
D O S F O P - - A D o c u m e n t a t i o n Tool for the
Algebraic Programming Language Opal

Klaus Didrich, Torsten Klein

Technische Universits Berlin, Fachbereich Informatik, Institut ffir Kommunikations-
und Softwaretechnik, Franklinstr. 28/29, D - 10587 Berlin

{kd,parrus}@cs. t u - b e r l i n , de, h t t p : / /uebb. cs. t n - b e r l i n , de/

A b s t r a c t We present an approach to the design of a literate program-
ming tool for the algebraic programming language OPAL, which serves
as a back-end in the formal program derivation process. In designing
our documentation system we not only take technical aspects into ac-
count, but also have the acceptance of the documentation system by the
software developer in mind.

1 I n t r o d u c t i o n

The necessity of documenting software products as soon as they have evolved
beyond the stage of mere playthings or examples is evident to most software
users and even to most software developers. Nevertheless, documentat ion is
often not available or is outdated, either because the development of actual
running software is more impor tant and can be more easily checked by the
customer than the quality of the documentat ion or because the job of keeping
the documentat ion up to date is too arduous.

As part of the OPAL environment, the documentat ion system DOSFOP ("Doc-
umentation system for OPAL projects") was developed. While some features of
DOsFOP are specific to OPAL, the main objectives of the documentat ion system
are language independent.

2 T h e O P A L E n v i r o n m e n t

The OPAL environment [2] is a software engineering environment based on formal
methods, that includes formal specifications as well as efficient implementat ion
in a functional style.

The language OPAL [1] is a strongly typed, higher-order, functional language
with a distinctive algebraic flavour, as becomes apparent in the fact that specifi-
cation constructs are available in the language, in the syntactical appearance of
OPAL, and last but not least, in the semantics of OPAL. Specifications consist
of laws stat ing freely generated properties for types and first-order propositional
theorems in general.

The OPAL environment has grown in recent years, see [2] for a concise de-
scription. The documentat ion tool sketched in this paper (for a full description
see [3]) is one of the recent additions.

876

3 D e s i g n O b j e c t i v e s o f D o s F O P

Our research efforts have been focused on ideas for software documentation sys-
tems that already exist. Donald E. Knuth introduced the concept of "Literate
Programming" [7] with the web system, which has been used to write docu-
mentation systems for many languages like PASCAL, C, FORTRAN or language
independent systems like NOWEB. The most important model for DOSFOP is the
GRASP system [5] developed at Glasgow University for the functional language
HASKELL.

On the basis of experience with all the web derivates and new developments
in the field of modern programming languages and their environments, we point
out some fundamental requirements of documentation systems that are not sat-
isfactorily covered by existing systems:

S u p p o r t of Large-Scale D o c u m e n t a t i o n In software engineering, one uses
modules to structure the software system. These modules form a hierarchy
reflecting the logical relations between modules or groups of modules. We
expect a documentation system to support the documentation of a~software
product in a way that reflects its structure.

Exp lo i t I n h e r e n t D o c u m e n t a t i o n The documentation system should use the
information that is already contained in the sources. Even for programs
with self-explanatory variable and function names we believe that indices,
reference tables and the like which refer directly to the elements of the

source code should be included.

P r o v i d e Mul t i p l e Forms of P r e s e n t a t i o n The documentation should not
only be available in print but also in hypertext form. Paper is good for
documenting static versions of a software product, but we also need the
support of a documentation system in the dynamic stages of a develop-

ment.

In addition to the technical requirements, we also want to take human weak-
nesses into account, and emphasise that consideration of these aspects finally
decides whether a system will be used in real life or not:

Kee p t he S y s t e m Flexib le Most programmers are very reluctant to use a
system if they feel their individuality is not given consideration. So the
documentation system should provide a lot of possibilities to customize

the outcome.

Lower t h e Ba r r i e r s for Ini t ia l Use The initial effort required to use the doc-
umentation system must be very small. Ideally, the user would provide
documentation information in the proper places and the system would
generate the documentation without any further activity on the part of

the user.

877

P r o v i d e C o m p a t i b i l i t y w i t h E x i s t i n g C o d e In particular, it must be pos-
sible to integrate source code that has not been prepared specifically for
the documentation system. So quick-and-dirty programs (which is the way
many programs originate) can be integrated and then later on be gradually
documented

4 Description of the DosFOP System

DOSFOP has the source code as input and also information on the modulariza-
tion and hierarchy, which is recorded in a project database. Moreover, DOSFOP
does not produce a uniform documentation format; the user is able to customize
the result via global options and local options. So one can configure the doc-
umentation for each OPAL structure and OPAL subsystem individually. The
handling of the configuration database as well as the translation process from
source code to the final documentation product is supported by a graphical user
interface.

On the output side, DOSFOP produces an intermediate output file in the
TEXINFO language. This TEXINFO file is translated again into a final represen-
tation. The advantage of this approach is that we can use existing translation
tools. Currently, DVI files (for printed output), ~NFO files (for the GNU info help
system) and HTML files (for WWW-browsers) are supported. Figure 1 provides
a graphical representation of the generation of documentation with DOSFOP.

l I
Global

I Configuration I

' ' ~ OSFO Database
L_

r ~F ~rk~ / '
I Source C o d e t

L J

TEXINFO
output

DVI file

j . :

""--~II;IIIIIIIEIIIIIIIIIIEI]II

HTML file

Figure 1: Producing documentation

Documentation of OPAL code is directly included in the source file. After
all, this is the idea of literate programming, keeping in mind that a large spatial
distance between source code and its documentation entails severe consistency
problems. In DosFOP there are five different kinds of documentation:

�9 Ordinary documentation may contain arbitrary (TEXINFO) text.

�9 Tagged documentation does not appear in the generated documentation
unless explicitly specified. This option can be used to generate documen-
tation for different audiences.

878

�9 Documentation sectioning does not appear in the generated documentat ion
unless explicitly specified. This option can be used to generate documen-
tat ion for different audiences.

�9 References to Properties, i.e. laws and theorems formally expressed in the
specification parts of OPAL, can be referenced by name. The respective
formulae are pretty-printed and serve as a mathematical form of documen-
tation.

�9 Ignored documentation finally does not appear at all in the generated doc-
umentation.

5 Applications

The DOSFOP system has been successfully used for several projects both at the
TU Berlin and Daimler-Benz AG:

�9 The OPAL standard library (more than 150 structures);

�9 the ESZ type-checker, part of the ESZ toolkit [6] for editing, typesetting
and type-checking Z specifications;

�9 OPALWIN [4], a library for a window system for OPAL, based on concurrent

OPAL;

�9 DosFOP itself was of course entirely documented by DosFOP.

References

L K. Didrich, A. Fett, C. Gerke, W. Grieskamp, and P. Pepper. OPAL: Design and
Implementation of an Algebraic Programming Language. In J. Gutknecht, edi-
tor, Programming Languages and System Architectures, LNCS 782, pages 228-244.

Springer, 1994.
2. K. Didrich, C. Gerke, W. Grieskamp, C. Maeder, and P. Pepper. Towards Integrat-

ing Algebraic Programming and Functional Programming: the Opal System. In
M. Wirsing and M. Nivat, editors, Algebraic Methodology and Software Technology,

LNCS 1101, pages 559-562. Springer, 1996.
3. K. Didrich and T. Klein. A Pragmatical Approach to Software Documentation.

Technical Report 96-4, TU Berlin, November 1996.
4. Th. Frauenstein, W. Grieskamp, P. Pepper, and M. Siidholt. Concurrent Functional

Programming of Graphical User Interfaces. Technical Report 95-19, TU Berlin,

1996.
5. The GRASP Team. Glasgow Literate Programming User's Guide, September 1992.

Contact: Will Partain.
6. W. Grieskamp. User's Guide to Editing, Typesetting and Type-Checking Z Specifi-

cations with the ESZ Toolkit, 1996. Bundled with the ESZ distribution.

7. D. E. Knuth. Literate programming. The Computer Journal, 27(2):97-111, 1984.

