
COMPASS:
A Comprehensible Assertion Method

Staffan Bonnier 1 and Tim Heyer 2

1 Carlstedt Research & Technology AB (CR&T), Stora Badhusgatan 18-20,
S-411 21 GSteborg, SWEDEN, stabon@carlstedt.se

2 Real-Time Systems Laboratory, Department of Computer and Information Science,
LinkSping University, S-581 83 LinkSping, SWEDEN, timhe@ida.liu.se

Abs t rac t . We present an approach for automatically generating rele-
vant, focused questions to be asked during code inspection sessions.
The method is based on Hoare-logic. The novel key idea is the intro-
duction of informal predicates, which, though not having a formal def-
inition, may have a perfectly legal and unique informal interpretation.
Such predicates make it easier to express requirements in terms of as-
sertions, while still allowing for the automatic derivation of verification
conditions. Moreover, informal predicates enable reasoning about asser-
tions and verifying verification conditions at a level which is suitable for
man rather than machine.

1 I n t r o d u c t i o n

In November 1995 the project "Automat ion Verification in Software Develop-
ment" was commenced. The project is one of several projects within the compe-
tence center ISIS (Information Systems for Industrial Control and Supervision),
and is carried out in cooperation between ABB Industrial Systems and the Real-
Time Systems Laboratory at IDA, LinkSping University.

The general goal of the project is to develop practicM means for increas-
ing confidence in software correctness. Our strategy is to provide semi-formal
support both for the development of code, and for its inspection. The latter
is achieved by supporting the automatic compilation of those questions which
are relevant for the correctness of the code, and whose answers hence provide a
systematic explanation of why the code works as intended. Such an explanation
constitutes the heart of code inspection, and helps either in pinpointing errors,
or in convincing the inspection team of the correctness of the code.

This article reports on ongoing work in the project. The purpose is to present
the basic principles of the COMPASS method, to explain the rationale behind
these principles in terms of the general goal, and to also present our plans for
the continued development. The style of presentation is chosen rather to give a
flavour of COMPASS, than to present its formal underpinnings.

The cornerstones on which COMPASS is based are (1) Hoares method for
proving programs correct [14] (and hence, to a certain extent, Floyds intermedi-

804

ate assertion method [10]), (2) Dijkstras discipline for program development [6],
and (3) Fagans work on code inspection [8].

COMPASS thus has its foundation in well-known theories for so called asser-
tional programming. An assertion expresses a condition on the program variables,
which is supposed to hold each time a certain point in the execution of the pro-
gram is reached. By associating with a procedure two special assertions called
the pre- and the postcond~tion of the procedure, assertions may be used to spec-
ify the intended result of executing the procedure. Hoare introduced in 1969 [14]
a logic for reasoning about assertions. The formulae of the logic are so called
Hoare triples {P}C{Q}, where P and Q are assertions, and C is a piece of code.
It is to be read "if C starts executing in a state where P holds, and if the exe-
cution of C terminates, then Q holds upon termination". The method proposed
by Hoare for proving such formulae, presupposes the existence of proof rules for
the programming language under consideration. The method may be considered
to consist of three phases: (1) Development of asserted code (i.e. code decorated
with assertions), (2) Derivation of a set of verification conditions, using the proof
rules of the programming language, and (3) A formal proof of the verification
conditions, using axioms and proof rules for the domain over which the program
variables range.

Dijkstra [6] noted that verifying code after it has been developed is not
entirely realistic. Dijkstra instead proposed that code should be developed along
with arguments for its correctness. For this purpose he suggested a discipline of
programming, based on Hoare-logic, where one states the assertions the code is
to establish, and then uses the assertions to guide the development of the code.

Both Hoares method (see e.g. [1]) and Dijkstras program development disci-
pline are, within academia, well established since a very long time, and are also
recognized to be the predominant methods for formal development and verifi-
cation of sequential programs in imperative languages. In this perspective, it is
quite remarkable that the methods are hardly known by industry, and even less
used. Indeed, to the extent asserted programs are developed at all, the assertions
are mostly used as run-time checks during debugging and testing (e.g. [18]). We
believe this lack of understanding of Hoares and Dijkstras ideas is due to the
fact that, though vast in quantity, most expositions approach the subject from
a quite formalistic point of view, and thus give the feeling that full formality is

a requirement for its applicability.
Our basic hypothesis is that a method which is more easily used in practice,

and which remains to be partially mechanizable, may be achieved by relaxing
the requirements on formal rigour in a controlled manner. The novel key idea in
COMPASS concerns predicates ranging over the domain of program variables,
and which hence are used for expressing assertions; COMPASS allows such pred-
icates to occur without an associated formal definition (axiomatization). They
are instead expected to be defined in normal prose in a special kind of comments.
Thus assertions have a formal syntax, but an informal semantics. The point is
that such informal predicates may still have a perfectly legal and unique informal
interpretation, expressible e.g. as a comment in the code.

805

Our experience so far is that informal predicates (a) enables expressing asser-
tions at a high level which makes the algorithmic contents of a program explicit,
and (b) enables reasoning about assertions and verification conditions at a level
which is suitable for man rather than machine. This should be contrasted to the
case when a formal axiomatization is required for each predicate. Such axioma-
tizations do often have a non-obvious connection to the intuitive understanding
of the property the predicate is to represent. As a consequence, they are both
difficult to state and to reason about.

The resulting method thus simplifies the formulation of assertions in phase
(1) of Hoares method. Furthermore, phase (2) is not dependent on the meaning
of the predicates involved. Thus verification conditions sufficient for the correct-
ness of the program are automatically derived. These conditions will in general
themselves contain informal predicates, thus disabling the possibility of formal
proof. We therefore propose that step (3) above be substituted for an inspection
session. In addition to justifying the validity of the verification conditions, both
the informal definitions of predicates and the adequacy of the assertions should
be examined during the inspection. Hence the somewhat loosely defined steps
of Fagans code inspection method [8] are filled with a very concrete contents,
specifying a highly structured and machine supported protocol for inspecting
the code.

We are presently developing a tool for the automatic derivation of verification
conditions, and for presenting these conditions in a way suitable to form a basis
for code inspection. In order to evaluate our method in a real industrial setting,
we have adapted it to the C programming language. Certain restrictions of the
language are of course needed. Furthermore, for the safe use of the method, the
programmer is expected to develop the asserted code in a way compatible with
the discipline of Dijkstra.

The rest of this paper is organized as follows: In Sect. 2, the principles behind
the COMPASS method are elaborated. This includes both the principles for code
development and inspection. In Sect. 3, the method is exemplified in terms of
the development and inspection of Quicksort. Section 4 presents and compares
with related work. Finally, Sect. 5 contains conclusions and future work.

2 T h e C O M P A S S a p p r o a c h

The primary aim of the COMPASS approach is to give systematic support for
generating relevant, focused questions to be asked during code inspection ses-
sions. The questions should clearly reflect, and hence make explicit, the program-
mers intentions and thoughts during code development. Our method is based on
Hoare logic. The novel key idea is the introduction of informal predicates, which
(1) enables expressing assertions at a level which makes the algorithmic contents
of a program explicit, (2) makes possible the automatic derivation of verification
conditions, and (3) enables reasoning about assertions and verifying verification
conditions at a level which is suitable for man rather than machine.

806

It should be clear that not any program nor any property is amenable to ver-
ification along the principles of this method. To start with we restrict attention
to properties representable as relations between program variables. Furthermore,
the code has to be well-structured in order for the method to be applicable. Our
aim is to convey the discipline of Dijkstra along with our ideas of semi-formal as-
sertions, and hence provide a guide for the development of correct code together
with automat ic support for its inspection.

2.1 T h e L a n g u a g e o f A s s e r t i o n s

Before we go on, we will briefly describe the language in which to express the
assertions and the notation which we use. The language of assertions is similar

to tha t of predicate logic.
A p r e d i c a t e expresses that a certain relation holds between its arguments.

Predicates constitute the core of assertions. Characteristic to our approach is
that we do not formalize the meaning of such a predicate, i.e. we do not formally
define what relation it represents. Instead we just require that an informal but
precise definition of the predicate is supplied. This should typically be given as
a special kind of comment in the code.

The v a r i a b l e s that might occur in assertions are either program variables
or so called logical variables. Program variables are the variables that occur
in the program instructions considered. They are used in the same form as in
the program itself. To each formal procedure parameter p, there is an associated
logical variable #p which allows referring to the initial value of p (logical variables
always starts with "#"). These variables are what enables us to state the relation
between the value of a variable before and after the execution of a procedure.

In order to enable the application of d a t a a b s t r a c t i o n , we have introduced
a special notation. A variable followed by "<>" represents the complete abstract
da ta structure, i.e., both the contents and the structure of the elements. The
notion of data abstraction is central to our method; The method encourages
data abstraction, and assertions should be formulated in terms of objects of an
abstract da ta type. In this way, verification of a high level algorithmic nature can
be separated from the verification of low level invariants of the representation of
the data type (such as e.g. non-corruption of the representing data structure).

A s s e r t i o n s are written as a special kind of comments in the code. To distin-
guish between the different kinds of assertions a unique tag is put directly at the
beginning of the assertion, possibly followed by a label. The tags are p re , p s i ,
iav , and a s t for precondition, postcondition, loop invariant, and intermediate

assertion respectively.
Also the i n f o r m a l d e f i n i t i o n s of predicates and functions are written as

special code comments. The tag ipd stands for informal predicate definition and
the tag i i d for informal function definition. The appropriate tag is followed by a
predicate or function name and its arguments. The informal description follows
as normal text. These informal definitions form the basis for the code inspection.

Moreover, they allow simple consistency checking.

807

2.2 P r o g r a m D e v e l o p m e n t

Dijkstra recognized the practical problems involved in post facto verification of
programs. He therefore suggested a discipline for developing the asserted code
along with arguments for its correctness [6]. Since the program development
method is described at length in the literature, e.g. [12], we will just give a brief

overview.
Programming is a goal-orienied activity, that is, the desired result (postcon-

dition) plays a more impor tant role than the precondition. Therefore, before
trying to solve a problem, one should make oneself confident with the problem
and develop corresponding pre- and postconditions. Then, given the postcon-
dition (and precondition), the aim is to develop a program that satisfies the
postcondition. Two building blocks for a program are the alternative command
and the loop construct:

- In order to invent an a l t e r n a t i v e c o m m a n d (e.g. an i f or sw i t ch state-
ment in C), a command C has to be found, that establishes the postcondition
R in at least some cases. A boolean expression that is the weakest precondi-
tion for the command C and postcondition R can be used as a guard for the
alternative command. This process has to be continued until the precondi-
tion implies tha t at least one guard is true.

- Given pre-, postcondition, and a loop invariant, a l o o p c o n s t r u c t is devel-
oped as follows:

1. The loop invariant has to be established before the first execution of the
loop by appropriately initializing the involved variables.

2. The guard must be developed. A boolean expression whose negation in
conjunction with the loop invariant implies the postcondition can be
used as the guard.

3. Finally, the loop body is developed in a way so that it improves towards
termination while reestablishing the loop invariant.

The problem, how to discover the loop invariant remains. However, quite
often one already has a certain algorithm in mind when developing the pro-
gram. Writing down the loop invariant then should be rather simple. A more
systematic way to develop the loop invariant is to weaken the postcondition
by deleting a conjunct, replacing a constant by a variable, enlarging the
range of a variable, or adding a disjunct.

The development method is presented here as described in Gries [12]. How-
ever, since we do not require all predicates to be formally defined, developing a
program along with its assertions can be performed on a level more suitable for
humans. An example of program development in COMPASS may be found in
Sect. 3.

2 . 3 C o d e I n s p e c t i o n

Code inspection, as it is defined in [7], aims only at isolating faults in the code.
Our approach takes one step further; It is based on well known formal techniques

808

for verifying code in a structured manner. Verifying the whole consists of veri-
fying the parts. Failure in verifying a part means that a fault has been isolated.
However, in addition to this, the method is guaranteed to generate all questions
relevant for establishing the assertions. Thus, if no errors are found, the code
must be considered correct, i.e. verified, with respect to its assertions. The code
inspection can be performed either by the programmer during code development
(individual inspection) or later, by a group of reviewers (group inspection).

Ind iv idua l Inspec t ions . As soon as a function is implemented, the program-
mer can perform a code inspection to check the correctness of the function
according to the assertions. It is not required that all subfunctions called by
the function under investigation are fully implemented, as long as the interface
specifications of the subfunctions in form of pre- and postconditions are known.
Thus our approach enables the programmer to find faults in the software, or an
argument for its correctness as soon as possible.

The inspection process itself consists of (1) The automatic derivation of veri-
fication conditions, and (2) An informal justification of why each condition holds.
The verification conditions and the justifications given by the programmer are
stored in a database. They may be used e.g. during later group inspections.

Since the decision whether a certain verification condition holds or not is left
to the same programmer who wrote both the assertions and the code, possible
faulty verification conditions might pass as correct. In order to exclude this
source of uncertainty, group inspections should be performed.

Group Inspec t ions . A group inspection is performed similar to the process
first described by Fagan in [7] (see Sect 4.3). However, since our approach has a
formal basis and can be supported by several tools, the roles of the participants
and the process itself can be defined in more detail.

We propose an inspection group with three members. The participants and
their different roles during the code inspection process are:

M o d e r a t o r The moderator is responsible for organizing and moderating the
inspection. Moreover, the moderator also participates in the discussion of

the verification conditions.
Des igner The designer contributes to the discussion of verification conditions

with knowledge about the domain (in particular the abstract data types) and
the intended behaviour of the program. She has to check whether the pre-
and postconditions correspond to the intended function of the software. As
the other members of the inspection group, the designer participates actively
in the discussion of the automatically derived verification conditions.

I m p l e m e n t o r The programmer who is responsible for coding the software ac-
cording to assertion-driven programming (see Sect. 2.2). As the other mem-
bers of the inspection group, the implementor participates in the discussion

of the verification conditions.

809

The overall goal of our inspection process is to give rational and systematic
explanations of why a program works as intended, and, if not, to isolate the
fault. The code inspection process consists of the following phases:

P l a n n i n g phase Before the meeting the moderator distributes the asserted
code.

Code i n spec t ion phase The goal of an inspection session is to explain why
the program works as intended. This is done by justifying the correctness of
the automatically derived verification conditions.
The code inspection session itself can be divided into the following, distinct
steps:

1. Presentation of the general problem. Explanation and discussion of the
informally defined functions and predicates.

2. Controlling whether the pre- and postconditions correspond to the in-
tended behaviour of the program. If the assertions do not properly de-
scribe the intended behaviour, the inspection should be adjourned.

3. The group has to decide for each verification condition (which e.g. has
been derived and stored during an individual inspection) whether the
condition is true with respect to its informal interpretation (i.e. the
interpretation determined by the informal predicate and function def-
initions). The verification condition together with the argument for its
correctness or fault is stored in a database for later review.

R e w o r k phase What has to be done after the code inspection depends on the
result of the main phase of the inspection session:

- If the assertions correspond to the intended behaviour of the program,
and if all verification conditions are deemed to be satisfied, then the
inspected program is considered to be correct.

- If the assertions are the intended ones, but not all of the verification
conditions are correct, then faults have been found. In this case, the
responsible programmers have to remedy all defects found. The non-
valid verification conditions give a very delimited piece of code which
contains the fault.

- Finally, if assertions are not according to the intentions, the assertions
have to be corrected before discussing verification conditions is mean-
ingful.

If faults have been detected, the inspection process has to be redone. However,
since the earlier results of the code inspection session are stored in a database,
valid verification conditions do not need to be reevaluated.

3 A n E x a m p l e

In this section we will give an example of how our method can be used. The
program we will develop is an implementation of the sorting algorithm quicksort.
Quicksort takes as input an array to be sorted, picks out a splitting element, splits

810

the array in two subarrays, containing those elements respectively less than and
greater than the splitting element. It then recursively sorts the two subarrays.

Our starting point is to provide an interface specification, i.e. a procedure
head, a pre-, and a postcondition. For quicksort we have no requirements on the
precondition, while requiring in the postcondition that the array parameter is
sorted when the procedure terminates:

void q s o r t (i n t v[] , const in t l e f t , const in t r igh t)
/*pre true */
/*pst sorted(#v<>, v<>, $1eft, #right) */

The predicate s o r t e d is a typical example of an informal predicate, hav-
ing only an informal definition. The relation expressed by s o r t e d (a r r l , a r r 2 ,
l e f t , r i g h t) is, that a r r2 is sorted in increasing order in the intervM [l e f t ,
r i g h t] , and that a r r l and a r r2 are permutations in this interval while identical

outside:

arrl arr2

[left right] [left right]

We now develop the procedure in a stepwise refinement fashion, carefully
stating along the way all assertions that we intend to hold. Initially we check
whether there are actually more than one element to be sorted; if this is not the

case we are done:

void qsort(int v[], const int left, const int right) {

if (left<right) {
/* sort vii inbetween left and right */}

/*pst sorted($v<>, v<>, #1eft, #right) */}

As already mentioned, qsort sorts by first splitting the array around a split-
ting element, and then recursively sorting the two sub-arrays. We therefore in-
troduce the (informal) predicate p a r t i t i o n which states that the array is split
around a certain integer i . Concretely, p a r t i t i o n (a r r l , a r t 2 , l e f t , r i g h t ,
i) expresses that a r r l and axr2 are permutations in the range [l e f t , r i g h t]
while identical outside, and that the following relation holds:

arrl art2

r i gh t]
[left right] [left !

i

Assuming we have a procedure split which does the actual job of splitting

the array, we may write the full definition of qso r t :

811

void qsort(int v[], const int left, const int right) {

int i ;
if (left<right) {

split(v, left, right, &i);
/*ast partition(#v<>, v<>, #1eft, #right, i) */

qsort(v, left, i-l);
qsort(v, i+l, right);}

/*pst sorted(#v<>, v<>, #1eft, #right) */}

The idea is that split should return the splitting position in the variable
i , thus it is called with a reference ~i to i . We are obliged to develop s p l i t
in such a way that it establishes p a r t i t i o n (# v < > , v<>, # 1 e f t , # r i g h t , i)
as its postcondition. It is furthermore only meaningful to apply s p l i t in case
there is at least one element in the array to be partitioned. Thus we also need a
precondition for s p l i t , expressing this assumption:

void split(int v[], const int left, const int right, int* i)
/*pre left<=right */
/*pst partition(#v<>, v<>, #1eft, #right, *i) */

From the definition of qsort and the interface specification of split, a num-
ber of verification conditions may (automatically) be derived. Their satisfaction
implies the correctness of all assertions, that is, that each assertion holds each
t ime execution reaches the position where it is placed. The following are the
derived verification conditions:

Suppose:
I. #1eft>=#right

Then:
A. sorted(#v<>,v<>,#1eft,#right)

Suppose:
i. #1eft<#right

Then:
A. #1eft<=#right

Suppose :
I. #1eft<#right
2. partition(#v<>, v<>, #left, #right, i)
3. sorted(v<>, v'<>, #1eft, i-l)
4. sorted(v'<>, v''<>, i+l, #right)

Then:
A. sorted(#v<>, v''<>, #1eft, #right)

The first two conditions are clearly satisfied. Indeed, the second condition
could be automatically discharged. Furthermore, using the informal definitions
of p a r t i t i o n and s o r t e d it is not difficult to argue for the correctness of the
third condition.

Let us now develop the function s p l i t . For the sake of simplicity we choose
here the leftmost element in the array v, i.e. v [l e f t] , as the splitting element.

812

Our general strategy then is as follows: We keep a position ub (for "upper
bound") and an index i . The idea is that each of the elements v [l e f t + l] to
v i i] should be strictly less than v [l e f t] , and each of the elements v [i + l] to
v [ub-1] should be greater than or equal to v [l e f t] . The relation between the
array v<>, and the indices i and ub should be kept invariant. Th a t is, assuming
it holds before executing the body of the the main loop, it also holds after its
completion. By successively incrementing ub, while preserving the invariant, we
eventually have u b = r i g h t + l . At this point we can simply interchange v [l e f t]
and v [i] and we are done.

To express the invariant as an assertion in the program code, we introduce an
informal predicate p r e - p a r t i t i o n . The predicate p r e - p a r t i t i o n (a r r l , a r r 2 ,
l e f t , r i g h t , i , ub) expresses that a r r l and a r r 2 are permutat ions in the
range [l e f t , r i g h t] while identical outside, and that the following relation

holds:
arrl arr2

[left right] I i] ub-l]right]
left

Given the above informal predicates p r e - p a r t i t ion and p a r t i t ion, the first

skeleton of s p l i t thus looks as follows:

void s p l i t (i n t v [] , const in t l e f t , const in t r i g h t , in t* i)
/*pre l e f t<=r igh t */ {

in t ub;
/* e s t a b l i s h the invar ian t */
while (ub<=right) (

/*inv pre-partition(#v<>,v<>,#1eft, #right,*i,ub) and ub<=#right+l */
/. preserve the invariant while incrementing ub */}

/. interchange v[left] and v[*i] */
/*pst partition(#v<>, v<> ,#1eft ,#right ,*i) */ }

Establishing the invariant is easy. It is sufficient to set * i to l e f t and ub
to l e f t + l . To enable incrementation of ub without loosing satisfaction of the
invariant, we have to consider two cases: in case v [u b] _ > v [l e f t] the invariant
is reestablished by incrementing ub. In the other case, when v[ub] < v [l e f t]
we do need to do some more work in order to reestablish the invariant. Noting
that , according to the invariant, v [* i + l] >_v [l e f t] and v [* i] <v [l e f t] , we
may conclude that the invariant will be reestablished, provided that we increment
* i , and then (after this incrementation) interchange v [* i] and v [ub] before we
increment ub. As will be seen, this argument corresponds exactly to the argument
for the verification conditions generated from the final code. We may now write
the complete procedure, including also the interchange which is the last step:

void split(int v[], c~ int left, coast int right, int* i)

/.pre left<=rig ht */ {

813

int ub=left+l ;
int t emp ;
*i=left ;
while (ub<=right) {

/*inv pre-partition(#v<>,v<>,#1eft, ~Tight ,*i,ub) and ub<=#right+l */
if (v [lib] <v [left]) {

*i=*i+l ;
temp=v[*i] ; v[*i]=v[ub] ; v[ub]=temp;}

ub=ub+l ; }
temp=v[*i]; v[*i]=v[left]; v[left]=temp;

/*pst partition(#v<>,v<> ,#left ,#right ,*i) */}

The four verification conditions generated from this code and the assertions
are the following:

Suppose :
I. #left <=#right

Then:

A. pre-partition(#v<>, v<>, #left, #right, #left, #left+l)

Suppose :

1. pre-partition(#v<>, v<>, #left, #right, *i, ub)
2. ub<=#right
3. v [ub] <v [#left]

Then:

A. pre-partition(~v<>, v'<>, #left, #right, *i+1, nb+l),
where v'=v except for v'[ub]=v[*i+l], v'[*i+l]=v[llb]

Suppose :

I. pre-partition(#v<>, v<>, #1eft, #right, *i, nb)
2. ub<=#right
3. v [ub] >=v [# le f t]

Then:

A. pre-partition(~v<>, v<>, #left, #right, *i, ub+l)

Suppose :

I. pre-partition(#v<>, v<>, #left, #right, *i, #right+l)
Then:

A. partition(#v<>, v'<>, #1eft, #right, *i)
where v'=v except for v'[#1eft]=v[*i], v'[*i]=v[#1eft]

The first condition corresponds to the first establishment of the invariant, and
is clearly satisfied. The second and third condition correspond to the preservation
of the invariant, and are satisfied according to the argument provided above
along with the code development. Finally, the fourth condition is satisfied due
to the fact (coming from p r e - p a r t i t i o n) that v [# l e f t] is strictly greater than
each element in v [# 1 e f t + l] v [* i] , while being smaller than or equal to the
elements in v [* i+ l] v [# r i g h t] .

814

4 R e l a t e d W o r k

A lot of work has been done to increase confidence in software correctness,
including program verification, dynamic testing, and code inspection.

4.1 P r o g r a m Verif icat ion

There is a vast amount of literature on the subject of formally verifying the cor-
rectness of programs, mainly based on so called ttoare-logic suggested by Hoare
in 1969 [14]. This approach has been extended in several ways to cover special
programming language constructs, e.g. pointers [2], procedure calls [15,17,3],
recursive procedures [13], and gotos [5].

One of the newer and quite successful approaches to formal software verifi-
cation is the Ada subset called SPARK [4]. SPARK is a subset of Ada 83 that
is extended by annotations. The restrictions to the Ada language are partly in-
troduced to ensure predictability of a program's behaviour and partly to ensure
simplicity of formal language definition and proof arguments.

Mandatory annotations are required to perform extended static code analysis
and comprise e.g. the definition of used global variables and the definition of
dependency relations, that is, a specification of which variables are imported and
exported by a procedure and how they are related. The other kind of annotations,
so called proof contexts, are used to introduce elements of formal specifications
and proof obligations, e.g. pre-, postconditions, loop invariants, and intermediate
assertions for procedures.

Since SPARK has a formally defined semantics, formal program verification
is possible and supported by the SPARK Examiner. This tool checks the confor-
mance of a program to the rules of SPARK, carries out a flow and information
analysis of the code, and supports formal verification.

SPARK mostly aims at low level properties, e.g. the absence of run-time
errors [11], whereas COMPASS is suitable for reasoning about the high level
algorithmic contents of a program.

4.2 D y n a m i c Checking

Several approaches exploit code annotations to improve dynamic testing, e.g.
Robust C [9], APP [18], Anna [16], and C-Patrol [22]. Common to these ap-
proaches is that they extend the underlying programming language or introduce
special kinds of comments to be written together with the code. A slightly dif-
ferent approach is used by ADLT [20], where the (interface) specifications are
not mixed together with the code; The specification is stored in a different file
instead. However, the additional constructs can be used e.g. for array index
checking, range checking, or loop invariant checking.

In comparison to simple black box testing the above approaches improve error
detection and decrease the necessary debugging effort to find the underlying
fault. The assertions that have to be specified for applying our method might

815

be used in a similar way. However, in this case all used predicates have to be
translated into executable code.

The major drawback of the above approaches is, that in practical applications
none of the approaches can guarantee the absence of errors in the program under
investigation because exhaustive testing in general is not possible. Moreover,
extensive testing is very expensive.

4.3 Code Inspec t ion

Code Inspection was developed by Fagan in 1972 at IBM Kingston. It is a visual
examination of code to detect errors in the code. A reader is paraphrasing the
code and the other members of the inspection team, equipped with lists of errors
known to be likely and clues that usually betray their presence, are trying to find
these kinds of errors. Still, what actually has to be done in an inspection session
is only loosely defined. It is more or less up to the participants and thus, it is
not clear how the inspection should be documented or repeated. Changes may
require new inspections of large parts of the implementation. Moreover, since
the code is not checked for all kinds of errors; the code might still be erroneous.

Nevertheless, in [7] Fagan argues that design and code inspections increase
the productivity and improve the final program quality. Ten years later, in 1986
[8], Fagan suggests slight modifications to the inspection process and reports
further industrial experiences that support his earlier results. In [19] Russell de-
scribes similar experiences with the inspection in ultralarge-scale developments.

One possible method that describes more precisely what actually has to be
done in an inspection session was introduced by van Emden [21] in 1992. His code
inspection method is based on Floyd's method for the verification of flowcharts
[10]. His basic idea was to first exhaustively annotate the code with completely
informal assertions (not necessarily with complete coverage of assumptions).
Then, during the inspection session it is checked whether the next assertion
along the execution path may be concluded from the former assertion and the
instruction between the two assertions.

In order to obtain the annotated code, van Emden proposed a program de-
velopment method, called assertion-driven programming. This method allows
the development of the required assertions and the code during the same pro-
cess, where the assertions are driving the code development as in Dijkstra's [6J
method. However, van Emden's method does not produce code according to
structured programming.

The major difference between van Emden's and our approach is, that we
combine a formal syntax and a partly informal semantics for the language of
assertions. This enables automatic support of many kinds which is not possible
in van Emden's approach: predicate transformation (and hence fewer assertions
to specify), arithmetic simplification, and generation of verification conditions.
Moreover, since we use Dijkstra's development method, the code produced is in
accordance with structured programming.

816

5 C o n c l u s i o n s a n d F u t u r e W o r k

The COMPASS method introduced in this paper is based on ttoares method
for proving programs correct, Dijkstras discipline for program development, and
Fagans work on code inspection. Both Hoares verification method and Dijkstras
program development discipline are well established in academia. However, the
methods are hardly known by industry. We believe this is due to the fact that
most expositions approach the subject from a quite formalistic point of view,
and thus give the feeling that full formality is a requirement for its applicability.

Our hypothesis is that a method which is more easily used in practice, and
which remains to be partially mechanizable, may be achieved by relaxing the
requirements on formal rigour in a controlled manner. The novel key idea is the
introduction of informal predicates, which, though not having a formal definition,
may have a perfectly legal and unique interpretation. These informal predicates
make it easier to express the required assertions and enable reasoning about
assertions and verifying verification conditions at a level which is suitable for
man rather than machine. Since we combine a formal syntax with an informal
semantics, it is still possible to automatically derive verification conditions.

The verification conditions constitute questions to be asked during code in-
spection. The somewhat loosely defined contents of the steps of Fagans code
inspection method are thus filled with a very concrete contents. Moreover, COM-
PASS not only allows isolating faults in the code; The inspected code may be
considered correct with respect to its assertions, if no errors are found.

Our short-term goals are to further refine the COMPASS method in coop-
eration with our industrial partner ABB ISY. We plan to complete the imple-
mentation of the tool support, and to evaluate the COMPASS method in a real
software development project. For the latter it is necessary to lift certain restric-
tions presently imposed on the C-language, and to develop tutorials for the use

of the method.
In the long term we intend to study whether our general idea - to decrease

the requirements on formality, while still keeping a sufficient level of rigour -
may be applied also to higher level specifications. We believe this may be a way
to increase industrial acceptance of formally based development methods.

Acknowledgments
This paper reports on initial results of the project "Verification Automation in
Software Development". The project is carried out in cooperation between ABB
Industrial Systems and Link5ping University. It is part of the competence center
ISIS (Information Systems for Industrial Control and Supervision), financially
supported by the Swedish National Board for Industrial and Technical Develop-

ment (NUTEK).
We are most grateful to Ulf t tammar and Stefan Frennemo at ABB Industrial

Systems for remarks that have led to several improvements of the COMPASS
approach. We would also like to thank Dr. Feliks Kluzniak for most useful com-

ments on a draft version of this paper.

817

References

1. Krzysztof R. Apt . Ten years of Hoare's logic: A survey - part :I= A CM Transactions
on Programming Languages and Systems, 3(4):431-483, October 1981.

2. A. Bijlsma. Calculating with pointers. Science o f Computer Programming,
12(3):191-205, September 1989.

3. A. Bijlsma. Calculating with procedure calls. Informatiou=Processing Letters,
46(5):211-217, July 1993.

4. Bernard Caxr~ and Jonathan Garnsworthy. SPARK - an~annot~ted Ada subset for
safety-critical programming. Presented at TRI-Ada, 19902

5. Arie de Bruin. Goto statements: Semantics and deductive :systems. Acta Infor-
matica, 15:385-424, 1981.

6. Edsger W. Dijkstra. A Discipline of Programming. Prentice~:I~M1, 1976.
7. Michael E. Fagan. Design and code inspections to reduce errors in program devel-

opment. IBM Systems Journal, 15(1):182-211, 1976.
8. Michael E. Fagan. Advances in software inspections. IEEE Transactions on Soft-

ware Engineering, 12(7):744-751, July 1986.
9. David W. Fluter and Yelena Yesha. Extensions to the C programming language for

enhanced fault detection. Software-Practice and Experien:cev23(6):617-628, June
1993.

10. Robert W. Floyd. Assigning meanings to programs. In J : T~'Schwartz, editor,
Proceedings of the Symposiom in Applied Mathematics,,:pages 19-32. American
Mathematical Society, 1967.

11. Jonathan Garnsworthy, Ian O'Neill, and Bernard CarrY:: Automat ic proof of the
absence of run-time errors. In ADA: Towards Maturity, pages 108-122. IOS Press,
1993.

12. David Gries. The Science of Programming. Springer-Verlag, 1981.
13. Wim H. Hesse]ink. Proof rules for recursive procedures. Formal Aspects of Com-

puting, 5:554-570, 1993.
14. C. A. R. Hoare. An axiomatic basis for computer programming. Communication

of the ACM, 12(10):576-80, 583, October 1969.
15. C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In E. En-

geler, editor, Sumposium on Semantics of Algorithmic Languages, Lecture Notes
in Computer Science, pages 102-116. Springer-Verlag, 1971.

16. David C. Luckham and Friedrich W. yon Henke. An overview of Anna, a specifi-
cation language for Ada. IEEE Software, 2(2):9-22, March 1995.

17. Alaln J. Martin. A general proof rule for procedures in predicate transformer
semantics. Acta Informatica, 20:301-313, 1983.

18. David S. Rosenblum. A practical approach to programming with assertions. IEEE
Transactions on Software Engineering, 21(1):19-31, January 1995.

19. Glen W. Russell. Experience with inspection in ultralarge-scale developments.
IEEE Software, 8(1):25-31, 1991.

20. Sun Microsystems Inc. and Information-technology Promotion Agency. ADL
Translator User's Guide: Getting Started with ADLT, December 1995.

21. Maarten H. van Emden. Structured inspection of code. Software Testing, Verifi-
cation and Reliability, 2:133-153, 1992.

22. Hwei u and James M. Bieman. Improving software quality with assertion inser-
tion. In Proceedings of the IEEE International Test Conference, pages 831-839.
IEEE, 1994.

