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Abs t r ac t .  This paper presents a technique for automatically generat- 
ing logical schemata that specify groups of black-box test cases from 
formal specifications containing universal and existential quantification. 
These schemata are called test frames. Previous automated techniques 
have dealt with languages based on propositional logic. Since this new 
technique deals with quantification it can be applied to more expres- 
sive specifications. This makes the technique applicable to specifications 
written at the system requirements level. The limitations imposed by 
quantification are discussed. Industrial needs are addressed by the ca- 
pabilities of recognizing and augmenting existing test frames and by ac- 
commodating a range of specification-coverage schemes. The coverage 
scheme taxonomy introduced in this paper provides a standard for con- 
trolling the number of test frames produced. This technique is intended 
to automate portions of what is done manually by practitioners. Bas- 
ing this technique on formal ~les  of logical derivation ensures that the 
test frames produced are logical consequences of the specification. It is 
expected that deriving test frames automatically will offset the cost of 
developing a formal specification. This tangible product makes formal 
specification more economically feasible for industry. 

1 I n t r o d u c t i o n  

The pr imary  contribution of this paper  is a technique for automat ical ly  trans- 
forming formal specifications containing universal and existential quantification 
into test frames which specify groups of black-box test cases. The second major  
contribution of this paper  is a t axonomy for coverage schemes. This taxonomy 
provides a means of standardizing the number of tests to be performed on spe- 
cific parts  of the system. This is critical to industrial processes that  must  make 
appropriate  trade-offs between available resources and the depth of testing re- 
quired for a given part  of the system. 

Formal specifications based on mathemat ica l  semantics provide a basis for 
au tomat ic  test generation techniques. This mathemat ica l  structure allows for- 
mal  specifications to be manipula ted  mechanically so that  information contained 
within the specification can be isolated, transformed, assembled, and repackaged. 
In this manner,  test frames for a system can be derived from its formal specifica- 
tion. The mathemat ica l  semantics of the specification language guarantee that  
the test frames are logical consequences of the specification. 

Dick and Faivre [6], inspired by the work of Bernot, Gaudel, and Marre [3], 
showed how test cases could be generated automatical ly from unquantified pred- 
icate logic specifications using a specific coverage scheme. This form of logic is 
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limited for general use in specifications at the system requirements level. Widely 
used languages such as Z [14] make use of quantification. The technique pre- 
sented in this paper shows how to automatically generate test frames in the 
presence of quantified specifications using a variety of coverage schemes. 

MacColl, Carrington, and Stocks [12] describe a mechanized but  not auto- 
mated approach to deriving test cases from formal specifications. They provide 
for a variety of strategies that  could embody different coverage schemes. 

Gaudel [9] describes a theory of testing based on algebraic specifications. 
These are different from the predicate logic specifications addressed in this pa- 
per. Algebraic specifications are characterized by the use of functions to denote 
operations. A set of axioms, typically expressed as universally quantified equa- 
tions, defines a class of algebras. Each algebra is said to be a model of the specifi- 
cation. In contrast,  predicate logic specifications typically use relations between 
states to denote operations and both universal and existential quantification are 

often present. 
Despite these differences, similar concepts and problems arise when generat- 

ing tests. The concepts defined by Gaudel, such as exhaustive test set, validity, 
unbias, selection and uniformity hypotheses, and the oracle problem, have coun- 
terparts  within the context of predicate logic specifications. This paper contains 
only a brief description of the theory supporting the work presented here. A 
full discussion is given in [7]. In the context of either type of specification the 
number of tests produced must be controlled. This paper discusses a method 
of achieving the necessary control for boolean expressions using standardized 

coverage schemes. 
Techniques of producing test case instances of test frames are part of a sub- 

sequent process and are not discussed here. 
Section 2 sets the context that  motivates this research. The notation used to 

present details of the technique is described in Section 3. Section 4 presents a gen- 
eral description of a process to generate test frames from formal specifications. 
This section also introduces and distinguishes the concepts of a specification, its 
test classes, the test frames that  follow, and the test cases they describe. Sec- 
tion 5 details the test class algorithm. Test frames and how they are produced 
using various coverage schemes is discussed in Section 6. 

2 I n d u s t r i a l  C o n t e x t  

There are several different types of testing. Each type focuses on a different 
objective and a different abstract view of the software. Unit testing focuses 
on the robustness of individual components. Integration testing focuses on the 
correctness of the interfaces between components. This paper focuses on testing 
based on requirements specifications. An objective of this type of testing is to 
demonstrate to a customer or certification authority that  the specified software 

has actually been built. 
This testing is performed according to a set of test procedures. Each step in 

a test procedure is referred to as a test case. The purpose of each test case is 
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to verify one or more requirements by the application of an external stimulus 
to the system and comparison of the actual response of the system against the 
expected response specified by the requirements. The analysis of requirements for 
the purpose of deriving tests a t  this level is generally limited to lexical analysis 
of the natural language text used to express the requirements. 

This level of testing is "system level" in the sense that the internal structure 
of the system is not visible; all testing must be performed by means of external 
stimuli and observation of externally visible responses. It is "requirements-based" 
in contrast to other kinds of system level testing which, for instance, may be 
based on scenarios that  a t tempt  to approximate expected use of the system. 

Test case derivation for large projects is typically a highly manual process. 
Teams of test engineers wade through large volumes of software specifications, 
interpret them to the best of their abilities, and from this generate appropriate 
suites of tests to apply to the developed systems. The process is very tedious and 
error prone, due to the possible ambiguities of natural language and the amount  
of detail involved. This intensity of labour coupled with the costs of ensuring test 
suite correctness provides a sizable economic motivation to automate as much 
of the test case derivation process as possible. 

Toth and Joyee [15, 16] introduced the FORMATS Process as a way of ap- 
plying formal methods to test case derivation. FORMATS is a two step process. 
Requirements specifications are formalized and type checked to ensure that  they 
meet a certain level of correctness. Test cases are produced in the second step. 
Specifications are written in S [11], Which is a typed predicate logic similar to 
that  found in the HOL system [10]. S specifications are type checked using a tool 
called Fuss. To advance the ideas discussed in [16], the author has implemented 
a prototype test frame generator that  employs the technique described in this 
paper. 

There are four important  issues in the FORMATS Process: 

1. A range of coverage schemes may be employed depending on the amount  of 
testing required. 

2. Test suites should be as small as possible while still providing the desired 
coverage. 

3. Specifications may change as the project progresses. 
4. The test team may mandate  specific tests. 

When specification changes occur it is necessary to evaluate the impact this 
has on existing test suites previously constructed. Although generating a com- 
pletely new test suite is possible, this is undesirable if testing has already begun. 
Performing a few new tests to augment positive results already obtained is less 
expensive than dismissing previous positive results and performing a larger num- 
ber of different tests. As an example, consider the case where a portion of the 
specification is reworded for clarity or contractual reasons, but no implementa- 
tion changes are necessary. If the test case generator produced new tests based 
on the rewording, unnecessary and perhaps costly testing would be done. 

When particular tests are mandated,  the test case generator must build a test 
suite around these given tests. This must be done in a manner that  preserves the 
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desired size and coverage for the test suite. Note that  coverage refers to coverage 
of the specification and not code coverage of the implementation. 

The technique presented here addresses each of these issues. 

3 N o t a t i o n  

The technique presented in this paper is based on the logical relationships be- 
tween elements within the specification. Since it is not tied to a particular spec- 
ification language such as S or Z, s tandard logical expressions shall be used in 
the discussions that  follow. 

The following vocabulary will be helpful: 

1. A specification of a system is a boolean expression relating the state of the 
system before the program executes to the state of the system after the pro- 
gram has executed. The expression is constructed from predicates, the logi- 
cal connectives conjunction, disjunction, implication, and negation, (V, A, =~, 
and -~), along with universal and existential quantification (V and B). 

2. An atom is either a predicate or a negated predicate. 
3. A stimulus is an atom that  only refers to the before state. 
4. A stimulus expression is a boolean expression where each atom is a stimulus. 
5. A response is an atom that  contains at least one reference to the after state 

and may also refer to the before state, i.e. an atom that  is not a stimulus. 

6. A response expression is a boolean expression where each atom is a response. 

A program specification can be of the form: 

(s~ ~ R~) A (S~ ~ R2) A... (1) 

where the Si are stimulus expressions and the Ri are response expressions. This 
specifies a system that  will satisfy R~ when given the stimulus Si. In this spec- 
ification, each implication describes a class of behaviour to be exhibited by the 

system. 
To illustrate these definitions, consider the following example which is a 

modification 1 of an excerpt from Bernard's solution [2] to Abrial's steam boiler 

specification problem [1]. 
The specification problem is to formally specify requirements for a control 

system responsible for maintaining the correct level of water in a boiler attached 
to a steam driven turbine. One of the requirements is to identify whether or not 
any inconsistencies exist in the sensor readings. 

1 Modifications where made to construct a concise example and do not affect its logical 
complexity. The excerpt is similar to the VDM specification by Schinagl [13]. 
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_ P H Y S M E S S  
A W S  

- 7 0 0 T M  ~ ~=~ 
(31 n : N .  Level n E inmess) A 
(31 n : 1~ �9 Steam n E inmess) A 
(V i : PUMP �9 PumpState(i,  TRUE) E inmess 

(PumpState(i, FALSE) e inmess)) A 
(v i : N �9 3 b: boot �9 P~mpCtrState(i ,  b) ~ inmess) 

The schema PHYSMESS sets the "out of order" indicator, OOTM, to true 
if and only if there is a detected malfunction, inmess is a set of input messages 
received from the sensors of the boiler system. Level n indicates the quant i ty  of 
water in the boiler, Steam n indicates the quanti ty of s team coming from the 
boiler, PumpStatc indicates whether p u m p  i is turned on or off, PumpCtrState 
indicates whether or not water is circulating from the pump  to the boiler. 

Expressed in predicate logic, PHYMESS  is equivalent to: 

-~OOTM ~ 

((3!n.Level n E inmess) A 

(3!n.Steam n C inmess) A 

(V i .PumpState(i, T) E inmess r -~(PumpState(i, F) G inmess)) A 

(V i. 3 b.(PumpCtrState(i, b) E inmess))) 

Primed variables are references to the after state, thus -~OOTM ~ is a response. 
All the other atoms, such as PumpState(i, TRUE) E inmess, are stimuli. 

4 P r o c e s s  O v e r v i e w  

This section provides an overview of the test f rame generation process. 
Requirements specifications are written to be understood at part icular  levels 

of abstraction. For this reason, many  details are hidden within definitions of more 
abstract  concepts. Issues of clarity are left to the discretion of the specification 
authors. Hence, it must  be assumed tha t  the specification is an arbi t rary logical 
expression. 

Test classes are the intermediate step between the specification and test 
frames. A test class isolates one behaviour from the specification. The test class 
can be considered as a s tandard format  for writing requirements. However, for 
practical reasons, it is unlikely tha t  all specifications would be written as a simple 
conjunction of test classes. 

A test class is an implication S :::> R ,  where S is a stimulus expression and 
R is a response expression. Quantifiers may  appear  anywhere in the test class 
and may  also bind variables occurring in both S and R. The purpose of the test 
class is to isolate a class of bebaviour based on the response. The first step of the 
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test frame generation process is to transform the specification into its test class 
normal form such as (1) in Section 3. This is discussed in detail in Section 5. 

Each test class is the ancestor of a set of test frames. A test frame is an 
implication A ~ R, where A is a conjunction of stimulus expressions and R is a 
response expression. Quantifiers may also bind variables occurring in both A and 
R. A test frame A ~ R generated from the test class S ~ R has the property 
that  A :=~ S. The generation of test frames is discussed in detail in Section 6. 

T he  test frame generation process is as follows. Given a general specification 
E,  a set of test classes Si ~ R~ are produced such that  E =;, (S~ =~ Ri). From 
each test class, a set of test frames A,j ::~ Ri are produced such that Aij => Si. 
This ensures that  each test frame is valid, i.e. E ~ (Aij =~ Ri). 

A test case is an implication t ~ R, where t is a conjunction'of atoms and R 
is a response expression. Quantifiers can only occur in R. Although it is desirable 
to derive test cases, these cannot, in general, be generated automatically from 
the type of specifications considered in this paper. However, much of the effort 
required to generate a test case can be performed automatically by producing a 
test frame. 

Test da ta  generation techniques, whether manual or machine assisted, can be 
applied to test frames to produce test cases tijk ~ R + such that  tijk =~ A + where 

A + =:> R + is an instance of the (quantified) test frame Aij =~ R~. Discussion 
of these test data  generation techniques is beyond the scope of the concept 

presented in this paper. 

5 T h e  T e s t  C l a s s  A l g o r i t h m  

The test class algorithm can be described as a function on boolean expressions. 
The result of applying this function to an expression, E, is a conjunction of 
test classes that  is logically equivalent to E.  The test class algorithm rewrites 
the specification into its test class normal form. This does not alter its logical 

content. 
Assuming R is a response, S is a stimulus, T is the constant true, and F is 

the constant false, a definition for the test class function, TC, is: 

TC(A A B) = RewriteAnd( TC(A) A TC(B))  conjunction 
TC(A V B) = RewriteOr( TC(A)  V TC(B))  disjunction 
TC(V x.P) = ForalIIn(V x. TC( P) ) quantification 
TC (3 x.P ) = Existsln(3 x. TC ( P) ) quantification 

TC(A ~ B) = TC(-~A V B) implication 
TC(R)  = T ~ R response 
TC(S)  = -~S ~ F stimulus 

Negated expressions are dealt with by applying DeMorgan's laws to move the 

negation inwards and proceeding. 
The function RewriteAnd combines like antecedents and consequents using 

the equivalences 

V A, B, C.(A ~ B) A (A ~ C) = A ~ (B A C) 
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VA, B, C.(A:r C) A(B  ~ C ) :  ( A V B ) ~  C . 

The function RewriteOr first reduces any A N D / O R  connectives above the 
test classes from TC(A) and TC(B) to conjunctive normal form. Next, any 
universal quantifiers are pulled from TC(A) and TC(B) so they are outside the 
disjunctions. This is done using the equivalences 

VP, Q.(Vx.Q) v P = Vx.Q v P 

VP, Q .Pv  (Vx.Q) -- Vx.P v Q , 

where x is alpha converted if necessary to avoid capturing any free occurrence 
of x in P.  Finally, the test classes are OR'd together using the equivalence 

v &,  s~, R1, R2.(S1 ~ R,)  v ($2 ~ R2) = & A $2 ~ R~ v R2 . 

The function Forallln moves the universal quantifier into the conjunction of 
test classes produced by TC(P) using the equivalences 

VP, Q.(Vx.P ~ Q) = (3x.P) ~ Q 

y p, Q.(V x.Q ~ P) = Q ~ (Vx.P) 

Vp, Q.(Vx.P A Q) = (Vx.P) A Q 

VP,  Q.(Vx.Q A P) = Q A (Vx.P) 

VM, P.(Vx.M A P) ---- (Vx.M) A (Vx.P) , 

where x is free in P and M, and x is not free in Q. 
The function ExistsIn moves the existential quantifier into the test class using 

the equivalences 

VP, Q.(3x.P ~ Q) : (Vx.P) ~ Q 

V P, Q.(3x.Q ~ P) = Q ~ (3x.p) 

V M, P.(3 x.M ~ P) = (Vx.M) => (3 x.P) , 

where x is free in P and M, and x is not free in Q. 
Quantification does impose certain limitations on the test class algorithm. 

However, specifications exercising these limits may be deemed too weak. Note 
that  ForallIn will not be successful in moving the universal quantifier into the 
conjunction if there is an existential quantifier in the way, 

e.g. V x . 3 y . ( & ~ R ~ ) A ( S ~ R 2 )  . (2) 

Similarly, ExistsIn will not be successful in moving the existential quantifier into 
a test class if TC(P) produces more than one test class as in (2), or if the single 
test class has a universal quantifier, 

e.g. 3x.  Vy.(S~ ~ n~) . (3) 

It could be argued that  test class (3) can be dismissed as being too weak to be 
a reasonable requirement. A similar argument could be made against the test 
classes in (2). 
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5.1 E x a m p l e  

In our example, r is defined as V A, B.(A r B) = (d ~ B) A (B :=~ A) and 
3!x.P x is defined as (3 x.P x) A (Vx, y.P x A P y ~ (x = y)). Applying the TC 
algorithm begins with the conjunction rule: 

T C ( ~ O O T M '  

((3 n.Level n E inmess) A 

(V n, m.(Level n E inmess) A (Level m E inmess) ~ (n = m)) A 

(3 n.Steam n E inmess) A 

(V n, m.(Steam n G inmess) A (Steam m E inmess) ~ (n = m)) A 

(V i.PumpState(i, T) E inmess r -~PumpState(i, F) E inmess) A 

(V i. 3 b.PumpCtrState(i, b) E inmess))) 

= RewriteAnd(TC(-~ OOTM' 

((3 n.Level n E inmess) A 

(V n, m.(Level n E inmess) A (Level m E inmess) ~ (n = m)) A 

(3 n.Steam n E inmess) A 

(V n, m.(Steam n E inmess) A (Steam m E inmess) ~ (n = m)) A 

(V i.PumpState(i, T) E inmess r -~PumpState(i, F) E inmess) A 

(V i. 3 b.PumpCtrState(i, b) E inmess))) A TC(. . . ) )  

The next operation is to rewrite the implication of the first TC term and use 
the rule for disjunction: 

= RewriteAnd(RewriteOr(TC(-~-~OOTM') V TC(. . . ) )  A TC(. . . ) )  

The double negation is removed and the response rule is then applied: 

_= RewriteAnd(RewriteOr(( T ~ OOTM') V TC(. . . ) )  A TC(. .  .)) 

Using the rule for conjunction on the next TC term produces: 

= RewriteAnd(RewriteOr((T ~ OOTM') V 

Rewriteand( TC(3 n.Level n e inmess) A TC(...)) A TC(...))) 

The quantification rule followed by the stimulus rule gives: 

= RewriteAnd(RewriteOr((T ~ OOTM') v 

RewriteAnd(Existsln(3 n.-~(Level n E inmess) ~ F) A TC(. . . ) )  

A To(. . . )))  

Applying ExistsIn gives: 

= RewriteAnd(RewriteOr((T ~ OOTM') V 
RewriteAnd(((V n.-~(Level n E inmess)) ::~ F) A TC(. . . ) )  A TC(. . . ) ) )  
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A full application of the algorithm to the next TC term produces: 

-= RewriteAnd(RewriteOr(( T ~ OOTM') V 

RewriteAnd(((V n.-~(Level n E inmess)) ~ F) A 

(((3 n, m. (Levd  n C i .mess)  A (Level n �9 inmess) A ~(n = m)) V 

(v n.-~(Steam n �9 ~nmess)) v 
(3 n, m.(Steam n �9 inmess) A (Steam n �9 inmess) A ~(n = m)) V 

(S i.( PumpState( i, T) �9 inmess A PumpState( i, F) �9 inmess) V 

(-~(PumpState(i, T) �9 inmess) A -~(PumpState(i, F) �9 inmess))) V 

(a i. V b.~(PumpCtrState(i, b) �9 inmess))) 

E)) A 
TC(.  . .))) 

Since the consequents of the two inner-most implications are identical (F), ap- 
plying the inner-most RewriteAnd produces: 

= RewriteAnd(RewriteOr((T ~ OOTM') V 

(((V n.-~(Level n E inmess)) V 

(3 n, m.(Level n �9 inmess) A (Level n E inmess) A ~(n = m)) V 
(v , .~ ( s team n �9 i,,mess)) V 

(3 n, m:(Steam n �9 inmess) A (Steam n �9 inmess) A -~(n = m)) V 

(q i.(PumpState(i, T) �9 inmess A PumpState(i, F) �9 inmess) V 

(-~(PumpState(i, T) �9 inmess) A ~(PumpState(i, F) �9 inmess))) V 
(3 i. V b.-,(PumpCtrState(i, b) �9 inmess))) 
~ F )  A 

T c ( . .  .))) 

Applying RewriteOr combines the response and stimuli to produce the first test 
cl ass: 

= RewriteAud( 

(((V n.-~(Level n E inmess)) V 

(3 n, m.(Level n E inmess) A (Level n E inmess) A -~(n = m)) V 
(V. . -~(Steam n C inmes~)) v 

(3 n, m.(Steam n E inmess) A (Steam n E inmess) A ~(n = m)) V 

(3 i.(PumpState(i, T) E inmess A PumpState(i, F) E inmess) V 

(-~(PumpState(i, T) E inmess) A ~(PumpState(i, F) E inmess))) V 
(3 i. V b.-~( PumpCtrState( i, b) E inmess) ) ) 

OOTM') A 
TC(. ..))) 
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Continuing with the remaining TC term produces the second test class: 

(3 n.Level n E inmess) A 

(v n, m. (nevd, in ess) V - (Levd m i. es ) V ( .  = m)) A 

(3 n.Steam n E inmess) A 

(V n, m.--,(Steam n ~ inmess) V -~(Steam m E inmess) V (n = m)) A 

(V i.(-,(PumpState(i, T) E inmess) V-,(PumpState(i, F) e inmess)) A 

(PumpState(i, T) E inmess V PumpState(i, F) E inmess) A 

(V i. 3 b.PumpCtrState(i, b) E inmess) 

-.OOTM' . 

6 G e n e r a t i n g  T e s t  F r a m e s  

As defined previously, a test f rame from a given test class S ~ R is an implication 
A ~ R, where A ~ S, A is a conjunction of stimulus expressions, and R is a 
response expression. Quantifiers may  also bind variables occurring in both A and 

R. 
A variety of different test f rame sets can be constructed from a test class. 

One possible set of test frames is the one derived from a disjunctive normal form 
(DNF) of the test class antecedent. In the context of our industriM process, this 
presents a problem. If  an existing test suite contains a valid test f rame that  does 
not correspond to a t e rm in the DNF of the antecedent of the test class, it will 
not be recognized as valid and will be replaced. This is not desirable since we 
wish to replace tests only when necessary. This si tuation can occur when the 
test class antecedent represents a function having more than one DNF. 2 

Recognizing vMid test frames in an existing test suite and then construct- 
ing other test frames around them is an NP-complete  problem [8]. The binary 
decision d iagram (BDD) [4] is a convenient tool for addressing this issue. The 
technique described here uses BDDs to perform test f rame recognition, construc- 
tion, and selection. The strategy for generating test f rame antecedents is: 

1. Generate the set of pr ime implicants 3 for the antecedent of the test class. 
2. Identify any existing or manda ted  valid test frames. 
3. Augment  this set with other elements from the set of pr ime implicants to 

construct a set with the desired specification coverage properties. 

6.1 Construct ing  the  B D D  

BDDs encode unquantified boolean expressions. Quantifiers within the test class 
place a limit on the granulari ty of the terms tha t  appear  in test frames. To 

Consider the function (a A ~c) V (-~b A c) V (-~a A b) and its alter ego (a A --,b) v (-~a A 

c) V (b A ~c). 
3 An implieant of a formula is a conjunction of variables that imply the formula. An 

implicant is prime if there is no other implicant that implies it. 
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obtain an unquantified expression from the test class antecedent, quantifiers are 
pushed inwards to group the quantifiers as tightly as possible to the stimuli they 
quantify. Existential quantifiers that are not blocked by universal quantifiers are 
then moved outside the implication where they become universal quantifiers. 
This minimizes the number of quantifiers in the test class antecedent. 

As an example, consider 

(Vx.3 y.A(x) A (e v CO))) ~ R 

= ((Vx.A(x)) A (B VSy.C(y)) )  ~ R 

= (Sy.(Vx.A(x)) A (B V C(y))) ~ R 

= Vy.((vx.m(x)) A (B V C(y))) ~ R . 

Applying this process to the steam boiler test classes results in: 

Vn, m,i .  

(V n.-,(nevel n C inmess)) V 

((Level n C inmess) A (Level m �9 inmess) A -~(n = m)) V 

(V n.-~(Steam n �9 inmess)) V 

((Steam ,~ �9 inme~s) A (Steam m �9 inmess) A --~(n : m)) V 
((Pu~pState(i, ~) �9 inmes~ A PumpState(i, F) �9 i,,mess) V 
(-~(PumpState(i, T) �9 inmess) A -~(PumpState(i, F) C inmess))) V 

(v b.~(S.mpCtrState(i,  b) �9 inmess)) 
OOTM ~ 

V n l  , n2. 

(Level nl E inmess) A 

(V n, m.-~(Level n C inmess) V ~(ievel m C inmess) V (n = m)) A 
(Steam n2 E inmess) A 

(V n, m.-~(Steam n C inmess) V -~(Steam m C inmess) V (n = m)) A 

(V i.(-~(PumpState(i, T) E inmess) V -~(PumpState(i, F) E inmess)) A 

(PumpState(i, T) E inmess V PumpState(i, F) E inmess)) A 
(V i. 3 b.PumpCtrState( i, b) E inmess) 

-~OOTM r . 

A BDD representation is constructed by substituting a variable for each 
quantified subexpression and unquantified stimulus. The expressions and stimuli 
represented by BDD variables are referred to as frame stimuli. 

The antecedent of the first test class (above) can be represented with the 
unquantified expression: 

Vl V(V~A VsA--~E) V WI V(W2A W3A-~E) V((XA Y) V ( ~ X A - ~ Y ) ) V Z  (4) 

where 
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171 = V n. - . (Level  n E inmess)  
172 = Level n E inmess  
Va = Level m E inmess  

W1 = V n . - , (S team n E inmess)  
W2 = Steam n E inmess  
W3 = Steam m E inmess  

X = PumpS ta t e ( i ,  T )  E inmess  
Y = PumpS ta t e ( i ,  F )  E inmess  

Z = V b.- .(PumpCtrState(i ,  b) E inmess) 
E = (n = m) 

The set of pr ime implicants is then generated from the BDD representation 
of this expression. The corresponding test frames are: 

(V n.~(Leve l  n E inmess))  
==~ O O T M '  

(V n.-~(Steam n E inmess))  
O O T M  ~ 

V n, m.Level  n E inmess  A 
Level m E inmess  A -~(n = m) 

O O T M  ~ 

V n, re .Steam n E inmess  A 
Steam m E inmess  A-~(n = m) 

O O T M '  

V i .PumpS ta t e ( i ,  T )  E inmess  A 
P u m p S t a t e (  i, F )  E inmess  

O O T M  ~ 

V i . -~(PumpState( i ,  T )  E inmess)  A 
-~(PumpState(  i, F )  E inmess)  

O O T M  ~ 

V i.(V b . - , (PumpCtrS ta te ( i ,  b) E inmess))  

O O T M '  . 

Since the antecedent of the second test class is a conjunction of frame stimuli, 
there is only one test frame; the one identical to the test class. 

Although quantifiers were used liberally throughout  the specification, rea- 
sonable test frames could still be generated automatically.  Any manual  test case 
generation tha t  remains is less tedious and less error prone than it would have 
been without being able to use the test frames as a start ing point. 

6.2 Coverage C r i t e r i a  

With  the set of pr ime implicants at hand, several coverage schemes can be de- 
fined. These can then be used at the discretion of the practitioner. The test 
f rame generation technique places no restrictions on the coverage scheme. 

The author proposes the following taxonomy for coverage schemes: 

1. Al l  p o i n t s :  This is the DNF of Dick and Faivre where each test f rame 
specifies the t ruth  or falsehood of each of the f rame stimuli f rom the test 

class st imulus expression. 
2. I m p l i c a n t :  Test frames are produced for each prime implicant.  
3. D N F :  Test frames are produced for a subset of pr ime implicants whose 

disjunction corresponds to a DNF of the test class stimulus expression. 
4. P a r t i t i o n :  A subset of prime implicants are used to determine an impli- 

cant set tha t  is similar to DNF coverage, but  the implicants are pair-wlse 
contradictory, i.e. There is no test case that  will satisfy any two test frames. 
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5. Term: Test frames are produced for a subset of prime implicants such that 
each frame stimuli from the test class stimulus expression is present in at 
least one of the selected prime implicants. 

The differences between these coverage schemes can be illustrated by consid- 
ering the number of terms produced when applied to the expression in Figure 1. 
This figure shows the points where the expression is true and compares the Kar- 
naugh maps of the coverage schemes defined above. Each bubble represents the 
antecedent of a test frame. The coverage schemes produce 8, 5, 4, 4, and 3 test 
frames, respectively. 

\ 
WX 

00 

01 

11 

10 

Comparison of coverage schemes applied to 
(~W A~X A~Y)  V(~W A ~Y  A Z ) V ( X  A Y) V(WA Y A~Z) 

YZ 
O0 O1 11 lO 

O 0  
0 0 0  

All Points: C)  @ 

@ 

(--) 

I m p ~  D N F : ~  

( ) ( ) 

o l -  1 
Partition: O Term: 0 

Fig. i. 

Term coverage is of interest since it is linear with respect to the size of 
the specification rather than exponential, as are the others. Note that term 
coverage does not produce test frames that cover two of the eight all-points 
cases, W A X A Y A Z and -1W A X A Y A --,Z. This is the compromise made in 
order to produce fewer tests. 

7 C o n c l u s i o n s  

The technique described in this paper addresses the process of deriving test 
frames from formal requirements specifications. A prototype has been constructed 
that demonstrates that this process can be automated for specifications written 
in a predicate logic with universal and existential quantification. Augmenting 
existing test suites will be implemented in the near future. 
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As noted by Gaudel, predicate logic specifications are more general than 
algebraic specifications. However, the price of this generality is the restriction 
that,  in general, only test fl'ames can be generated automatically. Algebraic 
techniques such as [3] can generate test data  corresponding to what this paper 
refers to as test cases. 

The automatic construction of a state machine to facilitate test case sequenc: 
ing is not considered here. For requirements specifications, specifying the state 
machine explicitly may be more appropriate, as in Biissow and Webers' hybrid 
Statecharts-Z approach [5]. 

BDDs provide a valuable and powerful mechanism for recognizing existing 
test frames. This same approach should also be able to match white-box test data  
to the corresponding test frames, provided that  a mapping from the white-box 
vocabulary to that  of the specification is given. This would provide a mechanism 
for generating oracles for white-box tests. 

Quantifiers place limits on the depth to which automation can go in produc- 
ing test frames. Further research is needed to assess the impact of quantified 
expressions within test frames and the frequency with which they typically oc- 
cur. With respect to the limits existential quantification places on generating 
test classes, further research will be needed to determine if this limitation is 
significant. 

In spite of these limitations, the fact that  these components are identified 
by the technique and automatically carried through to test frames constitutes a 
large savings in manual  effort. The effort saved is the effort to generate the test 
frames manually along with the effort required to ensure they were generated 

correctly. 
The use of prime implicants ensures that existing valid test frames or man- 

dated tests stated in terms of test frames will be recognized. This represents a 
savings of testing effort and provides flexibility. The use of prime implicants also 
provides a mechanism by which the coverage scheme can be parameterized. 

The information necessary for producing oracles for the test frames is pro- 
duced at the time the test class is generated. The oracle is represented by the 
consequent of the test class. However, such oracles must be used with caution. 
As Gaudel points out, implementing such oracles relies on the correctness of the 

implementation of the oracle function. 
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