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Abstract. This article gives a survey on different methods of formal synthesis.
We define what we mean by the term formal synthesis and delimit it from the
other formal methods that can also be used to guarantee the correctness of an
implementation. A possible classification scheme for formal synthesis methods
is then introduced, based on which some significant research activities are
classified and summarized. We also briefly introduce our own approach towards
the formal synthesis of hardware. Finally, we compare these approaches from
different points of view.

1   Introduction

In everyday use, synthesis means putting together of parts or elements so as to make up a
complex whole. However in the circuit design domain, synthesis stands for a stepwise
refinement of circuit descriptions from higher levels of abstraction (specifications) to
lower ones (implementations), including optimizations within one abstraction level.

Synthesis can be performed by hand for small circuits. Nowadays more and more au-
tomated synthesis tools are in use to harness the complexity of the circuits[McPC90].
Both hand-made and automatically computed hardware implementations may be incor-
rect with respect to the given input specification. By correctness we mean that the imple-
mentation satisfies the specification, in a formal mathematical sense. However, it is
possible that the specification itself may be incomplete or erroneous. These anomalies in
the specification will have to dealt with separately, either via simulation or by checking
certain properties such as safety and liveness. In the rest of the paper, it is assumed that
the specification is the reference with which the implementation is checked and the cor-
rectness aspects dealt with assume correct specifications.

Examining the correctness of the implementation with respect to a given correct spec-
ification, the errors in the hand-made circuits are created by the designer, whereas the er-
rors in synthesized implementations depend on the correctness of the synthesis tools
involved. The use of automated synthesis tools significantly increases the reliability as
compared to hand designs. During such synthesis, the designer interacts with the system
only in a controlled manner. The implementations cannot be created manually and hence
the amount of errors are reduced. Furthermore, such systems offer the capability of de-
sign space exploration which has a great impact on the quality of designs, especially in
the context of designing complex systems.

The ‘‘correctness by construction” paradigm that has been propagated in the synthesis



domain is nevertheless questionable. Synthesis programs have become more and more
complex especially at higher levels of abstraction (algorithmic level, system level). So-
phisticated algorithms and data structures are used and they usually programmed as hun-
dreds of thousands of lines of code, in imperative programming languages like C. Due to
their complexity, such programs can only be partially tested. Added to that, these pro-
grams are implemented by a team of programmers. This scenario enforces careful
thought about the complex interfaces between the modules which manipulate the com-
plex data structures representing the hardware. Yet another source of bugs in synthesis
programs are wrong interpretations of HDLs (hardware description languages) that are
used for specifications. To embed HDLs, one has to implement procedures for convert-
ing hardware descriptions given in the HDL into the internal representation and vice ver-
sa. To guarantee the overall correctness of a synthesis tool, one also has to consider the
correctness of these transformations with respect to the semantics of the HDLs and the
semantics of the internal hardware representation. All these reasons motivate us to
closely examine the approaches for the correct synthesis of hardware.

We will first give a definition of formal synthesis and delimit it from related ap-
proaches towards correct synthesis. In section 3, we will classify formal synthesis ap-
proaches. Section 4 briefly summarizes some formal synthesis approaches. We then
look at some criteria for comparing approaches for formal synthesis and conclude.

2   Definition and Delimitation of Formal Synthesis

On examining the synthesis process we observe that we can ascertain its correctness be-
fore, during or after the synthesis process. Hence we classify the approaches towards
formal correctness of synthesis into pre-synthesis verification, formal synthesis and
post-synthesis verification (figure 1). All approaches have the same overall aim: proving
the correctness of the synthesis output (implementation) with respect to the synthesis in-
put (specification). They all use some kind of logic for deriving proofs within some cal-
culus. However, the time when the logical argumentation takes place differs — in pre-
synthesis verification, the proof is derived even before synthesis happens, in formal syn-
thesis the proof is formally derived during synthesis, and in post-synthesis, the proof is
derived after each synthesis run.

Pre-synthesis verification means proving the correctness of the synthesis procedure,
i.e. it has to be proven, that the synthesis program always produces correct synthesis re-
sults with respect to the synthesis input. This is to be done by means of software verifica-
tion. In pre-synthesis verification the correctness is proven once and for all, whereas in
post-synthesis verification, the correctness proof has to be derived for each synthesis run
separately. However, software verification is extremely tedious especially for large

Figure 1. Approaches towards correct synthesis results

pre-synthesis
verification

formal synthesis

correct synthesis

post-synthesis
verification



sized programs such as synthesis tools. Therefore, there is only little work done in this
area with respect to hardware.

Formal synthesis means formally deriving the synthesis result within some logical
calculus. In conventional synthesis hardware is represented by arbitrary data structures
and there are no restrictions as to the transformations on these data structures. In formal
synthesis, hardware is represented by means of terms and formulae, and only correctness
preserving logical transformations are allowed. Restricting synthesis to only correctness
preserving logical transformations guarantees the correctness of the synthesis procedure
in an implicit manner. In contrast to conventional synthesis, the result is not only some
hardware implementation but also a proof of its correctness, with respect to the specifi-
cation.

Post-synthesis verification is the most frequently used approach today. In post-syn-
thesis verification the synthesis step is first performed in a conventional manner and
then the correctness of the synthesis output with respect to the synthesis input is proved.
It is independent of the synthesis procedure.The only information available is the syn-
thesis input and the synthesis output. There is no information on how the output was de-
rived from the input. However, general hardware verification techniques are pretty time
consuming or even undecidable. This makes verification for large sized circuits tedious
or even impossible. [Gupt92] gives an excellent survey of the major trends in post-syn-
thesis verification and we do not discuss them within this paper.

When comparing the above-mentioned approaches towards correct synthesis, one can
distinguish between the tool developer’s and the circuit designer’s points of view.

2.1  Circuit Designer’s Viewpoint

For the circuit designer, the characteristics that are relevant are — time taken for synthe-
sis, automation and the requirement of skills in formal methods.
• The synthesis time has an additional dependency on the size of the circuit under

design and the number of synthesis steps that are performed.
- With respect to the size of the design, the synthesis time is lowest for pre-

synthesis verification. Since formal synthesis is restricted to transformations
within some calculus, this results in slower synthesis tools. The post-synthesis
technique on the other hand suffers from the problem of NP-completeness or
undecidability, depending upon the levels of abstraction.

- The synthesis time with respect to the number of synthesis steps is smaller for the
pre-synthesis techniques as compared to the formal synthesis approaches, due to
the reasons mentioned above. Post-synthesis approaches however, do not depend
on the synthesis process and therefore the number of synthesis steps does not
have any impact.

• In examining the characteristic of automation — it is possible to achieve it at all
levels of abstraction in the pre-synthesis approach, since it is possible to write such
programs. As far as formal synthesis is concerned, it depends upon the system as
seen in section 4. Automation can be achieved only at lower levels of abstraction in
the post-synthesis approach via model-checkers and tautology checkers. At higher
levels of abstraction, general automation cannot be achieved due to the complexity
of the task.

• From the point of view of the circuit designer, the skills required in formal methods



is an important factor in its acceptance as a tool. Pre-synthesis verification is the
most convenient since the entire logical argumentation is of no concern to the
designer. An argumentation similar to the automation holds for the other two
approaches.

2.2  Tool Developer’s Viewpoint

The criteria to be examined from the tool developer’s viewpoint are different — the
complexity of tool development, the maintenance of the tool when changes are made,
and the skills in formal methods required for tool development.
• The complexity of the development of pre-synthesis verification is stupendous and

hence it is practically impossible to develop such a tool for realistic synthesis
programs, since software verification can be performed only for very small programs
(≈ 1000 lines of C code). As far as formal synthesis is concerned, the complexity will
increase with the size of the synthesis tool. Although post-synthesis verification
tools do not depend upon the size of the synthesis tool, they can only be developed
without problems at lower levels of abstraction. The development of post-synthesis
verification tools at higher levels of abstraction is beyond decidability.

• As regards the maintenance of the tool with respect to small changes are concerned,
pre-synthesis verification entails a complete reverification in general. The changes
in the formal synthesis tools will be minimal and post-synthesis verification needs
none, since changes in the synthesis process does not affect it.

• The logical skills required in developing such tools are software verification skills
for pre-synthesis approach, and hardware verification skills for formal synthesis and
post-synthesis approaches.

2.3  Summary

Summarizing the discussion above, pre-synthesis verification is the most acceptable one
for circuit designers and least acceptable for tool developers. The situation is the oppo-
site for post-synthesis verification tools. Formal synthesis is a good compromise be-
tween these two extremes (Fig. 2).

3   Classification of Formal Synthesis

Formal synthesis can be generally classified into two methods — synthesis step specific
verification techniques and transformational derivation (Fig. 3). The former is really a
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specialized verification technique that has been tuned towards a specific synthesis step.
The latter corresponds to a forward derivation of the implementation from a specifica-
tion within some calculus.

Elaborating further, transformational derivation means that the specification will be
transformed into an implementation according to a given core of elementary transforma-
tion rules. This can be further divided into two — transform the specification based on a
hardware-specific calculus or on a general purpose calculus. In a transformational deri-
vation based on hardware-specific calculus, the core transformations are circuit trans-
formations whereas in a general purpose calculus they are logical transformations.

3.1  Hardware-specific Calculus vs. General-purpose Calculus

In comparing these two approaches for transformational derivation, there are two main
criteria — efficiency and security. The efficiency of synthesis is directly determined by
the efficiency of circuit transformations, whereas its security is determined by the
number and sizes of the core transformations.

The size of the core transformations in the hardware-specific calculus approach is
large since the core transformations are the circuit transformations themselves. In con-
trast, the general purpose calculus approach has a small core of logical transformations.
Hence the implementational efforts are high for hardware-specific calculus and low for a
general purpose calculus. Additionally, the core transformations are strongly dependent
on the application domain and/or the levels of abstraction handled when using a hard-
ware-specific calculus, whereas the core is static for a general purpose calculus. For ex-
ample, the core transformations for a high-level hardware-specific calculus is
completely different from those required for logic synthesis.

Before proceeding further we shall shortly ruminate on the statements in the previous
paragraph. It should be noted, that formal derivations within some calculus can only be
sound if the transformations in the calculus — a piece of software — are “correct”. Ver-
ifying the correctness of the calculus itself means the comparison of the derivation with-
in the calculus with the semantics of its logic. This argumentation itself is to be
performed within some “meta logic”. This exercise is one way to increase the reliability
of the calculus. An objective correctness criteria cannot be achieved due to the fact, that
the meta logical argumentation itself may be error prone. Therefore, the correctness
of the calculus is considered to be more of a theoretical activity which has no practical
impact on its usage. Nevertheless, there is at least one major requirement — the cal-

Figure 3. Formal synthesis and related approaches

formal synthesis

transformational
derivation

general purpose
calculus

hardware-specific
calculus

synthesis step specific
verification



culus should be consistent. It should, for example, be guaranteed, that it is not possible to
derive a proof for the equivalence of two circuits as well as the proof for their nonequiv-
alence.

For small sized calculi, such errors may easily be figured out, but for calculi with a big
set of complex transformations guaranteeing safety becomes a tedious goal. Due to the
smaller core, general purpose calculi can be considered to be more reliable. Further-
more, logical (multi-purpose) calculi are based on some well understood mathematical
theories, which also increases their reliability as compared to hardware specific calculi.
Usually, multi-purpose calculi are also better tested since they have been applied to dif-
ferent domains.

The major drawback of general purpose calculi is their efficiency. For every hardware
transformation step, a series of basic mathematical transformations has to be performed.
Figuring out the right series of basic mathematical transformations for implementing
some specific synthesis step may be demanding. Hardware specific calculi are much
better adapted to the synthesis domain. Hardware transformations are directly imple-
mented, which also results in better runtimes.

3.2  Transformational Derivation vs. Synthesis-Step Specific Verification

Besides transformational derivation, one can also perform synthesis step specific verifi-
cation to guarantee correct synthesis. The difference to post-synthesis verification (see
section 2) is that the knowledge about which synthesis step has been performed, is ex-
ploited during verification. However, in contrast to formal synthesis, the knowledge
about how the synthesis was performed is unknown. Such verification techniques are
optimized with respect to a specific synthesis step thus avoiding some disadvantages of
post-synthesis verification. Generally, synthesis step specific verification is independ-
ent of the heuristic that is applied during a synthesis step. According to its nature, i.e. (a
verification technique) only specification and implementation are considered together
with the knowledge about the performed synthesis step. A very important point is that
synthesis step specific verification is not applicable to all synthesis steps, which can be
easily seen for e.g. state encoding step, where the knowledge that the states were encod-
ed cannot prevent one from having to guess the code. Due to this fact, very few research
activities have been started in this verification area ([EiJe96], [HuCC96]).

4   Examples

Based on the classification described in section 3, we shall give a brief overview of some
systems that have been developed for formal synthesis. We shall first start with an exam-
ple of pre-synthesis verification – although it does not fall into the category of systems
based on formal synthesis, we deem that it deserves a mention here, due to its unique-
ness. Later we describe three systems based on HW-specific calculus and general pur-
pose calculus, respectively. The list of references have been organized into general
references and specific references for the described systems. Additionally, a set of mis-
cellaneous references have been listed for the two kinds of formal synthesis approaches.
However, these have not been referenced in the text and have been included for the sake
of completeness only.



4.1  Proven Boolean Simplifier – PBS

The proven boolean simplifier (PBS) is a verified logic synthesis system developed at
the Cornell University [AaLe91, AaLe94, AaLe95]. PBS is a part of the high-level syn-
thesis system called BEDROC, which translates a behavioural description given in the
HDL - HardwarePal into an implementation suitable for FPGAs [LeAL91, LCAL+93].
Although some abstract formalization have been performed for the scheduling problem
within BEDROC, PBS is the only piece of code that has been totally verified.

PBS has been implemented in a purely functional subset of Standard ML and has been
verified using the Nuprl proof assistant [Lees92]. PBS consists of about 1000 lines of
SML code and implements the weak-division algorithm for logic minimization
[BrMc82]. Weak-division performs logic minimization by removing redundant logic.
This is achieved by replacing common sub-expressions among the divisors of functions
by new intermediate values, thus realizing them only once within the whole circuit.

In proving the correctness of PBS, the subset of SML used in PBS was embedded in
Nuprl and the implementation was then interactively verified by proving over 500 theo-
rems. These theorems involve proofs ranging from the correctness of simple functions,
such as membership of an element in a list, up to complex theorems that the input combi-
national function and the minimized function are equivalent. Theorems were also prov-
en regarding the minimality of the weak-division algorithm. The overall effort required
was about 8 man months.

Remarks:
Since PBS falls into the category of pre-synthesis verification, we do not compare it with
the other approaches as described in section 5. Hence we summarize some important
characteristics before moving on to the other examples.
• Since PBS has been verified, this piece of software can be used with an increased

degree of confidence.
• PBS is restricted to the use of weak-division algorithm for logic minimization.
• PBS was conceived with the thought of achieving verified software.
• Verification of PBS was eased due to the use of a functional subset of SML for

implementation.
To conclude – although PBS is a first step towards achieving correct synthesis, verify-

ing large synthesis programs written in imperative languages is practically impossible.

4.2  RLEXT – Register Level EXploration Tool

RLEXT has been developed at the University of Illinois for the formal synthesis of reg-
ister-transfer level datapaths [KnWi89, KnWi92]. This tool falls into the category of
hardware-specific calculus for formal synthesis.

The hardware specificity arises from the fact that the design, at the register-transfer
level, is looked at from different points of view (dataflow, timing and structure). A large
set of types and subtypes defines the objects that make up a design and plausibility con-
straints have been formulated for defining the well-formedness of a design. The overall
design is represented by a 4-tuple – dataflow, timing, structure and binding. The data-
flow model captures the behaviour of the design and is conceptually viewed as a tri-par-
tite graph which represents the connection of values to parameters and parameters to



operations. The timing model gives the abstract states and the state transitions of the de-
sign.The structural model gives the schematic of the design. The binding defines the re-
lationships between the behaviour, timing and structure. For each model a set of
plausibility constraints is given to determine the well-formedness of the model. Given
that the three models (dataflow, timing and structure) are well-formed, another set of
constraints is given for the binding relationship to ensure correct relationships between
these models.

The entire program which implements these types and plausibility constraints has
been implemented in about 20,000 lines of Lisp code. The major drawback of this ap-
proach is the large set of axiomatized plausibility constraints. A positive feature of this
approach is that RLEXT automatically fixes small bugs in the design.

4.3  RUBY

Ruby is a language based on relations and functions for specifying VLSI circuits. The
language and the synthesis tools around Ruby have been developed at the Programming
Research Group - Oxford, University of Glasgow and Technical University of Denmark,
Lyngby [Josh90, JoSh91a, JoSh91b, ShRa93, ShRa95]. Although Ruby is only a lan-
guage, we choose to call the formal synthesis approach as Ruby too. This approach is
based on the paradigm of hardware-specific calculus for formal synthesis.

The specification is given as a relation between the terminals of the circuit. Simple re-
lations can be combined into more complex ones by a variety of higher-order functions.
The typical derivation of an implementation in Ruby involves the use of term-rewriting
using equivalences or conditional equivalences. Since constructs in Ruby have a a
graphical interpretation (figure 4), abstract floorplans can also be generated.

“Fst R”, “Snd R” and correspond to the circuit diagrams in figure 4. “R;S” corre-
sponds to a serial connection and [R,S] to a parallel one. Since all these constructs also
have a formal basis, it is possible to derive equations such as “Fst R; Snd S = [R,S] = Snd
S; Fst R”.

Starting from specifications, it is possible to derive equivalent circuits using the trans-
formations that are available in the system. Examples for some transformations are: par-
allel compositions, retiming, and conversions of regular structures into other forms, e.g.
rows to columns. Additionally, it is possible to derive bit-serial and/or parallel circuits
from specifications. During such conversions, additional constraints are generated
which have to be satisfied.

Figure 4. Graphical interpretation of a few constructs in Ruby
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4.4  DDD — Digital Design Derivation

The DDD system has been developed at the University of Indiana [John84, JoBB88,
JoBo91, BoJo93]. The system is based on functional algebra and falls into the category
of hardware-specific calculus for formal synthesis.

Starting from a specification in a lisp-like syntax (a derivative of the functional lan-
guage Scheme), a series of transformations are applied to refine them into an implemen-
tation which is also represented in a dialect of the same language. DDD can be thought
of as an S-expression editor for hardware purposes, with the objective of finding an im-
plementation that satisfies certain constraints. The behaviour is specified as an iterative
system using tail recursive functions. This is translated into a sequential description
which can be regarded as a network of simultaneous signal definitions comprising of
variables, constants, delays and expressions involving operations. Then a concept called
factorization is used to abstract away multiple instances of common subexpressions
which are allocated to data path operators such as ALUs, adders, etc. Complex factoriza-
tions ranging from the abstraction of a register and an incrementer into a counter up to
the introduction of co-processors are also possible. Failures in factorizations lead to re-
finements in control, which are accomplished by serializing transformations on the be-
havioural descriptions. Although all these transformations are based on functional
algebra, none of them have been formally verified.

4.5  LAMBDA/DIALOG

LAMBDA/DIALOG has been developed at Abstract Hardware Limited, Uxbridge
[FFFH89, FoMa89, FiFM91, MaFo91, HFFM93]. This is the only commercial tool for
performing formal synthesis and belongs to the category of general purpose calculus.
This tool has also been used in an industrial environment to perform synthesis, as report-
ed in [BoCZ93, BBCC+95].

The core of LAMBDA/DIALOG is its theorem prover based on higher order logic.
The theorem prover is called LAMBDA and the GUI (Graphical User Interface), which
is a schematic editor, is called DIALOG. The design state is always represented as a for-
mal logical rule. Starting from the trivial rule — “the overall specification fulfils the
overall specification”, transformations are applied which lead to the rule defining the in-
termediate stage of design — “some components and a modified, reduced specification
fulfils the overall specification”. The final design corresponds to the rule — “some com-
ponents and some timing conditions fulfil the overall specification”. The entire process
is facilitated by the use of the GUI - DIALOG. Given a specification in higher-order log-
ic, the input and output ports appear on the schematic window. The user can then either
interactively apply basic instantiations of modules in the DIALOG library, or apply
compound tactics for automatically performing several such steps. For example, each if
statement in the specification can be individually refined into some kind of a multiplex-
er, or all of them can be removed in one go by applying a tactic. During this process, the
specification is simplified into a set of subgoals which have to be realized and the design
continues until all subgoals have been eliminated. A drawback of this tool is that under
certain complex situations, direct interactions at the theorem prover level may be neces-
sary in order to continue with synthesis.



4.6  VERITAS

VERITAS is a theorem prover based on an extension of typed higher order logic and has
been developed at the University of Kent [HaLD89, HaDa92]. Due to its core, it is a
member of the general purpose calculus category.

In VERITAS, synthesis is a recursive interactive design process. Starting from the
specification, transformations, called techniques, are interactively applied for convert-
ing the specification into a implementation. A technique consists of a pair of functions
called the subgoaling function and the validation function. The subgoaling function gen-
erates a (possibly empty) set of design subgoals, theorem subgoals and term subgoals.
Each of these subgoals must be discharged during the design process. The validation
function, which is a derived inference rule in VERITAS logic, constructs the theorem
that the implementation satisfies the specification. There are general purpose techniques
for splitting conjunctions, rewriting, stripping an existential quantifier, strengthening a
specification, etc. An oft used technique is called claim — one can claim that an arbi-
trary specification is an implementation of the original specification. This leads to two
subgoals; the first is to implement the new specification (design subgoal) and the second
is to prove that the new specification satisfies the original specification (theorem sub-
goal).

4.7  HASH (Higher order logic Applied to Synthesis of Hardware)

HASH is under development at the University of Karlsruhe [EiKu95a,EiKu95b,
EiBK96] and is based on the theorem prover HOL [GoMe93]. This tool falls into the cat-
egory of general purpose calculus for formal synthesis.

HASH is a toolbox for implementing formal synthesis programs comprising of circuit
transformations that correspond to those of conventional synthesis programs. For exam-
ple, scheduling is a transformation in HASH. This transformation gets the dataflow
graph and the schedule (calculated outside the logic using ASAP, ALAP, Force-direct-
ed, etc.) and transforms the original dataflow graph into a scheduled dataflow graph
[EiKu95b, EiBK96]. In a similar manner there are various transformations provided for
each synthesis step at the algorithmic and the RT-level.

The main concept of HASH is to split the synthesis process along two dimensions —
design space exploration and design transformation. The design space exploration as-
pect determines the quality of the synthesized design with respect to the constraints that
have been specified, while the design transformation determines the correctness of the
design. Due to this split, the heuristics for exploring the design space can be performed
outside the logic and the results imported into the design transformation. This implies
that for each synthesis step, e.g. scheduling, state minimization, retiming, etc., there ex-
ists a unique transformation which performs that synthesis step. It is to be noted here,
that these transformations are specific to a synthesis step but independent of the heuris-



tics. This basic concept is shown in figure 5.

In this way, the two most important points of circuit design are met independently: the
quality and the correctness of the implementation. The quality only depends on the syn-
thesis heuristics involved. The implementations derived within HASH are the same as
those achieved with conventional tools. On the other hand, correctness is guaranteed
since the circuit transformations are performed inside HOL. From circuit designer’s
point of view, however, there is no difference between formal synthesis tools based on
HASH and conventional synthesis tools. Since all the logical argumentation is per-
formed fully automatically and above all no formal skills are demanded from the user.

5   Comparison

Having presented a brief summary of some systems in the area of formal synthesis, we
shall now compare them. We classify the characteristics for comparison into three main
criteria — Hardware Representation, Hardware Transformation and Synthesis Control.

5.1  Hardware Representation

This criterion relates to the representation of the specification, the intermediate stages of
design and the final implementation. In the systems described in section 4, RLEXT,
RUBY and DDD fall into the class of hardware-specific calculus and LAMBDA, VER-
ITAS and HASH are based on general purpose calculus. Additionally, RLEXT is re-
stricted only to RT-level datapaths. The other systems are capable of handling designs at
all levels of abstraction, namely from the system level down to the gate level. Due to the
strong reliance on the concept of iterative structures, RUBY is mostly suited towards
signal processing and module generation applications. All other systems do not have any
particular bias towards their application domains. Except RLEXT, all other systems are
capable of exploiting hierarchy during the design process.

5.2  Hardware Transformation

This measure compares the conversions used in going from specifications to implemen-
tations. Using a theorem prover as a basis has two basic advantages namely, increased
reliability and the small number of core transformations. The systems RLEXT, RUBY
and DDD are not based on theorem provers. However, due to the use of an algebraic
foundation, RUBY and DDD do not have a large number of basic transformations. Be-
fore we elaborate this statement, we shall look at the realization of the transformations.

Figure 5. The basic concept of HASH
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Hardware transformations can be axiomatized or derived from some small set of basic
transformations. In the RLEXT system, all the transformations are axiomatized. In
RUBY and DDD, some transformations are axiomatized and some of them are derived
from these axiomatized transformations based on general algebraic rules. Hence the
statement, that these systems do not have a large number of basic transformations. In
LAMBDA, VERITAS and HASH all the hardware transformations are derived from the
logical transformations provided within the respective theorem prover and hence the
size of the core (basic transformations) is small. The user’s of the hardware transforma-
tions are circuit designers. Hence, we can compare the systems based on the nature of
transformations, i.e. are they hardware oriented or logic oriented. RLEXT, LAMBDA
and HASH offer transformations which are similar to those used in the conventional
synthesis process. The transformations in DDD and VERITAS are more from the logi-
cian’s point of view. Due to the floorplanning aspect of RUBY, it partially offers a cir-
cuit designer’s perspective.

5.3  Synthesis Control

This yardstick relates to the use and the practicality of the systems. RLEXT, LAMBDA
and HASH provide automation for the circuit designer. Except for RLEXT and HASH,
the use of all other systems requires a good knowledge in mathematical notation. Al-
though LAMBDA offers a GUI, there are situations where one has to interact with its
theorem prover core. A unique feature of the HASH system is the use of existing heuris-
tics in the synthesis domain and a clear split between the design space exploration task
and the actual application of a design transformation.

6   Conclusions

The acceptance of formal methods within the circuit designer community is inversely
proportional to the amount of formal knowledge required! The circuit designers
would ideally love to have verified implementations for free. Fully automated post-syn-
thesis verification techniques are therefore used wherever possible. However, they are
too weak and too time consuming for real sized circuits. For the circuit designer, verified
synthesis programs (pre-synthesis verification) would be the best. However, the gap be-
tween what can be verified using software verification techniques and the complexity of
existing synthesis tools, cannot be bridged today.

In this paper we have presented a summary and classification of formal synthesis
techniques. Formal synthesis is constructive in the sense that the proof is derived along
with the synthesis process rather than guessed afterwards. Therefore also very expres-
sive logics can be used for formal synthesis. In contrast to post-synthesis verification,
the undecidability of a logic is not a handicap. If good tools based on formal synthesis
can be developed, hardware verification can be restricted to purely the verification of
safety and liveness properties.
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