
A new Proof-Manager and Graphic Interface
for the Larch Prover

Frederic Voisin

C.N.R.S.U.R.A. 410 and Universit~ de Paris-Sud,
L.R.I., Bs 490, F-91405 Orsay Cedex, France

Abst rac t . We present PLP, a proof management system and graphic
interface for the "Larch Prover" (LP). The system provides additional
support for interactive use of LP, by letting the user control the order in
which goals are proved. We offer improved ways to investigate, compare
and communicate proofs by allowing independent attempts at proving
a goal, a better access to the information associated with goals and an
additional script mechanism. All the features are accessible through a
graphic system that makes the proof structure accessible to the user.

1 I n t r o d u c t i o n

The "proof-debugger" .LP is part of the Larch project. It has been designed
to help reasoning about algebraic specifications written in the Larch specifi-
cation language by making it easier to prove properties of such specifications
[2]. LP has also been applied to other domains such as the proof of circuits,
of software components or of distributed algorithms [1, 3]. Here we focus on
proof management since our system does not add any new logical mechanism
to the ones already present in LP. We shall only recall that LP supports multi-
sorted first-order formulas and offers various proof mechanisms, usually applied
on user's request. The main operational mechanism is term rewriting with ad-
ditional commands on top of it. Proof commands in LP are split in two groups:
the "forward-inference" commands, used to enrich the current logical system
without modifying the goal to be proved (like in critical-pairing or quantifier
elimination), and the "backward-inference" commands, used to decompose the
proof of a goal into the proofs of several subgoals (as in proof by cases or by
induction), usually with some hypotheses. Therefore each subgaal is proved in a
independent logical system formed by the initial axiomatization and the hypothe-
ses corresponding to the various proof commands at the origin of a particular
subgoal. The original formulas and rewrite systems can be al tered as part of the
proof process: orientation of equations into rewrite rules, inter-normalization of
rewrite systems.

2 W h a t ' s n e w w i t h p lp

The preliminary objectives and design of our system are described in [4]. Our
system enriches LP with additional support for the interactive work on proofs

864

and provides bet ter mechanisms to investigate and compare proofs. LP is guided
by the "design, code, debug" approach and offers very efficient commands for
running large proofs written as scripts, but we also need more interactive support
for helping in completing unfinished proofs or in correcting failed ones. Part of
the problem is that it is not easy to write a script frora scratch and to guess the
exact form of the subgoals to prove, or the associated rewrite systems, after a
few proof commands. Moreover, for a given subgoal, one can sometimes think of
several ways to prove it and we want to be able to compare them, their subgoals
or the contexts in which they are proved, without having to discard one strategy
for trying another one. Also, with LP, a subgoal is discarded once proved, and
its logical system is no longer accessible to the user. When the user is blocked in
the proof of some subgoal, there is no possibility of switching to another subgoal,
for instance for gaining some experience on another subgoal, or to understand
why the proof of some subgoal succeeds while the proof of another do not. This
hinders the comparison of similar proofs and this is where our system can help !

U s e r c o n t r o l on t h e o r d e r o f p r o o f s teps : LP does not provide the user
with the control over the order in which the subgoals are proved: Each subgoal
must be proved as soon as it is introduced, and the relative order of the sub-
goals originating from a given command is imposed by the system. We use the
same default ordering, but at any moment the user of PLP can switch to another
subgoal without first completing the current goal. New conjecture can be intro-
duced by the user, that rely on conjectures that have not yet been completed.
Therefore a user can prove the subgoals in the order that is the most natural for
he/her , skip parts of a long proof when wanting to focus on a subpart of it, or
state a sequence of conjectures whose proofs are deferred to separate files. The
system automatically records which goals are unproved and proposes a new goal
when the current task is completed.

M u l t i p l e a t t e m p t s a t p r o v i n g subgoa ls : We allow independent at tempts
at proving subgoals, using different proof strategies. Variants can be started,
cancelled, left uncompleted and later resumed, and the user can switch back
and forth among them. A variant at a node is logically compatible with any
variant at a node in an independent subtree: The validity depends only on the
formulas in the subgoals. All subgoals have a "current ,~ variant, with respect to
which commands are interpreted. Switching between variants is done only on
user request to minimize the risk of confusion for the user.

Variants are also useful to "replay" part of a proof either to try to simplify
it or to have a closer look at its execution. This may be more convenient than
retrieving the corresponding part in the log file produced by LP.

B e t t e r access t o p r o o f i n f o r m a t i o n : With PLP, proved subgoals are not dis-
carded automatically and it is possible to re-enter them to inspect their logical
systems or to perform some computation (like normalization). This gives an eas-
ier way to compare the proofs of independent subgoals. Par t of the information
is recorded within the interface part and is accessible by mouse clicking without
interaction with the proof engine (that can be working on a different subgoal).

865

This includes the basic information about subgoals: logical status, the formula
as initially stated and its current form after processing by the proof engine, cur-
rent hypothesis etc. The rest of the information for a subgoal, even proved, can
be retrieved by selecting that subgoal as the current focus for LP. This gives
access to additional information, like the associated rewrite system, that would
be too large to record within the interface part. Being able to run a whole proof
and later browse through it, while picking up local information easily, provides
valuable help when trying to understand someone else's proof.

G r a p h i c a l p r e s e n t a t i o n o f p roof s : We provide an explicit view of the tree
that is the natural representation of a proof, with a proof command connecting
a goal to the list of its subgoals. The selection of goals is done by mouse click-
ing or by name. The tree structure is used for representing backward-inference
commands, the only ones that introduce subgoals. Forward-inference commands,
which are not undoable in LP and which do not introduce subgoals, are displayed
with a square box whose opening lists all the forward-inference commands is-
sued for the subgoal. Different displays for completed and uncompleted subgoals
make clear where unfinished parts are. Pointing at a node provides information
about it (logical status, associated hypothesis, etc) while selecting it as the cur-
rent focus for LP allows to (re-)enter the associated logical context and make it
ready to accept new commands.

Variants can also be displayed in separate windows. This helps the compari-
son between different at tempts at proving a goal. No proof action can be issued
from the windows associated with variants, to prevent confusion about the node
at which a proof action will take place. A variant must be selected as the current
variant at a goal before one can issue a command for it. A "stack" display of
commands for subgoals with variants makes explicit the presence of variants.

The tree structures can be dumped in Postscript format for later printing or
inclusion into documents, in a form more readable than textual scripts.

N e w sc r i p t m e c h a n i s m : An additional script mechanism complements the one
that exists in LP which provides an on-line recording of all user's actions, even
the ones that have no impact on the proof (displays, cancelled actions, errors,
etc). The new mechanism traverses the proof tree structure and lists only the
commands that are necessary to rebuild the tree structure (or a selected part of
it), cleared of all superfluous commands.

3 C o n c l u s i o n

The new prototype system runs on SUN workstations. It is based on a cus-
tomized release of LP, built in collaboration with Steve Garland from MIT. The
proof engine is in CLU, the proof-manager part is in C and uses Tcl/Tk for
the graphic manipulation. This prototype can be viewed as a first step towards
a "proof editor" that would take advantage of the explicit proof structure to
provide additional facilities. Among them we can mention dynamic annotation
of scripts, scratch-pad facilities for performing computations at subgoals, a "re-
play" mechanism for reusing a proof at some subgoal for another subgoal, or the

866

sia~lifk~t~R.2

o [] .---o
"O(q,a)

si~lifk,tivm3

0 Fq------O <~,o

Fig. 1. A snapshot of the system

dynamic reshaping of proofs like when moving lemmas higher in a proof tree to
make them sharable by several subgoals.

