
Automating Formal Specification-Based Testing

Michael R. Donat

University of British Columbia, 2366 Main Mall, Vancouver B.C. V6T 1Z4, Canada

Abs t r ac t . This paper presents a technique for automatically generat-
ing logical schemata that specify groups of black-box test cases from
formal specifications containing universal and existential quantification.
These schemata are called test frames. Previous automated techniques
have dealt with languages based on propositional logic. Since this new
technique deals with quantification it can be applied to more expres-
sive specifications. This makes the technique applicable to specifications
written at the system requirements level. The limitations imposed by
quantification are discussed. Industrial needs are addressed by the ca-
pabilities of recognizing and augmenting existing test frames and by ac-
commodating a range of specification-coverage schemes. The coverage
scheme taxonomy introduced in this paper provides a standard for con-
trolling the number of test frames produced. This technique is intended
to automate portions of what is done manually by practitioners. Bas-
ing this technique on formal ~les of logical derivation ensures that the
test frames produced are logical consequences of the specification. It is
expected that deriving test frames automatically will offset the cost of
developing a formal specification. This tangible product makes formal
specification more economically feasible for industry.

1 I n t r o d u c t i o n

The pr imary contribution of this paper is a technique for automat ical ly trans-
forming formal specifications containing universal and existential quantification
into test frames which specify groups of black-box test cases. The second major
contribution of this paper is a t axonomy for coverage schemes. This taxonomy
provides a means of standardizing the number of tests to be performed on spe-
cific parts of the system. This is critical to industrial processes that must make
appropriate trade-offs between available resources and the depth of testing re-
quired for a given part of the system.

Formal specifications based on mathemat ica l semantics provide a basis for
au tomat ic test generation techniques. This mathemat ica l structure allows for-
mal specifications to be manipula ted mechanically so that information contained
within the specification can be isolated, transformed, assembled, and repackaged.
In this manner, test frames for a system can be derived from its formal specifica-
tion. The mathemat ica l semantics of the specification language guarantee that
the test frames are logical consequences of the specification.

Dick and Faivre [6], inspired by the work of Bernot, Gaudel, and Marre [3],
showed how test cases could be generated automatical ly from unquantified pred-
icate logic specifications using a specific coverage scheme. This form of logic is

834

limited for general use in specifications at the system requirements level. Widely
used languages such as Z [14] make use of quantification. The technique pre-
sented in this paper shows how to automatically generate test frames in the
presence of quantified specifications using a variety of coverage schemes.

MacColl, Carrington, and Stocks [12] describe a mechanized but not auto-
mated approach to deriving test cases from formal specifications. They provide
for a variety of strategies that could embody different coverage schemes.

Gaudel [9] describes a theory of testing based on algebraic specifications.
These are different from the predicate logic specifications addressed in this pa-
per. Algebraic specifications are characterized by the use of functions to denote
operations. A set of axioms, typically expressed as universally quantified equa-
tions, defines a class of algebras. Each algebra is said to be a model of the specifi-
cation. In contrast, predicate logic specifications typically use relations between
states to denote operations and both universal and existential quantification are

often present.
Despite these differences, similar concepts and problems arise when generat-

ing tests. The concepts defined by Gaudel, such as exhaustive test set, validity,
unbias, selection and uniformity hypotheses, and the oracle problem, have coun-
terparts within the context of predicate logic specifications. This paper contains
only a brief description of the theory supporting the work presented here. A
full discussion is given in [7]. In the context of either type of specification the
number of tests produced must be controlled. This paper discusses a method
of achieving the necessary control for boolean expressions using standardized

coverage schemes.
Techniques of producing test case instances of test frames are part of a sub-

sequent process and are not discussed here.
Section 2 sets the context that motivates this research. The notation used to

present details of the technique is described in Section 3. Section 4 presents a gen-
eral description of a process to generate test frames from formal specifications.
This section also introduces and distinguishes the concepts of a specification, its
test classes, the test frames that follow, and the test cases they describe. Sec-
tion 5 details the test class algorithm. Test frames and how they are produced
using various coverage schemes is discussed in Section 6.

2 I n d u s t r i a l C o n t e x t

There are several different types of testing. Each type focuses on a different
objective and a different abstract view of the software. Unit testing focuses
on the robustness of individual components. Integration testing focuses on the
correctness of the interfaces between components. This paper focuses on testing
based on requirements specifications. An objective of this type of testing is to
demonstrate to a customer or certification authority that the specified software

has actually been built.
This testing is performed according to a set of test procedures. Each step in

a test procedure is referred to as a test case. The purpose of each test case is

835

to verify one or more requirements by the application of an external stimulus
to the system and comparison of the actual response of the system against the
expected response specified by the requirements. The analysis of requirements for
the purpose of deriving tests a t this level is generally limited to lexical analysis
of the natural language text used to express the requirements.

This level of testing is "system level" in the sense that the internal structure
of the system is not visible; all testing must be performed by means of external
stimuli and observation of externally visible responses. It is "requirements-based"
in contrast to other kinds of system level testing which, for instance, may be
based on scenarios that a t tempt to approximate expected use of the system.

Test case derivation for large projects is typically a highly manual process.
Teams of test engineers wade through large volumes of software specifications,
interpret them to the best of their abilities, and from this generate appropriate
suites of tests to apply to the developed systems. The process is very tedious and
error prone, due to the possible ambiguities of natural language and the amount
of detail involved. This intensity of labour coupled with the costs of ensuring test
suite correctness provides a sizable economic motivation to automate as much
of the test case derivation process as possible.

Toth and Joyee [15, 16] introduced the FORMATS Process as a way of ap-
plying formal methods to test case derivation. FORMATS is a two step process.
Requirements specifications are formalized and type checked to ensure that they
meet a certain level of correctness. Test cases are produced in the second step.
Specifications are written in S [11], Which is a typed predicate logic similar to
that found in the HOL system [10]. S specifications are type checked using a tool
called Fuss. To advance the ideas discussed in [16], the author has implemented
a prototype test frame generator that employs the technique described in this
paper.

There are four important issues in the FORMATS Process:

1. A range of coverage schemes may be employed depending on the amount of
testing required.

2. Test suites should be as small as possible while still providing the desired
coverage.

3. Specifications may change as the project progresses.
4. The test team may mandate specific tests.

When specification changes occur it is necessary to evaluate the impact this
has on existing test suites previously constructed. Although generating a com-
pletely new test suite is possible, this is undesirable if testing has already begun.
Performing a few new tests to augment positive results already obtained is less
expensive than dismissing previous positive results and performing a larger num-
ber of different tests. As an example, consider the case where a portion of the
specification is reworded for clarity or contractual reasons, but no implementa-
tion changes are necessary. If the test case generator produced new tests based
on the rewording, unnecessary and perhaps costly testing would be done.

When particular tests are mandated, the test case generator must build a test
suite around these given tests. This must be done in a manner that preserves the

836

desired size and coverage for the test suite. Note that coverage refers to coverage
of the specification and not code coverage of the implementation.

The technique presented here addresses each of these issues.

3 N o t a t i o n

The technique presented in this paper is based on the logical relationships be-
tween elements within the specification. Since it is not tied to a particular spec-
ification language such as S or Z, s tandard logical expressions shall be used in
the discussions that follow.

The following vocabulary will be helpful:

1. A specification of a system is a boolean expression relating the state of the
system before the program executes to the state of the system after the pro-
gram has executed. The expression is constructed from predicates, the logi-
cal connectives conjunction, disjunction, implication, and negation, (V, A, =~,
and -~), along with universal and existential quantification (V and B).

2. An atom is either a predicate or a negated predicate.
3. A stimulus is an atom that only refers to the before state.
4. A stimulus expression is a boolean expression where each atom is a stimulus.
5. A response is an atom that contains at least one reference to the after state

and may also refer to the before state, i.e. an atom that is not a stimulus.

6. A response expression is a boolean expression where each atom is a response.

A program specification can be of the form:

(s~ ~ R~) A (S~ ~ R2) A... (1)

where the Si are stimulus expressions and the Ri are response expressions. This
specifies a system that will satisfy R~ when given the stimulus Si. In this spec-
ification, each implication describes a class of behaviour to be exhibited by the

system.
To illustrate these definitions, consider the following example which is a

modification 1 of an excerpt from Bernard's solution [2] to Abrial's steam boiler

specification problem [1].
The specification problem is to formally specify requirements for a control

system responsible for maintaining the correct level of water in a boiler attached
to a steam driven turbine. One of the requirements is to identify whether or not
any inconsistencies exist in the sensor readings.

1 Modifications where made to construct a concise example and do not affect its logical
complexity. The excerpt is similar to the VDM specification by Schinagl [13].

837

_ P H Y S M E S S
A W S

- 7 0 0 T M ~ ~=~
(31 n : N . Level n E inmess) A
(31 n : 1~ �9 Steam n E inmess) A
(V i : PUMP �9 PumpState(i, TRUE) E inmess

(PumpState(i, FALSE) e inmess)) A
(v i : N �9 3 b: boot �9 P~mpCtrState(i , b) ~ inmess)

The schema PHYSMESS sets the "out of order" indicator, OOTM, to true
if and only if there is a detected malfunction, inmess is a set of input messages
received from the sensors of the boiler system. Level n indicates the quant i ty of
water in the boiler, Steam n indicates the quanti ty of s team coming from the
boiler, PumpStatc indicates whether p u m p i is turned on or off, PumpCtrState
indicates whether or not water is circulating from the pump to the boiler.

Expressed in predicate logic, PHYMESS is equivalent to:

-~OOTM ~

((3!n.Level n E inmess) A

(3!n.Steam n C inmess) A

(V i .PumpState(i, T) E inmess r -~(PumpState(i, F) G inmess)) A

(V i. 3 b.(PumpCtrState(i, b) E inmess)))

Primed variables are references to the after state, thus -~OOTM ~ is a response.
All the other atoms, such as PumpState(i, TRUE) E inmess, are stimuli.

4 P r o c e s s O v e r v i e w

This section provides an overview of the test f rame generation process.
Requirements specifications are written to be understood at part icular levels

of abstraction. For this reason, many details are hidden within definitions of more
abstract concepts. Issues of clarity are left to the discretion of the specification
authors. Hence, it must be assumed tha t the specification is an arbi t rary logical
expression.

Test classes are the intermediate step between the specification and test
frames. A test class isolates one behaviour from the specification. The test class
can be considered as a s tandard format for writing requirements. However, for
practical reasons, it is unlikely tha t all specifications would be written as a simple
conjunction of test classes.

A test class is an implication S :::> R , where S is a stimulus expression and
R is a response expression. Quantifiers may appear anywhere in the test class
and may also bind variables occurring in both S and R. The purpose of the test
class is to isolate a class of bebaviour based on the response. The first step of the

838

test frame generation process is to transform the specification into its test class
normal form such as (1) in Section 3. This is discussed in detail in Section 5.

Each test class is the ancestor of a set of test frames. A test frame is an
implication A ~ R, where A is a conjunction of stimulus expressions and R is a
response expression. Quantifiers may also bind variables occurring in both A and
R. A test frame A ~ R generated from the test class S ~ R has the property
that A :=~ S. The generation of test frames is discussed in detail in Section 6.

T he test frame generation process is as follows. Given a general specification
E, a set of test classes Si ~ R~ are produced such that E =;, (S~ =~ Ri). From
each test class, a set of test frames A,j ::~ Ri are produced such that Aij => Si.
This ensures that each test frame is valid, i.e. E ~ (Aij =~ Ri).

A test case is an implication t ~ R, where t is a conjunction'of atoms and R
is a response expression. Quantifiers can only occur in R. Although it is desirable
to derive test cases, these cannot, in general, be generated automatically from
the type of specifications considered in this paper. However, much of the effort
required to generate a test case can be performed automatically by producing a
test frame.

Test da ta generation techniques, whether manual or machine assisted, can be
applied to test frames to produce test cases tijk ~ R + such that tijk =~ A + where

A + =:> R + is an instance of the (quantified) test frame Aij =~ R~. Discussion
of these test data generation techniques is beyond the scope of the concept

presented in this paper.

5 T h e T e s t C l a s s A l g o r i t h m

The test class algorithm can be described as a function on boolean expressions.
The result of applying this function to an expression, E, is a conjunction of
test classes that is logically equivalent to E. The test class algorithm rewrites
the specification into its test class normal form. This does not alter its logical

content.
Assuming R is a response, S is a stimulus, T is the constant true, and F is

the constant false, a definition for the test class function, TC, is:

TC(A A B) = RewriteAnd(TC(A) A TC(B)) conjunction
TC(A V B) = RewriteOr(TC(A) V TC(B)) disjunction
TC(V x.P) = ForalIIn(V x. TC(P)) quantification
TC (3 x.P) = Existsln(3 x. TC (P)) quantification

TC(A ~ B) = TC(-~A V B) implication
TC(R) = T ~ R response
TC(S) = -~S ~ F stimulus

Negated expressions are dealt with by applying DeMorgan's laws to move the

negation inwards and proceeding.
The function RewriteAnd combines like antecedents and consequents using

the equivalences

V A, B, C.(A ~ B) A (A ~ C) = A ~ (B A C)

839

VA, B, C.(A:r C) A(B ~ C) : (A V B) ~ C .

The function RewriteOr first reduces any A N D / O R connectives above the
test classes from TC(A) and TC(B) to conjunctive normal form. Next, any
universal quantifiers are pulled from TC(A) and TC(B) so they are outside the
disjunctions. This is done using the equivalences

VP, Q.(Vx.Q) v P = Vx.Q v P

VP, Q .Pv (Vx.Q) -- Vx.P v Q ,

where x is alpha converted if necessary to avoid capturing any free occurrence
of x in P. Finally, the test classes are OR'd together using the equivalence

v &, s~, R1, R2.(S1 ~ R,) v ($2 ~ R2) = & A $2 ~ R~ v R2 .

The function Forallln moves the universal quantifier into the conjunction of
test classes produced by TC(P) using the equivalences

VP, Q.(Vx.P ~ Q) = (3x.P) ~ Q

y p, Q.(V x.Q ~ P) = Q ~ (Vx.P)

Vp, Q.(Vx.P A Q) = (Vx.P) A Q

VP, Q.(Vx.Q A P) = Q A (Vx.P)

VM, P.(Vx.M A P) ---- (Vx.M) A (Vx.P) ,

where x is free in P and M, and x is not free in Q.
The function ExistsIn moves the existential quantifier into the test class using

the equivalences

VP, Q.(3x.P ~ Q) : (Vx.P) ~ Q

V P, Q.(3x.Q ~ P) = Q ~ (3x.p)

V M, P.(3 x.M ~ P) = (Vx.M) => (3 x.P) ,

where x is free in P and M, and x is not free in Q.
Quantification does impose certain limitations on the test class algorithm.

However, specifications exercising these limits may be deemed too weak. Note
that ForallIn will not be successful in moving the universal quantifier into the
conjunction if there is an existential quantifier in the way,

e.g. V x . 3 y . (& ~ R ~) A (S ~ R 2) . (2)

Similarly, ExistsIn will not be successful in moving the existential quantifier into
a test class if TC(P) produces more than one test class as in (2), or if the single
test class has a universal quantifier,

e.g. 3x. Vy.(S~ ~ n~) . (3)

It could be argued that test class (3) can be dismissed as being too weak to be
a reasonable requirement. A similar argument could be made against the test
classes in (2).

840

5.1 E x a m p l e

In our example, r is defined as V A, B.(A r B) = (d ~ B) A (B :=~ A) and
3!x.P x is defined as (3 x.P x) A (Vx, y.P x A P y ~ (x = y)). Applying the TC
algorithm begins with the conjunction rule:

T C (~ O O T M '

((3 n.Level n E inmess) A

(V n, m.(Level n E inmess) A (Level m E inmess) ~ (n = m)) A

(3 n.Steam n E inmess) A

(V n, m.(Steam n G inmess) A (Steam m E inmess) ~ (n = m)) A

(V i.PumpState(i, T) E inmess r -~PumpState(i, F) E inmess) A

(V i. 3 b.PumpCtrState(i, b) E inmess)))

= RewriteAnd(TC(-~ OOTM'

((3 n.Level n E inmess) A

(V n, m.(Level n E inmess) A (Level m E inmess) ~ (n = m)) A

(3 n.Steam n E inmess) A

(V n, m.(Steam n E inmess) A (Steam m E inmess) ~ (n = m)) A

(V i.PumpState(i, T) E inmess r -~PumpState(i, F) E inmess) A

(V i. 3 b.PumpCtrState(i, b) E inmess))) A TC(. . .))

The next operation is to rewrite the implication of the first TC term and use
the rule for disjunction:

= RewriteAnd(RewriteOr(TC(-~-~OOTM') V TC(. . .)) A TC(. . .))

The double negation is removed and the response rule is then applied:

_= RewriteAnd(RewriteOr((T ~ OOTM') V TC(. . .)) A TC(. . .))

Using the rule for conjunction on the next TC term produces:

= RewriteAnd(RewriteOr((T ~ OOTM') V

Rewriteand(TC(3 n.Level n e inmess) A TC(...)) A TC(...)))

The quantification rule followed by the stimulus rule gives:

= RewriteAnd(RewriteOr((T ~ OOTM') v

RewriteAnd(Existsln(3 n.-~(Level n E inmess) ~ F) A TC(. . .))

A To(. . .)))

Applying ExistsIn gives:

= RewriteAnd(RewriteOr((T ~ OOTM') V
RewriteAnd(((V n.-~(Level n E inmess)) ::~ F) A TC(. . .)) A TC(. . .)))

841

A full application of the algorithm to the next TC term produces:

-= RewriteAnd(RewriteOr((T ~ OOTM') V

RewriteAnd(((V n.-~(Level n E inmess)) ~ F) A

(((3 n, m. (Levd n C i .mess) A (Level n �9 inmess) A ~(n = m)) V

(v n.-~(Steam n �9 ~nmess)) v
(3 n, m.(Steam n �9 inmess) A (Steam n �9 inmess) A ~(n = m)) V

(S i.(PumpState(i, T) �9 inmess A PumpState(i, F) �9 inmess) V

(-~(PumpState(i, T) �9 inmess) A -~(PumpState(i, F) �9 inmess))) V

(a i. V b.~(PumpCtrState(i, b) �9 inmess)))

E)) A
TC(. . .)))

Since the consequents of the two inner-most implications are identical (F), ap-
plying the inner-most RewriteAnd produces:

= RewriteAnd(RewriteOr((T ~ OOTM') V

(((V n.-~(Level n E inmess)) V

(3 n, m.(Level n �9 inmess) A (Level n E inmess) A ~(n = m)) V
(v , .~ (s team n �9 i,,mess)) V

(3 n, m:(Steam n �9 inmess) A (Steam n �9 inmess) A -~(n = m)) V

(q i.(PumpState(i, T) �9 inmess A PumpState(i, F) �9 inmess) V

(-~(PumpState(i, T) �9 inmess) A ~(PumpState(i, F) �9 inmess))) V
(3 i. V b.-,(PumpCtrState(i, b) �9 inmess)))
~ F) A

T c (. . .)))

Applying RewriteOr combines the response and stimuli to produce the first test
cl ass:

= RewriteAud(

(((V n.-~(Level n E inmess)) V

(3 n, m.(Level n E inmess) A (Level n E inmess) A -~(n = m)) V
(V. . -~(Steam n C inmes~)) v

(3 n, m.(Steam n E inmess) A (Steam n E inmess) A ~(n = m)) V

(3 i.(PumpState(i, T) E inmess A PumpState(i, F) E inmess) V

(-~(PumpState(i, T) E inmess) A ~(PumpState(i, F) E inmess))) V
(3 i. V b.-~(PumpCtrState(i, b) E inmess)))

OOTM') A
TC(. ..)))

842

Continuing with the remaining TC term produces the second test class:

(3 n.Level n E inmess) A

(v n, m. (nevd, in ess) V - (Levd m i. es) V (. = m)) A

(3 n.Steam n E inmess) A

(V n, m.--,(Steam n ~ inmess) V -~(Steam m E inmess) V (n = m)) A

(V i.(-,(PumpState(i, T) E inmess) V-,(PumpState(i, F) e inmess)) A

(PumpState(i, T) E inmess V PumpState(i, F) E inmess) A

(V i. 3 b.PumpCtrState(i, b) E inmess)

-.OOTM' .

6 G e n e r a t i n g T e s t F r a m e s

As defined previously, a test f rame from a given test class S ~ R is an implication
A ~ R, where A ~ S, A is a conjunction of stimulus expressions, and R is a
response expression. Quantifiers may also bind variables occurring in both A and

R.
A variety of different test f rame sets can be constructed from a test class.

One possible set of test frames is the one derived from a disjunctive normal form
(DNF) of the test class antecedent. In the context of our industriM process, this
presents a problem. If an existing test suite contains a valid test f rame that does
not correspond to a t e rm in the DNF of the antecedent of the test class, it will
not be recognized as valid and will be replaced. This is not desirable since we
wish to replace tests only when necessary. This si tuation can occur when the
test class antecedent represents a function having more than one DNF. 2

Recognizing vMid test frames in an existing test suite and then construct-
ing other test frames around them is an NP-complete problem [8]. The binary
decision d iagram (BDD) [4] is a convenient tool for addressing this issue. The
technique described here uses BDDs to perform test f rame recognition, construc-
tion, and selection. The strategy for generating test f rame antecedents is:

1. Generate the set of pr ime implicants 3 for the antecedent of the test class.
2. Identify any existing or manda ted valid test frames.
3. Augment this set with other elements from the set of pr ime implicants to

construct a set with the desired specification coverage properties.

6.1 Construct ing the B D D

BDDs encode unquantified boolean expressions. Quantifiers within the test class
place a limit on the granulari ty of the terms tha t appear in test frames. To

Consider the function (a A ~c) V (-~b A c) V (-~a A b) and its alter ego (a A --,b) v (-~a A

c) V (b A ~c).
3 An implieant of a formula is a conjunction of variables that imply the formula. An

implicant is prime if there is no other implicant that implies it.

843

obtain an unquantified expression from the test class antecedent, quantifiers are
pushed inwards to group the quantifiers as tightly as possible to the stimuli they
quantify. Existential quantifiers that are not blocked by universal quantifiers are
then moved outside the implication where they become universal quantifiers.
This minimizes the number of quantifiers in the test class antecedent.

As an example, consider

(Vx.3 y.A(x) A (e v CO))) ~ R

= ((Vx.A(x)) A (B VSy.C(y))) ~ R

= (Sy.(Vx.A(x)) A (B V C(y))) ~ R

= Vy.((vx.m(x)) A (B V C(y))) ~ R .

Applying this process to the steam boiler test classes results in:

Vn, m,i .

(V n.-,(nevel n C inmess)) V

((Level n C inmess) A (Level m �9 inmess) A -~(n = m)) V

(V n.-~(Steam n �9 inmess)) V

((Steam ,~ �9 inme~s) A (Steam m �9 inmess) A --~(n : m)) V
((Pu~pState(i, ~) �9 inmes~ A PumpState(i, F) �9 i,,mess) V
(-~(PumpState(i, T) �9 inmess) A -~(PumpState(i, F) C inmess))) V

(v b.~(S.mpCtrState(i, b) �9 inmess))
OOTM ~

V n l , n2.

(Level nl E inmess) A

(V n, m.-~(Level n C inmess) V ~(ievel m C inmess) V (n = m)) A
(Steam n2 E inmess) A

(V n, m.-~(Steam n C inmess) V -~(Steam m C inmess) V (n = m)) A

(V i.(-~(PumpState(i, T) E inmess) V -~(PumpState(i, F) E inmess)) A

(PumpState(i, T) E inmess V PumpState(i, F) E inmess)) A
(V i. 3 b.PumpCtrState(i, b) E inmess)

-~OOTM r .

A BDD representation is constructed by substituting a variable for each
quantified subexpression and unquantified stimulus. The expressions and stimuli
represented by BDD variables are referred to as frame stimuli.

The antecedent of the first test class (above) can be represented with the
unquantified expression:

Vl V(V~A VsA--~E) V WI V(W2A W3A-~E) V((XA Y) V (~ X A - ~ Y)) V Z (4)

where

844

171 = V n. - . (Level n E inmess)
172 = Level n E inmess
Va = Level m E inmess

W1 = V n . - , (S team n E inmess)
W2 = Steam n E inmess
W3 = Steam m E inmess

X = PumpS ta t e (i , T) E inmess
Y = PumpS ta t e (i , F) E inmess

Z = V b.- .(PumpCtrState(i , b) E inmess)
E = (n = m)

The set of pr ime implicants is then generated from the BDD representation
of this expression. The corresponding test frames are:

(V n.~(Leve l n E inmess))
==~ O O T M '

(V n.-~(Steam n E inmess))
O O T M ~

V n, m.Level n E inmess A
Level m E inmess A -~(n = m)

O O T M ~

V n, re .Steam n E inmess A
Steam m E inmess A-~(n = m)

O O T M '

V i .PumpS ta t e (i , T) E inmess A
P u m p S t a t e (i, F) E inmess

O O T M ~

V i . -~(PumpState(i , T) E inmess) A
-~(PumpState(i, F) E inmess)

O O T M ~

V i.(V b . - , (PumpCtrS ta te (i , b) E inmess))

O O T M ' .

Since the antecedent of the second test class is a conjunction of frame stimuli,
there is only one test frame; the one identical to the test class.

Although quantifiers were used liberally throughout the specification, rea-
sonable test frames could still be generated automatically. Any manual test case
generation tha t remains is less tedious and less error prone than it would have
been without being able to use the test frames as a start ing point.

6.2 Coverage C r i t e r i a

With the set of pr ime implicants at hand, several coverage schemes can be de-
fined. These can then be used at the discretion of the practitioner. The test
f rame generation technique places no restrictions on the coverage scheme.

The author proposes the following taxonomy for coverage schemes:

1. Al l p o i n t s : This is the DNF of Dick and Faivre where each test f rame
specifies the t ruth or falsehood of each of the f rame stimuli f rom the test

class st imulus expression.
2. I m p l i c a n t : Test frames are produced for each prime implicant.
3. D N F : Test frames are produced for a subset of pr ime implicants whose

disjunction corresponds to a DNF of the test class stimulus expression.
4. P a r t i t i o n : A subset of prime implicants are used to determine an impli-

cant set tha t is similar to DNF coverage, but the implicants are pair-wlse
contradictory, i.e. There is no test case that will satisfy any two test frames.

845

5. Term: Test frames are produced for a subset of prime implicants such that
each frame stimuli from the test class stimulus expression is present in at
least one of the selected prime implicants.

The differences between these coverage schemes can be illustrated by consid-
ering the number of terms produced when applied to the expression in Figure 1.
This figure shows the points where the expression is true and compares the Kar-
naugh maps of the coverage schemes defined above. Each bubble represents the
antecedent of a test frame. The coverage schemes produce 8, 5, 4, 4, and 3 test
frames, respectively.

\
WX

00

01

11

10

Comparison of coverage schemes applied to
(~W A~X A~Y) V(~W A ~Y A Z) V (X A Y) V(WA Y A~Z)

YZ
O0 O1 11 lO

O 0
0 0 0

All Points: C) @

@

(--)

I m p ~ D N F : ~

() ()

o l - 1
Partition: O Term: 0

Fig. i.

Term coverage is of interest since it is linear with respect to the size of
the specification rather than exponential, as are the others. Note that term
coverage does not produce test frames that cover two of the eight all-points
cases, W A X A Y A Z and -1W A X A Y A --,Z. This is the compromise made in
order to produce fewer tests.

7 C o n c l u s i o n s

The technique described in this paper addresses the process of deriving test
frames from formal requirements specifications. A prototype has been constructed
that demonstrates that this process can be automated for specifications written
in a predicate logic with universal and existential quantification. Augmenting
existing test suites will be implemented in the near future.

846

As noted by Gaudel, predicate logic specifications are more general than
algebraic specifications. However, the price of this generality is the restriction
that, in general, only test fl'ames can be generated automatically. Algebraic
techniques such as [3] can generate test data corresponding to what this paper
refers to as test cases.

The automatic construction of a state machine to facilitate test case sequenc:
ing is not considered here. For requirements specifications, specifying the state
machine explicitly may be more appropriate, as in Biissow and Webers' hybrid
Statecharts-Z approach [5].

BDDs provide a valuable and powerful mechanism for recognizing existing
test frames. This same approach should also be able to match white-box test data
to the corresponding test frames, provided that a mapping from the white-box
vocabulary to that of the specification is given. This would provide a mechanism
for generating oracles for white-box tests.

Quantifiers place limits on the depth to which automation can go in produc-
ing test frames. Further research is needed to assess the impact of quantified
expressions within test frames and the frequency with which they typically oc-
cur. With respect to the limits existential quantification places on generating
test classes, further research will be needed to determine if this limitation is
significant.

In spite of these limitations, the fact that these components are identified
by the technique and automatically carried through to test frames constitutes a
large savings in manual effort. The effort saved is the effort to generate the test
frames manually along with the effort required to ensure they were generated

correctly.
The use of prime implicants ensures that existing valid test frames or man-

dated tests stated in terms of test frames will be recognized. This represents a
savings of testing effort and provides flexibility. The use of prime implicants also
provides a mechanism by which the coverage scheme can be parameterized.

The information necessary for producing oracles for the test frames is pro-
duced at the time the test class is generated. The oracle is represented by the
consequent of the test class. However, such oracles must be used with caution.
As Gaudel points out, implementing such oracles relies on the correctness of the

implementation of the oracle function.

8 A c k n o w l e d g e m e n t s

This work is partially funded by the British Columbia Advanced Systems Insti-
tute and Hughes Aircraft of Canada, Limited. The author wishes to thank the
reviewers for their comments and direction towards additional important related

work.

References
1. Jean-Raymond Abrial. Steam boiler control specification problem. In Jean-

Raymond Abrial, Egon BSrger, and Hans Langmaack, editors, Formal Methods

847

]or Industrial Applications: Specifying and Programming the Steam Boiler Con-
trol, volume 1165 of Lecture Notes in Computer Science, pages 500-509, October
1996. http://www.informatik.uni-kiel.de/~procos/dag9523/dag9523.html.

2. Pascal Bernard. A Z specification of the boiler, http://www.informatik.uni-kiel.-
de/~procos/dag9523/bernard-fulltext.ps.Z, January 1996.

3. G. Bernot, M-C. Gaudel, and B. Marre. Software testing based on formal specifi-
cations. Software Engineering Journal, 6(6), November 1991.

4. Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677-691, August 1986.

5. Robert Biissow and Matthias Weber. A steam-boiler control specification with
statecharts and Z. In Jean-Raymond Abrial, Egon BSrger, and Hans Langmaack,
editors, Formal Methods for Industrial Applications: Specifying and Programming
the Steam Boiler Control, volume 1165 of Lecture Notes in Computer Science, pages
109-128, October 1996.

6. Jeremy Dick and Alain Faivre. Automating the generation and sequencing of test
cases from model-based specifications. In Formal Methods Europe '93, volume 670
of Lecture Notes in Computer Science, pages 268-284, 1993.

7. Michael R. Donat. Automating System-level Testing Based on Quantified Formal
Specifications. PhD thesis, Department of Computer Science, University of British
Columbia, Vancouver, B.C., Canada, 1997. In preparation.

8. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H.Freeman and Company, San Francisco,
1979.

9. Marie-Claude Gaudel. Testing can be formal, too. In TAPSOFT: 6th International
Joint Conference on Theory and Practice of Software Development, volume 915 of
Lecture Notes in Computer Science, pages 82-96, 1995.

10. M.J.C. Gordon and T.F. Me]ham, editors. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

11. Jeffrey J. Joyce, Nancy Day, and Michael R. Donat. S: A machine readable speci-
fication notation based on higher order logic. In Thomas F. Me]ham and Juanito
Camilleri, editors, Higher Order Logic Theorem Proving and Its Applications, 7th
International Workshop, volume 859 of Lecture Notes in Computer Science, pages
285-299. Springer-Verlag, 1994.

12. Ian MacColl, David Carrington, and Philip Stocks. An experiment in specification-
based testing. Technical Report 96-05, Software Verification Research Centre,
Department of Computer Science, The University of Queensland, St. Lucia, QLD
4072, Australia, May 1996.

13. Christian p. Schinagl. VDM specification of the steam-boiler control using RSL no-
tation. In Jean-Raymond Abrial, Egon Bgrger, and Hans Langmaack, editors, For-
mal Methods for Industrial Applications: Specifying and Programming the Steam
Boiler Control, volume 1165 of Lecture Notes in Computer Science, pages 428-452,
October 1996.

14. J. Michael Spivey. Understanding Z: A Specification language and its formal se-
mantics. Cambridge University Press, 1988.

15. K. Toth and J. Joyce. Industrialization of formal methods through process defini-
tion. In 5th Annual Symposium of the National Council on Systems Engineering.
NCOSE, July 1995.

16. Kalman Toth, Michael R. Donat, and Jeffrey J. Joyce. Generating test cases from
formal specifications. In 6th Annual Symposium of the International Council on
Systems Engineering. INCOSE, July 1996.

