instead we just  require that  an informal but  
precise definition of the predicate is supplied. This should typically be given as 
a special kind of comment in the code. 

The v a r i a b l e s  that  might occur in assertions are either program variables 
or so called logical variables. Program variables are the variables that  occur 
in the program instructions considered. They are used in the same form as in 
the program itself. To each formal procedure parameter  p, there is an associated 
logical variable #p which allows referring to the initial value of p (logical variables 
always starts with "#"). These variables are what enables us to state the relation 
between the value of a variable before and after the execution of a procedure. 

In order to enable the application of d a t a  a b s t r a c t i o n ,  we have introduced 
a special notation. A variable followed by "<>" represents the complete abstract 
da ta  structure, i.e., both the contents and the structure of the elements. The 
notion of data  abstraction is central to our method; The method encourages 
data  abstraction, and assertions should be formulated in terms of objects of an 
abstract da ta  type. In this way, verification of a high level algorithmic nature can 
be separated from the verification of low level invariants of the representation of 
the data  type (such as e.g. non-corruption of the representing data  structure).  

A s s e r t i o n s  are written as a special kind of comments in the code. To distin- 
guish between the different kinds of assertions a unique tag is put  directly at the 
beginning of the assertion, possibly followed by a label. The  tags are p re ,  p s i ,  
iav ,  and a s t  for precondition, postcondition, loop invariant, and intermediate 

assertion respectively. 
Also the i n f o r m a l  d e f i n i t i o n s  of predicates and functions are written as 

special code comments. The tag ipd  stands for informal predicate definition and 
the tag i i d  for informal function definition. The appropriate tag is followed by a 
predicate or function name and its arguments. The informal description follows 
as normal text.  These informal definitions form the basis for the code inspection. 

Moreover, they allow simple consistency checking. 
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2.2 P r o g r a m  D e v e l o p m e n t  

Dijkstra recognized the practical problems involved in post facto verification of 
programs. He therefore suggested a discipline for developing the asserted code 
along with arguments for its correctness [6]. Since the program development 
method is described at length in the literature, e.g. [12], we will just  give a brief 

overview. 
Programming is a goal-orienied activity, that  is, the desired result (postcon- 

dition) plays a more impor tant  role than the precondition. Therefore, before 
trying to solve a problem, one should make oneself confident with the problem 
and develop corresponding pre- and postconditions. Then, given the postcon- 
dition (and precondition), the aim is to develop a program that  satisfies the 
postcondition. Two building blocks for a program are the alternative command 
and the loop construct: 

- In order to invent an a l t e r n a t i v e  c o m m a n d  (e.g. an i f  or sw i t ch  state- 
ment in C), a command C has to be found, that  establishes the postcondition 
R in at least some cases. A boolean expression that  is the weakest precondi- 
tion for the command C and postcondition R can be used as a guard for the 
alternative command. This process has to be continued until the precondi- 
tion implies tha t  at least one guard is true. 

- Given pre-, postcondition, and a loop invariant, a l o o p  c o n s t r u c t  is devel- 
oped as follows: 

1. The loop invariant has to be established before the first execution of the 
loop by appropriately initializing the involved variables. 

2. The guard must be developed. A boolean expression whose negation in 
conjunction with the loop invariant implies the postcondition can be 
used as the guard. 

3. Finally, the loop body is developed in a way so that  it improves towards 
termination while reestablishing the loop invariant. 

The problem, how to discover the loop invariant remains. However, quite 
often one already has a certain algorithm in mind when developing the pro- 
gram. Writing down the loop invariant then should be rather simple. A more 
systematic way to develop the loop invariant is to weaken the postcondition 
by deleting a conjunct, replacing a constant by a variable, enlarging the 
range of a variable, or adding a disjunct. 

The development method is presented here as described in Gries [12]. How- 
ever, since we do not require all predicates to be formally defined, developing a 
program along with its assertions can be performed on a level more suitable for 
humans. An example of program development in COMPASS may be found in 
Sect. 3. 

2 . 3  C o d e  I n s p e c t i o n  

Code inspection, as it is defined in [7], aims only at isolating faults in the code. 
Our approach takes one step further; It is based on well known formal techniques 
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for verifying code in a structured manner. Verifying the whole consists of veri- 
fying the parts. Failure in verifying a part means that a fault has been isolated. 
However, in addition to this, the method is guaranteed to generate all questions 
relevant for establishing the assertions. Thus, if no errors are found, the code 
must be considered correct, i.e. verified, with respect to its assertions. The code 
inspection can be performed either by the programmer during code development 
(individual inspection) or later, by a group of reviewers (group inspection). 

Ind iv idua l  Inspec t ions .  As soon as a function is implemented, the program- 
mer can perform a code inspection to check the correctness of the function 
according to the assertions. It is not required that all subfunctions called by 
the function under investigation are fully implemented, as long as the interface 
specifications of the subfunctions in form of pre- and postconditions are known. 
Thus our approach enables the programmer to find faults in the software, or an 
argument for its correctness as soon as possible. 

The inspection process itself consists of (1) The automatic derivation of veri- 
fication conditions, and (2) An informal justification of why each condition holds. 
The verification conditions and the justifications given by the programmer are 
stored in a database. They may be used e.g. during later group inspections. 

Since the decision whether a certain verification condition holds or not is left 
to the same programmer who wrote both the assertions and the code, possible 
faulty verification conditions might pass as correct. In order to exclude this 
source of uncertainty, group inspections should be performed. 

Group  Inspec t ions .  A group inspection is performed similar to the process 
first described by Fagan in [7] (see Sect 4.3). However, since our approach has a 
formal basis and can be supported by several tools, the roles of the participants 
and the process itself can be defined in more detail. 

We propose an inspection group with three members. The participants and 
their different roles during the code inspection process are: 

M o d e r a t o r  The moderator is responsible for organizing and moderating the 
inspection. Moreover, the moderator also participates in the discussion of 

the verification conditions. 
Des igner  The designer contributes to the discussion of verification conditions 

with knowledge about the domain (in particular the abstract data types) and 
the intended behaviour of the program. She has to check whether the pre- 
and postconditions correspond to the intended function of the software. As 
the other members of the inspection group, the designer participates actively 
in the discussion of the automatically derived verification conditions. 

I m p l e m e n t o r  The programmer who is responsible for coding the software ac- 
cording to assertion-driven programming (see Sect. 2.2). As the other mem- 
bers of the inspection group, the implementor participates in the discussion 

of the verification conditions. 
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The overall goal of our inspection process is to give rational and systematic 
explanations of why a program works as intended, and, if not, to isolate the 
fault. The code inspection process consists of the following phases: 

P l a n n i n g  phase  Before the meeting the moderator distributes the asserted 
code. 

Code  i n spec t ion  phase  The goal of an inspection session is to explain why 
the program works as intended. This is done by justifying the correctness of 
the automatically derived verification conditions. 
The code inspection session itself can be divided into the following, distinct 
steps: 

1. Presentation of the general problem. Explanation and discussion of the 
informally defined functions and predicates. 

2. Controlling whether the pre- and postconditions correspond to the in- 
tended behaviour of the program. If the assertions do not properly de- 
scribe the intended behaviour, the inspection should be adjourned. 

3. The group has to decide for each verification condition (which e.g. has 
been derived and stored during an individual inspection) whether the 
condition is true with respect to its informal interpretation (i.e. the 
interpretation determined by the informal predicate and function def- 
initions). The verification condition together with the argument for its 
correctness or fault is stored in a database for later review. 

R e w o r k  phase  What has to be done after the code inspection depends on the 
result of the main phase of the inspection session: 

- If the assertions correspond to the intended behaviour of the program, 
and if all verification conditions are deemed to be satisfied, then the 
inspected program is considered to be correct. 

- If the assertions are the intended ones, but not all of the verification 
conditions are correct, then faults have been found. In this case, the 
responsible programmers have to remedy all defects found. The non- 
valid verification conditions give a very delimited piece of code which 
contains the fault. 

- Finally, if assertions are not according to the intentions, the assertions 
have to be corrected before discussing verification conditions is mean- 
ingful. 

If faults have been detected, the inspection process has to be redone. However, 
since the earlier results of the code inspection session are stored in a database, 
valid verification conditions do not need to be reevaluated. 

3 A n  E x a m p l e  

In this section we will give an example of how our method can be used. The 
program we will develop is an implementation of the sorting algorithm quicksort. 
Quicksort takes as input an array to be sorted, picks out a splitting element, splits 



810 

the array in two subarrays, containing those elements respectively less than and 
greater than the splitting element. It then recursively sorts the two subarrays. 

Our starting point is to provide an interface specification, i.e. a procedure 
head, a pre-, and a postcondition. For quicksort we have no requirements on the 
precondition, while requiring in the postcondition that  the array parameter is 
sorted when the procedure terminates: 

void q s o r t ( i n t  v[ ] ,  const in t  l e f t ,  const in t  r igh t )  
/*pre true */ 
/*pst sorted(#v<>, v<>, $1eft, #right) */ 

The predicate s o r t e d  is a typical example of an informal predicate, hav- 
ing only an informal definition. The relation expressed by s o r t e d ( a r r l ,  a r r 2 ,  
l e f t ,  r i g h t )  is, that  a r r2  is sorted in increasing order in the intervM [ l e f t ,  
r i g h t ] ,  and that  a r r l  and a r r2  are permutations in this interval while identical 

outside: 

arrl arr2 

[left right] [left right] 

We now develop the procedure in a stepwise refinement fashion, carefully 
stating along the way all assertions that  we intend to hold. Initially we check 
whether there are actually more than one element to be sorted; if this is not the 

case we are done: 

void qsort(int v[], const int left, const int right) { 

if (left<right) { 
/* sort vii inbetween left and right */} 

/*pst sorted($v<>, v<>, #1eft, #right) */} 

As already mentioned, qsort sorts by first splitting the array around a split- 
ting element, and then recursively sorting the two sub-arrays. We therefore in- 
troduce the (informal) predicate p a r t i t i o n  which states that  the array is split 
around a certain integer i .  Concretely, p a r t i t i o n ( a r r l ,  a r t 2 ,  l e f t ,  r i g h t ,  
i )  expresses that  a r r l  and axr2 are permutations in the range [ l e f t ,  r i g h t ]  
while identical outside, and that  the following relation holds: 

arrl art2 

r i gh t ]  
[left right] [left ! 

i 

Assuming we have a procedure split which does the actual job of splitting 

the array, we may write the full definition of qso r t :  
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void qsort(int v[], const int left, const int right) { 

int i ; 
if (left<right) { 

split(v, left, right, &i); 
/*ast partition(#v<>, v<>, #1eft, #right, i) */ 

qsort(v, left, i-l); 
qsort(v, i+l, right);} 

/*pst sorted(#v<>, v<>, #1eft, #right) */} 

The idea is that  split should return the splitting position in the variable 
i ,  thus it is called with a reference ~i  to i .  We are obliged to develop s p l i t  
in such a way that  it establishes p a r t i t i o n ( # v < > ,  v<>, # 1 e f t ,  # r i g h t ,  i )  
as its postcondition. It is furthermore only meaningful to apply s p l i t  in case 
there is at least one element in the array to be partitioned. Thus we also need a 
precondition for s p l i t ,  expressing this assumption: 

void split(int v[], const int left, const int right, int* i) 
/*pre left<=right */ 
/*pst partition(#v<>, v<>, #1eft, #right, *i) */ 

From the definition of qsort and the interface specification of split, a num- 
ber of verification conditions may (automatically) be derived. Their  satisfaction 
implies the correctness of all assertions, that  is, that  each assertion holds each 
t ime execution reaches the position where it is placed. The following are the 
derived verification conditions: 

Suppose: 
I. #1eft>=#right 

Then: 
A. sorted(#v<>,v<>,#1eft,#right) 

Suppose: 
i. #1eft<#right 

Then: 
A. #1eft<=#right 

Suppose : 
I. #1eft<#right 
2. partition(#v<>, v<>, #left, #right, i) 
3. sorted(v<>, v'<>, #1eft, i-l) 
4. sorted(v'<>, v''<>, i+l, #right) 

Then: 
A. sorted(#v<>, v''<>, #1eft, #right) 

The first two conditions are clearly satisfied. Indeed, the second condition 
could be automatically discharged. Furthermore, using the informal definitions 
of p a r t i t i o n  and s o r t e d  it is not difficult to argue for the correctness of the 
third condition. 

Let us now develop the function s p l i t .  For the sake of simplicity we choose 
here the leftmost element in the array v, i.e. v [ l e f t ] ,  as the splitting element. 
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Our general strategy then is as follows: We keep a position ub (for "upper 
bound")  and an index i .  The idea is that  each of the elements v [ l e f t + l ]  to 
v i i ]  should be strictly less than v [ l e f t ] ,  and each of the elements v [ i + l ]  to 
v [ub-1]  should be greater than or equal to v [ l e f t ] .  The relation between the 
array v<>, and the indices i and ub should be kept invariant. Th a t  is, assuming 
it holds before executing the body of the the main loop, it also holds after its 
completion. By successively incrementing ub, while preserving the invariant, we 
eventually have u b = r i g h t + l .  At this point we can simply interchange v [ l e f t ]  
and v [ i ]  and we are done. 

To express the invariant as an assertion in the program code, we introduce an 
informal predicate p r e - p a r t i t i o n .  The predicate p r e - p a r t i t i o n ( a r r l ,  a r r 2 ,  
l e f t ,  r i g h t ,  i ,  ub) expresses that  a r r l  and a r r 2  are permutat ions in the 
range [ l e f t ,  r i g h t ]  while identical outside, and that  the following relation 

holds: 
arrl arr2 

[left right] I i] ub-l]right] 
left 

Given the above informal predicates p r e - p a r t  i t  ion  and p a r t  i t  ion,  the first 

skeleton of s p l i t  thus looks as follows: 

void s p l i t ( i n t  v [ ] ,  const in t  l e f t ,  const in t  r i g h t ,  in t*  i)  
/*pre  l e f t<=r igh t  */  { 

in t  ub; 
/* e s t a b l i s h  the invar ian t  */  
while (ub<=right) ( 

/*inv pre-partition(#v<>,v<>,#1eft, #right,*i,ub) and ub<=#right+l */ 
/. preserve the invariant while incrementing ub */} 

/. interchange v[left] and v[*i] */ 
/*pst partition(#v<>, v<> ,#1eft ,#right ,*i) */ } 

Establishing the invariant is easy. It is sufficient to set * i  to l e f t  and ub 
to l e f t + l .  To enable incrementation of ub without loosing satisfaction of the 
invariant, we have to consider two cases: in case v [ u b ] _ > v [ l e f t ]  the invariant 
is reestablished by incrementing ub. In the other case, when v[ub]  < v [ l e f t ]  
we do need to do some more work in order to reestablish the invariant. Noting 
that ,  according to the invariant, v [ * i + l ]  >_v [ l e f t ]  and v [* i ]  <v  [ l e f t ] ,  we 
may conclude that  the invariant will be reestablished, provided that  we increment 
* i ,  and then (after this incrementation) interchange v [* i ]  and v [ub] before we 
increment ub. As will be seen, this argument corresponds exactly to the argument 
for the verification conditions generated from the final code. We may now write 
the complete procedure, including also the interchange which is the last step: 

void split(int v[], c~ int left, coast int right, int* i) 

/.pre left<=rig ht */ { 



813 

int ub=left+l ; 
int t emp ; 
*i=left ; 
while (ub<=right) { 

/*inv pre-partition(#v<>,v<>,#1eft, ~Tight ,*i,ub) and ub<=#right+l */ 
if (v [lib] <v [left] ) { 

*i=*i+l ; 
temp=v[*i] ; v[*i]=v[ub] ; v[ub]=temp;} 

ub=ub+l ; } 
temp=v[*i]; v[*i]=v[left]; v[left]=temp; 

/*pst partition(#v<>,v<> ,#left ,#right ,*i) */} 

The four verification conditions generated from this code and the assertions 
are the following: 

Suppose : 
I. #left <=#right 

Then: 

A. pre-partition(#v<>, v<>, #left, #right, #left, #left+l) 

Suppose : 

1. pre-partition(#v<>, v<>, #left, #right, *i, ub) 
2. ub<=#right 
3. v [ub] <v [#left] 

Then: 

A. pre-partition(~v<>, v'<>, #left, #right, *i+1, nb+l), 
where v'=v except for v'[ub]=v[*i+l], v'[*i+l]=v[llb] 

Suppose : 

I. pre-partition(#v<>, v<>, #1eft, #right, *i, nb) 
2. ub<=#right 
3. v [ub] >=v [# le f t ]  

Then: 

A. pre-partition(~v<>, v<>, #left, #right, *i, ub+l) 

Suppose : 

I. pre-partition(#v<>, v<>, #left, #right, *i, #right+l) 
Then: 

A. partition(#v<>, v'<>, #1eft, #right, *i) 
where v'=v except for v'[#1eft]=v[*i], v'[*i]=v[#1eft] 

The first condition corresponds to the first establishment of the invariant, and 
is clearly satisfied. The second and third condition correspond to the preservation 
of the invariant, and are satisfied according to the argument provided above 
along with the code development. Finally, the fourth condition is satisfied due 
to the fact (coming from p r e - p a r t i t i o n )  that  v [ # l e f t ]  is strictly greater than 
each element in v [ # 1 e f t + l ]  . . . .  v [ * i ] ,  while being smaller than or equal to the 
elements in v [ * i+ l ]  . . . .  v [ # r i g h t ] .  
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4 R e l a t e d  W o r k  

A lot of work has been done to increase confidence in software correctness, 
including program verification, dynamic testing, and code inspection. 

4.1 P r o g r a m  Verif icat ion 

There is a vast amount of literature on the subject of formally verifying the cor- 
rectness of programs, mainly based on so called ttoare-logic suggested by Hoare 
in 1969 [14]. This approach has been extended in several ways to cover special 
programming language constructs, e.g. pointers [2], procedure calls [15,17,3], 
recursive procedures [13], and gotos [5]. 

One of the newer and quite successful approaches to formal software verifi- 
cation is the Ada subset called SPARK [4]. SPARK is a subset of Ada 83 that 
is extended by annotations. The restrictions to the Ada language are partly in- 
troduced to ensure predictability of a program's behaviour and partly to ensure 
simplicity of formal language definition and proof arguments. 

Mandatory annotations are required to perform extended static code analysis 
and comprise e.g. the definition of used global variables and the definition of 
dependency relations, that is, a specification of which variables are imported and 
exported by a procedure and how they are related. The other kind of annotations, 
so called proof contexts, are used to introduce elements of formal specifications 
and proof obligations, e.g. pre-, postconditions, loop invariants, and intermediate 
assertions for procedures. 

Since SPARK has a formally defined semantics, formal program verification 
is possible and supported by the SPARK Examiner. This tool checks the confor- 
mance of a program to the rules of SPARK, carries out a flow and information 
analysis of the code, and supports formal verification. 

SPARK mostly aims at low level properties, e.g. the absence of run-time 
errors [11], whereas COMPASS is suitable for reasoning about the high level 
algorithmic contents of a program. 

4.2 D y n a m i c  Checking  

Several approaches exploit code annotations to improve dynamic testing, e.g. 
Robust C [9], APP [18], Anna [16], and C-Patrol [22]. Common to these ap- 
proaches is that they extend the underlying programming language or introduce 
special kinds of comments to be written together with the code. A slightly dif- 
ferent approach is used by ADLT [20], where the (interface) specifications are 
not mixed together with the code; The specification is stored in a different file 
instead. However, the additional constructs can be used e.g. for array index 
checking, range checking, or loop invariant checking. 

In comparison to simple black box testing the above approaches improve error 
detection and decrease the necessary debugging effort to find the underlying 
fault. The assertions that have to be specified for applying our method might 
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be used in a similar way. However, in this case all used predicates have to be 
translated into executable code. 

The major drawback of the above approaches is, that in practical applications 
none of the approaches can guarantee the absence of errors in the program under 
investigation because exhaustive testing in general is not possible. Moreover, 
extensive testing is very expensive. 

4.3 Code  Inspec t ion  

Code Inspection was developed by Fagan in 1972 at IBM Kingston. It is a visual 
examination of code to detect errors in the code. A reader is paraphrasing the 
code and the other members of the inspection team, equipped with lists of errors 
known to be likely and clues that usually betray their presence, are trying to find 
these kinds of errors. Still, what actually has to be done in an inspection session 
is only loosely defined. It is more or less up to the participants and thus, it is 
not clear how the inspection should be documented or repeated. Changes may 
require new inspections of large parts of the implementation. Moreover, since 
the code is not checked for all kinds of errors; the code might still be erroneous. 

Nevertheless, in [7] Fagan argues that design and code inspections increase 
the productivity and improve the final program quality. Ten years later, in 1986 
[8], Fagan suggests slight modifications to the inspection process and reports 
further industrial experiences that support his earlier results. In [19] Russell de- 
scribes similar experiences with the inspection in ultralarge-scale developments. 

One possible method that describes more precisely what actually has to be 
done in an inspection session was introduced by van Emden [21] in 1992. His code 
inspection method is based on Floyd's method for the verification of flowcharts 
[10]. His basic idea was to first exhaustively annotate the code with completely 
informal assertions (not necessarily with complete coverage of assumptions). 
Then, during the inspection session it is checked whether the next assertion 
along the execution path may be concluded from the former assertion and the 
instruction between the two assertions. 

In order to obtain the annotated code, van Emden proposed a program de- 
velopment method, called assertion-driven programming. This method allows 
the development of the required assertions and the code during the same pro- 
cess, where the assertions are driving the code development as in Dijkstra's [6J 
method. However, van Emden's method does not produce code according to 
structured programming. 

The major difference between van Emden's and our approach is, that we 
combine a formal syntax and a partly informal semantics for the language of 
assertions. This enables automatic support of many kinds which is not possible 
in van Emden's approach: predicate transformation (and hence fewer assertions 
to specify), arithmetic simplification, and generation of verification conditions. 
Moreover, since we use Dijkstra's development method, the code produced is in 
accordance with structured programming. 
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5 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

The COMPASS method introduced in this paper is based on ttoares method 
for proving programs correct, Dijkstras discipline for program development, and 
Fagans work on code inspection. Both Hoares verification method and Dijkstras 
program development discipline are well established in academia. However, the 
methods are hardly known by industry. We believe this is due to the fact that 
most expositions approach the subject from a quite formalistic point of view, 
and thus give the feeling that full formality is a requirement for its applicability. 

Our hypothesis is that a method which is more easily used in practice, and 
which remains to be partially mechanizable, may be achieved by relaxing the 
requirements on formal rigour in a controlled manner. The novel key idea is the 
introduction of informal predicates, which, though not having a formal definition, 
may have a perfectly legal and unique interpretation. These informal predicates 
make it easier to express the required assertions and enable reasoning about 
assertions and verifying verification conditions at a level which is suitable for 
man rather than machine. Since we combine a formal syntax with an informal 
semantics, it is still possible to automatically derive verification conditions. 

The verification conditions constitute questions to be asked during code in- 
spection. The somewhat loosely defined contents of the steps of Fagans code 
inspection method are thus filled with a very concrete contents. Moreover, COM- 
PASS not only allows isolating faults in the code; The inspected code may be 
considered correct with respect to its assertions, if no errors are found. 

Our short-term goals are to further refine the COMPASS method in coop- 
eration with our industrial partner ABB ISY. We plan to complete the imple- 
mentation of the tool support, and to evaluate the COMPASS method in a real 
software development project. For the latter it is necessary to lift certain restric- 
tions presently imposed on the C-language, and to develop tutorials for the use 

of the method. 
In the long term we intend to study whether our general idea - to decrease 

the requirements on formality, while still keeping a sufficient level of rigour - 
may be applied also to higher level specifications. We believe this may be a way 
to increase industrial acceptance of formally based development methods. 
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