
Reporting Exact and Approximate Regular Expression Matches

Eugene W. Myers � Paulo Oliva y Katia Guimar~aes z

February 4, 1998

Abstract

While much work has been done on determining if a document or a line of a document con-

tains an exact or approximate match to a regular expression, less e�ort has been expended in

formulating and determining what to report as \the match" once such a \hit" is detected. For

exact regular expression pattern matching, we give algorithms for �nding a longest match, all

symbols involved in some match, and �nding optimal submatches to tagged parts of a pattern.

For approximate regular expression matching, we develop notions of what constitutes a signi�-

cant match, give algorithms for them, and also for �nding a longest match and all symbols in a

match.

1 Introduction

Much attention has been given to the problem of e�ciently determining if a string contains a match

to a pattern. But the problem of selecting which substring or substrings of the target to report

as matching, is an important practical issue, that probably many have had to face, but for which

there is a dearth of published work. This paper serves as a systematic exploration of a range of

possibilities. We consider here the problem of reporting matches to a regular expression R of size

P in a text A of length N , in both the cases of exact and approximate matching. The individual

problems we encounter vary in di�culty. We treat them all in order to give a cohesive treatment.

We �rst make the observation that for the problems being considered here, reporting the desired

or interesting thing is more important than doing so extremely e�ciently. Generally, one can use a

very fast algorithm such as that in egrep or agrep, to �nd the lines or regions of a text that contain

a match. Thus the N in our context is typically on the order of the length of a line, and not that of

a document. That is, we can a�ord to spend more time on each line containing a match, working

on delivering a meaningful match rather than one that is an artifact of the scanning/�ltration

algorithm.

The widely accepted standard, e.g. Perl [WS91], Tcl/Tk [Ous94], and the IEEE Posix standard

[IEE92], for exact regular expression pattern matching is to report the left-most longest match, i.e.

the matching substring whose left end is leftmost, and if there are several with such a left end, then

�Dept. of Computer Science, University of Arizona Tucson, AZ 85721 (e-mail: gene@cs.arizona.edu). Partially

supported by NLM grant LM-04960
yDept. of Informatics, Federal University of Pernambuco, Recife, Brazil (e-mail: pbo@di.ufpe.br). Partially

supported by CNPq-PIBIC grant 111371/97-0
zDept. of Informatics, Federal University of Pernambuco, Recife, Brazil (e-mail: katia@di.ufpe.br). Partially

supported by CNPq grant 352775/96-3

1

the longest of those. The motivation for this de�nition appears to stem more from the limitations

of searching with a �nite-state automata then it does from any conceptual principle: a traditional

implementation of a �nite automaton easily admits the reporting of left-most and right-most,

longest and shortest matches. In a recent paper, Clarke and Cormack, argue that shortest matches

have superior search properties when looking at patterns that involve matching several regular

expressions [CC97]. On the other hand, we know of no reported work on reporting approximate

matches to regular expressions, save that there are connections to work on �nding locally optimal

alignments [SW81, Sel84].

Our goal is to report matches in a meaningful way. For example, suppose one is given the

regular expression babb*bab and one is requested to �nd matches with 2 di�erences or less. One

might like to see a report such as:

aaaaabababbbbabaaaaaaaabaabaaaaa

where the symbols in grey are those that are in some substring that approximately matches the

pattern, and the substring in the heavily bordered box is, in a sense to be de�ned later, the \best"

match. This motivates us to consider, for the case of exact matching, the problems of �nding the

longest match, all symbols of the text involved in a match, and on parsing a match so as to deliver

a consistent set of matching substrings that optimize some criterion. For the case of approximate

matching, we �rst examine the problem of de�ning and delivering an essential or signi�cant match,

an issue that does not arise in the exact matching case. We then conclude by solving the longest-

match and all-matches problems for the case of approximate matches as well.

2 Reporting Exact Matches

2.1 Finding the Longest Exact Match

Using traditional scan-based regular expression matching methods based on �nite automaton, one

can easily �nd the left-most or right-most longest or shortest match to the pattern in a given string.

But often this is not the most interesting or speci�c match. For example, given the pattern bb*,

the left-most and right-most matches in aabaabbbbbbbaabaa are uninteresting compared to the

long central match. This motivates the problem of �nding the longest substring matching a regular

expression, as it is the rarest match if symbols occur within the target with equal probability.

Interestingly, this problem can be solved in O(PN) time using a specialization of the approxi-

mate regular expression matching algorithm of Miller and Myers [MM88] that accommodates any

additive alignment scoring scheme �. Quickly we review this result and then proceed to the spe-

cialization. First, recall that any regular expression R can be converted to a state-labeled �-NFA

F that has at most O(P) states and transitions and a single �nal/accepting state. Figure 2 in

Appendix A gives such a conversion especially suited to our purpose. Let � and � be the unique

start and �nal states of F that by construction are labeled with �. Further let �s 2 �[f�g denote

the label of state s.

Miller and Myers �rst observation was that the cost of the best alignment between A[1::i] and

a word in LF (s), where LF (s) is the set of words accepted at state s, is the minimum-�xed point

to the system of equations given by the recurrence:

C(i; s) = maxfmax
t!s

fC(i� 1; t) + �(ai; �s)g;max
t!s

fC(i; t) + �(�; �s)g; C(i� 1; s) + �(ai; �)g (1)

2

subject to the boundary condition C(0; �) = 0. Modifying the boundary condition to C(i; �) = 0

for all i, results in C(i; s) being the score of the best match between a su�x of A[1::i] and a word

in LF (s). So in this instance, C(i; �) is the score of the best match ending at i to a word recognized

by R.

The second observation of Miller and Myers is that the graph of F is a reducible graph, so

computing the desired �xed-point for a given i can be achieved by evaluating the relevant terms in

two passes over the s parameter in topological order of the acyclic graph obtained by removing the

back-edges from F (see Fig. 2). This gives the following algorithm outline:

C(0; �) 0
for s 6= � in topological order of F (less backedges) do

C(0; s) R.H.S. of (1) (exclude back-edge terms)

for i 1; 2; : : : n do

f C(i; �) 0

for s 6= � in topological order of F (less backedges) do

C(i; s) R.H.S. of (1) (exclude back-edge terms)
for s 6= � in topological order of F do

C(i; s) maxfC(i; s);R.H.S. of (1) (include back-edge terms)g

g

Turning now to the longest exact match problem, consider the scoring function �long de�ned

as follows: �long(a; b) = 1 if a = b 6= �, �long(a; b) = 0 if a = b = �, and �long(a; b) = �1

otherwise. E�ectively, every pair of aligned equal symbols scores 1, every insertion of an �-state of

F has score 0, and every other mis-alignment is not allowed. It then follows that C(i; s) 6= �1

i� there is an exact match between a su�x of A[1::i] and a word in LF (s), and furthermore, that

C(i; s) = len 6= �1 i� the longest su�x of A[1::i] matching a word in LF (s) is of length len. Thus

C(i; �), under the cost function �long is the length of the longest match to R ending at i, or �1 if

there is no such match.

In practice, one may model the �1 of �long with the value �(N + 1) provided that integers of

value [�P (N + 1); N] can be modeled on the given machine. In that case C(i; s) � 0 is equivalent

to the condition that C(i; s) 6= �1 above. Furthermore, the special form of �long allows one

to specialize (1) for a non-asymptotic but practical gain in e�ciency. First one must carefully

construct F so that it is guaranteed to contain no cycles all of whose states are labeled with �.

Such an O(P) time and space construction is novel and given in Figure 2 of Appendix A. Let F 0

be the subautomata consisting of the vertices of F and just those transitions directed into states

labeled with �. Because F contains no �-cycles, it follows that F 0 is acyclic (including back edges).

One then arrives at the following simple, one-pass algorithm:

Compute C(0; s) for all s as before

for i 1; 2; : : : n do

f C(i; �) 0
for s 6= � in topological order of F 0

do

if �s = � then

C(i; s) max
t!s
fC(i; t)g

else if �s = ai then

C(i; s) max
t!s
fC(i� 1; t) + 1g

else

C(i; s) �(N + 1)

g

3

The last consideration is how to actually report the longest matching substring. Running the

algorithm above, one �nds a left end of a longest possible match at a value of i, call it r, which

maximizes maxiC(i; �). By then running the same algorithm on the reverse of R and A[1::r] with

the boundary condition that only C(0; �) = 0, one �nds the left end of the longest match whose

right end is r. The overall time is O(PN) and only O(P) space is required.

2.2 Finding All Matching Positions

Next consider �nding all the places where the pattern R matches the text, i.e., determine for all

i, if symbol ai is in a match to R or not. Solving this problem requires extending the well-known

O(PN) state-set simulation algorithm for matching regular expressions [Tho68, Sed83]. Recall that

the algorithm computes in increasing sequence of text position i, what we call here the forward

state-set Sf (i) = fs : a su�x of A[1::i] is in LF (s)g. That is, Sf (i) is the set of all states that F

could be in after scanning the �rst i symbols of A. Connecting this with our algorithm for longest

matches above, it is easy to see that Sf (i) = fs : C(i; s) 6=1g. While this demonstrates that Sf (i)

can be computed from Sf (i � 1) in O(P) worst-case time, the traditional reaching algorithm of

[Tho68] does so in O(jSf(i� 1)j+ jSf(i)j) time as one is free to discover the states in Sf (i) in any

order. This is superior in practice as it is frequently the case that the average size of the state sets

is O(1).

Let s
w
! t be a predicate denoting that there is a path in F between states s and t whose

state-label sequence spells w. With this notation, we may give the following, automata-centric

de�nition: Sf(i) = fs : 9j � i + 1; �
A[j::i]
�! sg. To solve our problem we will also need to be able

compute what we call the reverse state-set at position i, Sr(i) = fs : 9j � i� 1; s
A[i::j]
�! �g. These

reverse state sets are easily computed by symmetry to the forward case: run the same algorithm,

but on the reverse of both F and A. The following lemma follows directly from the de�nitions of

Sf and Sr:

Lemma 1: For all i, ai is in a match to R i� there exists s 2 Sf(i)\ Sr(i) such that �s 6= �.

The one potentially interesting computational issue is how to deliver both Sf (i) and Sr(i) for

all choices of i. If one computes and saves the state sets for all values of i then the resulting

algorithm takes O(PN) time and space in the worst case. Using less space is di�cult because Sf (i)

is easily computable from Sf (i � 1) but not from Sf (i + 1). Similarly Sr(i) is easily computable

from Sr(i+ 1) but not from Sr(i� 1). Thus the \grain" of the computations for Sf and Sr oppose

each other. If space is a problem in a particular context, then one can employ the \going-against

the grain" algorithm of Myers and Jain [MJ96], to compute Sr(1); Sr(2); Sr(3); : : :Sr(N) in the

given order using O(tPN) time and O(PN1=t) space for any choice of t � 1. Choosing t = logN

gives an O(PN logN) time and O(P logN) space worst-case guarantee.

2.3 Finding All Match Parses

In numerous contexts one desires not only a substring of the text that matches the pattern, but also

the precise way that subexpressions of R are matched. For example, it is common to �nd a notation

in line-based editing commands for tagging subexpressions of a pattern so that whatever matched

the tagged part may be used in forming a string to replace the overall match. Consider then

4

matching a regular expression R in which any number of subexpressions may be enclosed in curly

braces. Each subexpression so enclosed is said to be tagged and when we match R we desire not

only the match to R but also to each tagged subexpression. For example, consider fa*fb*gg(a+b)*

and its match to all of aabbabab. The match to the subexpression a*b* could be either aabb or

�. If the former, then the match to the tagged subexpression b* must be bb, otherwise it must be

�. That is, the substrings returned for the tagged subexpressions must be consistent with a given

parse. The two possible tag-matches for the example are the ordered pairs (aabb; bb), and (�; �).

Another subtlety is that in some cases a match to one or more of the subexpressions may not occur

in the match to the entire pattern. For example, (afbagb|bb)* matches bb without matching the

designated sub-expression. Basically this can happen whenever a tagged subexpression is part of

an alternation (`|') construct, a Kleene closure (`*') construct, or an option (`?') construct. We

will call expressions where tags do not occur within such constructs, unambiguous, and make the

distinction because such cases can be handled with greater e�ciency. Finally, note that by using

curly braces to denote tags we are assuming that tagged subexpressions either nest or are disjoint.

Assume that the substring B of the text that R is to match has been selected, so that we can

hereafter consider matches of R to the entirety of B. Rather than develop a particular method for

selecting a parse to R, let's consider the problem of determining the graph M<B;R> of all possible

paths through R that match all of B. Let S(i) = Sf (i)\Sr(i)\S� and let E(i) = Sf(i)\Sr(i+1)\S�
where S� = fs : �s 2 �g and S� = fs : �s = �g. Let the vertices in M<B;R> be the set of ordered

pairs f(0; s) : s 2 E(0)g [f(i; s) : i 2 [0; N] and s 2 E(i)[S(i)g. There is an edge (i; s)! (j; t) in

the graph if and only if s! t is a transition in F and either (1) j = i+ 1, or (2) j = i and t 2 S�.

It follows easily that there are at most O(PN) vertices and edges in the graph and that it can be

computed in time linear in its size. Note that M<B;R> is acyclic and every path from vertex (0; �)

to vertex (N; �) models a match between B and R. Also, given the graph and a selected path from

(0; �) to (N; �), it is a simple matter to deliver the tagged submatches.

Now we develop criteria for selecting a path through the graph M<B;R>. Suppose that the k

subexpressions �1; �2; � � ��k have been tagged. For a consistent match to these subexpressions, say

(a1; a2; � � �ak), let �jaij be the extent of the match and let the k-tuple of integers, (ja1j; ja2j; � � � ; jakj),

be its footprint. Two possible selection criteria for a path through the graph are (1) to �nd the

one whose submatches give the largest extent, or (2) to �nd the one that has the lexicographically

largest footprint. Below we will solve for both of these problems by giving an algorithm that, more

generally, works with respect to any ranking � of �ngerprints satisfying the following monotonicity

property: for all �ngerprints F;G;H , F � G implies F � H � G � H where � is component-by-

component (vector) addition.

In the case where k properly nested but otherwise arbitrary subexpressions are tagged, one

must keep track of the highest-ranking �ngerprint to each vertex v of M<B;R> that involves a

particular subset of tagged subexpressions, C, whose right-ends have been seen, and a particular

subset of tagged subexpressions, I , disjoint from C, whose left-ends have been seen, but not yet

their right ends. We say the tagged subexpressions in C are complete, and those in I are in-progress.

Formally, we keep track of BestC;I (v) for every choice of C and I and every vertex v, computing

these quantities in a topological order of M<B;R>. In the algorithm outline of Figure 1 below we

do not worry about whether a particular (C; I) is legitimate for a given vertex v, but simply use

�1 to �ll illegitimate components of a �ngerprint. That is, if x 2 C but there does not exist a

path to v whose projection onto F passes through x's subautomaton, then the x component of the

candidate will be �1. Similarly, if x 2 I but there does not exist a path to v whose projection

5

for v � (i; s) a vertex in M<B;R> in topological order do

f for I 2 2[1;k] and C 2 2[1;k]�I do

f Best(C;I)(v) < �1;�1; : : : ;�1 >

for w! v in M<B;R> do

if Best(C;I)(w) � Best(C;I)(v) then
(Best(C;I)(v); Trace(C;I)(v)) (Best(C;I)(w);w)

g

for x a tagged subexpr. starting at s do

for I 2 2[1;k]�x and C 2 2[1;k]�I do

f f Best(C;I)(v)
f [x] 0

(Best(C�x;I+x)(v); Trace(C�x;I+x)(v)) (f; Trace(C;I)(v))

g

if �s 6= � then

for I 2 2[1;k], C 2 2[1;k]�I , and x 2 I do

Best(C;I)(v)[x] Best(C;I)(v)[x] + 1

for x a tagged subexpr. ending at s do

for I 2 x+ 2[1;k] and C 2 2[1;k]�I do

f if Best(C;I)(v) � Best(C+x;I�x)(v) then
(Best(C+x;I�x)(v); Trace(C+x;I�x)(v)) (Best(C;I)(v); Trace(C;I)(v))

Best(C;I)(v)[x] �1

g

g

Figure 1: Optimal R.E. Parsing Algorithm.

onto F enters x's subautomaton but does not leave it, then the x component of the candidate will

be �1. For each Best value the algorithm retains a trace value Trace recording which predecessor

vertex gave rise to the best value, so that one can trace back a desired path at the end of the

computation. If the time to compare �ngerprints under � is O(c) then the algorithm of Figure 1

takes O(c4kPN) time and space in the worst case as all 2-partitions, (C; I) of all subsets of [1; k]

are considered. Note that c is O(k) if we seek the lexicographically largest footprint, and c is O(1)

if we seek the footprint with the largest extent.

The algorithm above can be signi�cantly improved by observing that for a given regular expres-

sion and a given choice of k tagged subexpressions within it, the set of (C; I) pairs that are actually

legitimate at some vertex in MB;R is usually much less than 4k. For example, for the expression

x(xf1gxf2gx|xf3gx)*xf4gx, of the 81 2-partitions of subsets of f1; 2; 3; 4g, only the following 22

pairs are legitimate at some vertex: (;; ;), (;; f1g), (f1g; ;), (f1g; f2g), (f1; 2g; ;), (;; f3g), (f3g; ;),

(f2g; f1g), (f3g; f1g), (f1; 3g; ;), (f1; 3g; f2g), (f1; 2; 3g; ;), (f1; 2g; f3g), (f2; 3g; f1g), (;; f4g),

(f1; 2g; f4g), (f3g; f4g), (f1; 2; 3g; f4g), (f4g; ;), (f1; 2; 4g; ;), (f3; 4g; ;), and (f1; 2; 3; 4g; ;). More-

over the number of legitimate pairs at each vertex of the graph is even smaller, and is maximal

at vertices whose state is �nal for the automaton F . In our current example, a maximum of 4

pairs need to be computed at each vertex as the legal pairs at the �nal vertex of the automaton is

(f4g; ;), (f1; 2; 4g; ;), (f3; 4g; ;), and (f1; 2; 3; 4g; ;).

Lemma 2 gives recurrences bounding the number of subset pairs required for a particular regular

expression and tags. Let TR denote the number of legitimate (C; I) pairs required for expression

R, excluding the initial pair (;; ;). Simultaneously, we will need to compute recurrences for MR,

the number of legitimate (C; ;) pairs found at the �nal state of R (including the pair (;; ;)), and CR,

6

which is 1 or 0 depending on whether there is or is not, respectively, a path through R's automaton

not involving a tagged subexpression.

Lemma 2: Ca = (if a is tagged then 0 else 1)

Ma = 1
Ta = (if a is tagged then 2 else 0)

CRS = (if RS is tagged then 0 else min(CR; CS))

MRS = MRMS

TRS = TR +MRTS + (if RS is tagged then (1 +MRS))

CRjS = (if RjS is tagged then 0 else max(CR; CS))

MRjS = MR +MS �min(CR; CS)
TRjS = TR + TS + (if RjS is tagged then (1 +MRjS))

CR� = (if R� is tagged then 0 else 1)

MR� = 2MR�CR

TR� � 2MR�CR (3
4TR � (MR �CR) + 1)� 1 + (if R� is tagged then (1 +MR�))

CR+ = (if R+ is tagged then 0 else CR)

MR+ = 2MR�CR � (1� CR)

TR+ � 2MR�CR (34TR � (MR �CR) + 1)� 1 + (if R+ is tagged then (1 +MR+))

CR? = (if R? is tagged then 0 else 1)

MR? = MR + (1� CR)

TR? = TR + (if R? is tagged then (1 +MR?))

While the lemma gives recurrences for bounding the size of legitimate sets, it is a simple step to

extend them to recurrences for enumerating the legitimate sets at each vertex with a given state of

F , in a prepass over F . The prepass takes O(TR) time and it can be shown that the maximum at

any state is given by MR. It is thus possible to modify the coarse algorithm above to only compute

the legitimate pairs at each vertex, giving an O(cMRPN+TR) time and space algorithm. A simple

corollary is that if the tags are unambiguous, then there are at most O(1) legitimate pairs at each

vertex and TR is O(k). So the re�ned algorithm takes only O(cPN) time in this case.

3 Reporting Approximate Matches

3.1 Finding the Most Signi�cant Approximate Match

We now consider some problems in approximate regular expression pattern matching. A k-match

to a regular expression R is a string whose minimal distance from a string exactly matching R is k,

where distance is the standard unit-cost di�erence metric. The most signi�cant issue in this context

is what constitutes a match. For example, consider the expression babb*bab and suppose we are

searching for all matches with 2-or-less di�erences to it, i.e., a 2-match. When run against the text

: : :abajbabbbabjaaa : : : there is a 0-match to R shown between bars, but there are also 12 induced

2-matches in the vicinity that can be obtained with insertions and deletions at either end of the

0-match, i.e., bababbbab, ababbba, ababbbab, ababbbaba, babbb, babbba, babbbaba, babbbabaa,

abbba, abbbab, abbbaba, and bbbab. Indeed, wherever there is a 0-match to the pattern there will

always be another 12 2-matches induced by it. In addition, just by fortuitous circumstance, there

can be additional overlapping matches, e.g., abababbbab in the example. Here we propose two

schemes, �rst one for �ltering out the induced matches, and then one for �ltering the fortuitous

matches.

7

It will be convenient in the ensuing treatment to think about alignments in terms of paths

through an edit graph between A and the pattern R. Basically the edit graph G<A;R> is just the

dependency graph of the recurrence (1) with each edge weighted according to the �-part of its

recurrence term. Speci�cally, there is a vertex for each term (i; s), an insertion edge from (i; t) to

(i; s) weighted �(�; �s) for every edge t ! s in F , a deletion edge from (i � 1; s) to (i; s) weighted

�(ai; �), and a substitution edge from (i� 1; t) to (i; s) weighted �(ai; �s) for every edge t! s in F .

By construction every path from (i; s) to (j; t) models an alignment between ai+1ai+2 : : : aj and a

string spelled on the projection path from s to t in F excluding the �rst symbol on s. Moreover,

the weight of the path is the score of the alignment it models. Thus in general the value C(i; s) is

the score of the least cost path to (i; s) from a �-vertex of G<A;R> (i.e. a vertex (j; �) for some j).

3.1.1 Filtering Non-Essential Matches

In our �rst approach, we consider an alignment essential if (1) it begins and ends with aligned

symbols (they need not be equal), and (2) the alignment has the lowest possible score of all align-

ments between the two strings involved. Note immediately, that none of the induced matches in

the example above constitute essential matches. Also note that condition (2) is important: for ex-

ample, there is a 2-alignment between babb*bab and ababbbab that begins and ends with aligned

symbols, but there is also a 1-alignment that begins with an insertion. It is not di�cult to prove

that wherever there is a non-essential match, there is also at least one essential match. Thus every

matching region will be reported when one restricts attention to just the essential matches. One

must be careful to add a sentinel character at each end of the string A being searched in order that

matches involving its ends be found.

Let a state, s, of F be termed �-reachable if there is a path from � to s all of whose states

are labeled " including s. Further let � be the set of �-reachable states. With this de�nition we

may then develop the recurrences below for B(i; s) and E(i; s) which are the best score of a path

in G<A;R> from a �-vertex to (i; s) that (1) begins with aligned symbols, or (2) begins and ends

with aligned symbols, respectively. Essentially the recurrences are exactly that for C(i; s) save that

certain edges in G<A;R> are not permitted.

Lemma 3:

B(i; s) = min

8>>>><
>>>>:

min
t!s
fB(i� 1; t) + �(ai; �s)g;

min
t!s
fB(i; t) + �(�; �s)g;

B(i� 1; s) + �(ai; �);

�(ai; �s) if t! s 2 �� ��

1

9>>>>=
>>>>;

E(i; s) = min

8><
>:

min
t!s:�s 6="

fB(i� 1; t) + �(ai; �s)g;

min
t!s:�s="

E(i; s)

1

9>=
>;

It follows that E(i; �) is the score of a best alignment beginning and ending with aligned symbols

between a su�x of A[1::i] and a word in R. We can thus report as the left end of an essential

k-match only those i for which E(i; �)� k and E(i; �) = C(i; �) is true.

3.1.2 Filtering Fortuitous Matches

While our �rst attempt at de�ning \true" matches removes the potential O(k2) induced matches,

it does not distinguish or eliminate fortuitous matches which occur because by chance there is

another way to complete the beginning or tail portion of a \match", e.g. bababbbab in our running

8

example. For a given �nite alphabet �, one can computationally approximate the limit:

r� = lim
n!1

E[di�(A; P)=jP j : A, P chosen uniformly from �n]

where di�(A; P) is the score of the best alignment between A and P . Intuitively this is the number

of di�erences per unit alignment length one expects to see in a \random" match. Any match with

a lower di�erence ratio can be considered to be signi�cant. Utilizing this, in our search for a good

de�nition of an interesting match, let a signi�cant alignment between two sequences be one for

which the di�erence ratio of every pre�x and su�x of the match is less than r�. Intuitively, every

\extension" of the match is signi�cant. In the early 1980's Sellers [Sel84] explored algorithms for

�nding such matches in the context of molecular biology. This work appears to have been forgotten

in the wake of the current popularity of the Smith-Waterman algorithm [SW81].

Sellers' basic idea is as follows. Suppose scoring is with respect to a general additive scoring

scheme �, and suppose one wants to detect only matches for which �(A; P)=jP j � r. Sellers observed

that this is equivalent to �nding matches for which �r(A; P) � 0 where �r is a maximization scoring

scheme derived from � as follows: �r(a; b) = ��(a; b) if b = �, and �r(a; b) = r��(a; b) if b 6= �. That

this holds follows easily from the fact that �r has been constructed so that �r(A; P) = rjP j��(A; P).

It now follows that what we seek are paths in the edit graph of A versus R that begin at a

�-vertex, end at a �-vertex, and are both pre�x and su�x positive under the weighting supplied by

�r. A pre�x positive path is one for which the score on every pre�x of the path is positive. A su�x

positive path is similarly de�ned. A basic exercise gives the following recurrence for PreP(i; s)

which is true if and only if there is a pre�x positive path to (i; s).

Lemma 4: PreP(i; s) =

8><
>:

or

(
ort!sfPreP(i� 1; t) and (C(i� 1; t) + �r(ai; �s) > 0)g;
ort!sfPreP(i; t) and (C(i; t) + �r(�;�s) > 0)g;

Pre(i� 1; s) and (C(i� 1; s) + �r(ai; �) > 0)

)
if s 6= �

true if s = �

Given the vertices on pre�x positive paths, one can quickly infer the edges on such paths (i.e.,

v ! w is on a pre�x positive path if PreP(v) is true and C(v)+�r(v ! w) > 0). The su�x positive

vertices and edges can similarly be found by developing recurrences for SufP(i; s) over the reverse

of R and A. By taking the set of vertices and edges that are on both pre�x and su�x positive

paths, one arrives at the subgraph S<A;R> of G<R;A> modeling all paths that are pre�x and su�x

positive, or equivalently all the signi�cant matches, according to our de�nition of signi�cant. One

can compute S<A;R> in O(PN) time and space.

Now one may wish to report matches that are both essential and signi�cant. While it is the

case that a signi�cant essential match occurs where ever a signi�cant non-essential match is found,

it is not true that an essential match is necessarily signi�cant, or for that matter, that a k-match

is signi�cant. Consider then �rst computing the subgraph, E<R;A> of all vertices and edges on

essential matches. Intersecting this subgraph with S<R;A> leads to a subgraph whose connected

components may not include a �- or �-vertex, corresponding intuitively to a region where there is

an essential match that is not signi�cant. For such components, we suggest that one might either

�nd the least cost extensions that reach a �- and �-vertex, or that one recompute S with increasing

values of r until the intersection does admit an end-to-end path. This second approach yields an

interesting subproblem in parametric dynamic programming that we leave open.

The computation of E \ S can be e�ciently organized as we noted earlier in Section 2.2, where

the grain or direction of two recurrences oppose each other, as do the recurrences for PreP and SufP

9

here. With the method of [MJ96] we can compute SufPR(0), SufPR(1), : : : SufPR(N) in the order

given using O(tPN) time and O(PN1=t) space for any choice of t � 1, where SufPR(i) is the set of

values fSufP(i; s) : s 2 Fg. Given this we may then simultaneously compute the intersection of C,

B, E, and PreP with SufP in a single forward scan, in time and space dominated by the terms

for delivering SufP against its grain. In particular, this gives us an O(PN logN) time, O(P logN)

space algorithm for delivering the signi�cant portion of an essential match of R to substrings of A.

3.2 Reporting Longest Matches and All Matches

We conclude, by sketching solutions for the longest-match and all-matches problems for the case

of approximate matching. To compute the longest essential match, we need only augment the

computation of E<R;A> with a trace-back record of a minimum inducing predecessor that has the

longest match achieving that minimum. Note that what we are doing is simply delivering the

longest match achieving the minimum. If rather we want the longest match that is within the

threshold k then this requires that we keep track of the longest solution with each of the scores in

[0; k]. The additional complexity for doing so is O(kPN) time and O(kP) space. One can then

further combine this with our result for �nding the signi�cant part of essential matches, resulting in

an O(PN(k+ logN)) time and O(P (k+ logN)) space algorithm for �nding the longest signi�cant

part.

Computing all match positions is straightforward. Simply compute C(i; s) in the forward di-

rection over A and also compute Cr(i; s) in the reverse direction of A and R. Report all positions i

for which there exists a state t for which C(i; t)+Cr(i; t) � k. Again this requires the simultaneous

delivery of recurrences opposing each other, and can be solved with the by now, well understood,

complexities.

References

[CC97] C.A. Clarke and G.V. Cormack. On the use of regular expressons for searching text. ACM Trans.

on Prog. Languages and Systems, 19(3):413{426, 1997.

[IEE92] IEEE. Portable Operating System Interface (POSIX). IEEE Std 1003.2, Inst. of EE Engineers,

New York, 1992.

[MJ96] E. Myers and M. Jain. Going against the grain. In Carleton University Press, editor, Proc. 3rd

South American Workshop on String Processing, International Informatics Series #4, pages 203{

213, 1996.

[MM88] E. Myers and W. Miller. Approximate matching of regular expressions. Bulletin of Mathematical

Biology, 51(1):5{37, 1988.

[Ous94] J.K. Ousterhout. Tcl and the TK Toolkit. Addison-Wesley, Reading, Mass., 1994.

[Sed83] R. Sedgewick. Algorithms. Addison-Wesley, Reading, Mass., 1983.

[Sel84] P.H. Sellers. Pattern recognition in genetic sequences by mismatch density. Bulletin of Mathematical

Biology, 46:501{514, 1984.

[SW81] T.F. Smith and M.S. Waterman. Identi�cation of common molecular sequence. J. of Molecular

Biology, 147:195{197, 1981.

[Tho68] K. Thompson. Regular expression search algorithm. Comm. of ACM, 11(6):419{422, 1968.

[WS91] L. Wall and R.L. Schwartz. Programming Perl. O'Reilly and Associates, Sebastopol, Calif., 1991.

10

Appendix A: "-Cycle Free Automata.

We quickly show here the inductive construction of an "-NFA for a regular expression that has O(P)

states and vertices and does not contain an "-cycle. To this end, we need the predicate Nil(r) that is true

if and only if " is a word in the language speci�ed by regular expression r. The following recurrence for Nil

follows easily by induction:

Nil(a) � (a 62 �)

Nil(r�) � true

Nil(r+) � Nil(r)

Nil(r?) � true

Nil(rs) � Nil(r) and Nil(s)

Nil(rjs) � Nil(r) or Nil(s)

Given the Nil predicate for each subexpression of a regular expression r, we construct the "-cycle free

automata F for it as shown in Figure 2. The dashed edges labeled \if Nil(?)" are to be placed in the

construction only if the predicate is true. The induction of the construction is that the machine built for

expression r is one that accepts all words in r except for ", if it happens to be matched by r. In the very last

step of constructing F , we add a path accepting � if r accepts �.

R- +R?:

:R*
R- +

R+ +-
S- +

R

ε

ε ε

start of
R|S

start of R final of R

final of
R|S

R|S:

R- +
θ φ

if Nil(R)

ε εF:

backedge

ε ε

R- +

a

S- +

a:

RS:

if Nil(S)

if Nil(R)

ε

Figure 2: Inductive RE to "-cycle free NFA Construction.

11

