
TAS and IsaWin: Generic Interfaces for
Transformational Program Development and

Theorem Proving

Kolyang, C. Liith, T. Meyer, B. Wolff

Bremen Institute for Safe Systems (BISS), FB 3
Universit~t Bremen, Postfach 330440, 28334 Bremen

{kol, cxl, tm, bu}r ik. uni-bremen, de

1 I n t r o d u c t i o n

We present a new approach to the implementation of graphical user interfaces (GUIs)
for formal program development systems like transformation systems or interactive
theorem provers. Its distinguishing feature is a generic, open system design which
allows the development of a family of tools for different formal methods on a sound
logical basis with a uniform appearance.

The context of this work is the UniForM project [KPO+95], the aim of which is
to develop a framework integrating different formal methods in a logically consistent
way. Consistency is achieved by encoding formal methods such as CSP and Z in the
theorem prover Isabelle [Pau94], which is used to perform the program development
as well as to prove the correctness of the transformation rules. One of the main
UniForM objectives is to enable non-expert users to actually perform at least part
of the developmen~ themselves. Hence there is a crucial need for an encapsulation
technique of these Isabelle encodings providing a generic way of building graphical
user interfaces.

2 S y s t e m A r c h i t e c t u r e

2.1 Isabel le and sml_tk

The system is entirely implemented in Standard ML (see Figure 1). The main reason
for this is Isabelle's system architecture, and ML's powerful modularization concepts.

Since Isabelle essentially consists of a collection of ML types for objects such
as theorems, proofs and rule sets, and ML functions to manipulate these objects,
organised into a collection of ML structures and functors, one can conservatively
extend Isabelle by writing ML functions, using the abstract datatypes provided by
Isabelle.

To implement the graphical user interface, we are using the interface description
and command language Tcl/Tk, encapsulated into Standard ML by the sml_tk pack-
age [LWW96](also developed at the University of Bremen). This package provides
abstract ML datatypes for the Tcl /Tk objects, thus allowing the programmer to use
the interface building library Tk without having to program the control structures
of the interface in the untyped, interpretative language Tcl.

856

i I

, Application ,
t i

GeaGUI

Isabelle/HOL

sml_tk

Standard M L

Fig. 1. System Architecture

2.2 The G e n e r i c Graph ica l User In ter face G e n G U I

GenGUI builds on the interface description facilities provided by sml_tk to provide
a generic graphical user interface. Its main components are a module allowing the
user to manipulate items (graphical objects) on a canvas (a window area to draw
on) by grabbing them with a cursor, moving them across the screen or dropping them
onto other objects (thereby possibly triggering an operation), and a module giving a
semantics to these items with respect to a given application, which can be abstractly
characterised as follows:

- It has objects, each of which has a type. The type determines which operations
are applicable to this object, and is indicated by the object's icon.

- For each object type, the application provides a dictionary of unary operations,
such as a function to display the object;

- For all pairs of object types, there is a binary operation, the result of which is
an object produced by the operation.

Hence, applications are described by an ML signature APPL_SIG, and the Generic
GUI is implemented as a functor

functor GenGUl(structure appl: APPL_SIG) = ...

which provides a graphical user interface for each application.

2.3 Gener ic Visual A p p e a r a n c e

The main window of any GenGUI instance consists of two areas: the assembling
area in the upper part, and the construction area in the lower part. The assembling
area contains the icons representing the available objects. They can be dragged,
moved and dropped onto each other, affecting the binary operations described by
the application. Each object offers a pop-up menu of the available unary operations.

Each application is geared towards one particular type of objects, called the con-
struction objects. These objects (and only those) can be manipulated in the construc-
tion area. Here, the state of the object under construction is displayed. Moreover,
it can be altered, in contrast to the drag&drop operations in the assembling area
which leave the involved objects untouched.

857

The application determines the visual appearance of the icons, the size of the
window, and the details of the construction area. It can also add elements such as
menus or buttons to the window.

We will now present two example applications: the Transformation Application
System TAS, and the Isabelle graphical user interface IsaWin.

3 T h e T r a n s f o r m a t i o n A p p l i c a t i o n S y s t e m T A S

TAS is a system for transformational program development in Isabelle (for theory
details and background see [KSW96]). It is designed to keep everything about proofs
in Isabelle away from the user. The proof obligations resulting from applying a
transformation rule are proven using another Isabelle tool (like IsaWin below), such
that the user does not have to worry about the details of how the transformational
process is implemented within Isabelle, leaving him with the main design decisions of
transformational program development: which rule to apply, and how to instantiate
its parameters.

The object types of TAS are transformational program developments as construc-
tion objects, transformation rules with their parameters not instantiated, transfor-
mation rules with their parameters instantiated, and parameter instantiations. (With
typical transformation rules, parameter instantiations are lengthy enough to merit a
dedicated object type to avoid having to retype them, allow copying them etc.) The
operations include applying a transformation rule by dropping it onto a transforma-
tional program development, and instantiating the parameters of a transformation
rule by dropping the instantiation on the rule.

Figure 2 shows a screenshot of TAS. In the upper part of the screen, the assem-
bling area shows a collection of icons. The construction area in the lower part of the
screen shows the current transformational development.

4 I s a W i n m a G r a p h i c a l U s e r I n t e r f a c e f o r I s a b e l l e

IsaWin can be used as an interface to Isabelle in its own right, as well as to prove
the proof obligations arising from transformational developments using TAS, or even
the correctness of the transformations of TAS.

Its object types are theorems, proofs, two types of rule sets, and theories (col-
lections of type declarations, theorems and rule sets). The construction objects are
proofs; once a proof is finished, it can be turned into a theorem. The operations
include backward resolution by dropping a theorem onto a proof, forward resolution
by dropping a theorem onto a theorem, or rewriting by dropping a rule onto a proof.

Figure 2 shows a screenshot of IsaWin. The assembling area doesn't look that
different from TAS, but the construction area is far more elaborate, offering the
user control over the various Isabelle tactics. The assembling area will not hold
all theorems known within Isabelle when starting up, because there are too many.
Rather, the user is provided with a theorem and theory browser with which he can
select the relevant theorems and place them on the assembling area.

858

o .

Fig. 2. Screenshots of TAS (on the left) and IsaWin (on the right).

5 Re la ted and Future Work

Pioneer transformation systems include PROSPECTRA [HK93] and KIDS [Smi91],
but we believe that they are too monolithic and difficult to change. Our approach
offers a greater flexibility, thus allowing extendability and reusability.

Other GUIs for specific theorem provers like TkHOL and XIsabelle are imple-
mented in Tcl, which lacks the powerful modularization concepts of ML, and conse-
quently do not have the generic, open system architecture allowed by our approach.

The main emphasis during development has been put on a clear and generic
system architecture rather than bells and whistles. Having achieved the former, we
are going to concentrate on the la.tter, and are going to implement extensions such as
better error handling, pretty printing (using mathematical notations) and focusing
(applying a transformation rule or an Isabelle tactic to a subterm of the current goal,
leading to the concept of a generic focus) in the near future.

References

[HK93] B. Hoffmann and B. Krieg-Briickner. Program Development by Specification and
Transformation. LNCS 690. Springer Verlag, 1993.

[KPO+95] B. Krieg-Briickner, J. Peleska, E.-R. Otderog, D. Balzer, and A. Baer. UniForM
Workbench - - UniverseUe Entwicklungsumgebung fiir formale Methoden. Tech-
nischer Bericht 8/95, FB 3, Universit~t Bremen, 1995.

[KSW96] Kolyang, T. Santen, and B. Wolff. Correct and user-friendly implementations
of transformation systems. In M. C. Gaudel and J. Woodcock, editors, Formal
Methods Europe '96, LNCS 1051, pages 629- 648. Springer Verlag, 1996.

[LWW96] C. Liith, S. \u and B. Wolff. sml_tk: Functional programming for
graphical user interfaces. Technical Report 7/96, FB 3, Univ. Bremen, 1996.

[Pau94] L.C. Paulson. Isabelle - A Generic Theorem Prover. Number 828 in LNCS.
Springer Verlag, 1994.

[Smi91] D.R. Smith. KIDS - - a semi-automatic program development system. IEEE
Transactions on Software Engineering, 16(9):1024- 1043, 1991.

