
LEDA

A Library of Efficient Data Types
and Algorithms •

Kurt Mehlhorn and Stefan Naher

A 04/811

Fachbereich Informatik, Universitat des Saarlandes
D-66OO Saarbriicken, Federal Republic of Germany

Abltract

LED A is a library of efficient data types and algorithms. At present, its
strength is graph algoritluruo and r lated data structures. The computational
geometry part is evolving. The main features of the library are
1) a clear separation of specification and implementation
2) parameterized data types
3) a comfortable data type graph,
4) its extendibility, and
5) its ease of use .

• This research was supported by the ESPRIT II Basic Research Action Program, ESPRIT
P. 3075 - ALCOM, and by the DFG, grant SPP Me 620/6-1 .

1

I. Introduction

There is no standard library of the data structures and algorithms of combinatorial comput­
ing. This is in sharp contrast to many other areas of computing. There are e.g. packages in
statistics (SPSS), numerical analysis (LINPACK, EISPACK), symbolic computation (MAC­
SYMA, SAC-2) and linear programming (MPSX).

In fact the situation is worse, since even within small groups, say the algorithms group at
our home institution, software frequently is not shared. Rather, each researcher starts from
scratch and e.g. develops his own version of a balanced tree. Of course, this continuous
t'reimplementation of the wheel" slows down progress, within research and even more so
outside. This is due to the fact that outside research the investment for implementing an
efficient solution frequently is not made, because it is doubtful whether the implementation
can be reused, and therefore methods which are known to be less efficient are used instead.
Thus the scientific discoveries migrate only slowly into practice.

One of the major differences between combinatorial computing and other areas of computing
such as statistics, numerical analysis and linear programming is the use of complex data types .
Whilst the built-in types, such as integers, reals, vectors, and matrices, usually suffice in the
other areas, combinatorial computing relies heavily on types like stacks, queues, dictionaries,
sequences , sorted sequences, priority queues, graphs, points, planes, ...

Gne year ago, we started a project (called LED A for Library of Efficient Data types and
Algorithms) to build a small, but growing library of data types and algorithms in a form
which allows them to be used by non-experts. We hope that the system will narrow the gap
between algorithms research, teaching, and implementation. In this paper we report on our
diffi culties and achievements. The main features of the library are:

1) A clear separation between (abstract) data types and the data structures used to imple­
ment them, cf. section II. This distinction frequently is not made in the combinatorial
algorithms literature, but is crucial for a library. Note that we stated above that each
researcher implemented his own version of a balanced tree, i.e., a data structure, and
not his own version of a dictionary, Le., a data type. The data types currently available
are stack, queue, list, set, dictionary, ordered sequence, priority queue, directed graph
and undirected graph. The most difficult decision, which we faced, was the treatment of
positions and pointers. For the efficiency of many data structures it is crucial that some
operations on the data structure take positions in (= pointers into) the data structure
as arguments. We have chosen an item concept to cast the notion of position into an
abstract form, cf. section II.

2) Polymorphic types, Le., types with parameters, cf. section II. Most of our data types
have type param~t.ers. For example, a dictionary has a key type K and an information
type I and a specific dictionary type is obtained by setting, say, K to int and I to real.

3) A comfortable data type graph. It offers the standard iterations such as "for all nodes v
of a graph G do" (written foralLnodes(v,G)) or "for all neighbors w of v do' (written
fciralLadi_nodes(w,v)), it allows to add and delete vertices and edges and it offers
arrays and matrices indexed by nodes and edges, ... , cf. section III for details. The data
type graph allows to write programs for graph problems in a form close to the way
the algorithms are usually presented in text books. Section VIII contains a list of the
algorithms which are currently in LEDA.

2

4) The LEDA library is extendible. Users can include own data t.ypes either by writing
C++ programs (cf. section V) or by combining already existing LEDA data types (cf.
sec tion VI).

5) Ease of use: LEDA is writ.ten in C++ (cfront version 1.2.1). All data types and algorithms
are precompiled modules which can be linked with application programs. All exa.mples
given in this paper show executable code.

This paper is organized as follows. In section II we discuss data types and data structures,
in :section III the dat a type graph and in section rv we discuss the interaction of graphs and
data types. In section V we briefly describe the internal structure of LEDA. Section VI show,;
how the library can he extended by users and in section VII we repor t about our experiences
with designing, implementing and using LEDA.

The design of LEDA is jOiIlt work by the two authors , the implementation was mostly done
''Y I.be second author. LEDA is available from the autho's for" handl ing charge of DM 100.

II. Data Types

One or the m a jor differences between combinatorial comp uting ~Jld other (I,reas of computing
~; ' !ch a..'; s~atisticsl numer ical analysis and linear programming is the usage of complex data
types. Whilst the bu;lt-in types, such as integers, reals , vectors, and matrices, usua.lly suffic~
;n t he other areas, cOJnbinatoriaJ computing heavily relies on types like stacks , queues, dictio­
:l ari es, sequences , sorted sequences , priority queues , graphs, points: planes, ... Programming
I •. nguages do not provide these types and hence they have to be d efined and implemented by
Lht, ird ividual user. A significant improvement would result , if these data types were made
a.vaila.ble as "packages" by some users and could then be reused by others. Of course, this
m. kes it necessary to specify the properties of the data type independently of its implemen·
t ation. We next discuss the LEDA specification of the data types dictionary, priority queue
and partition .

C',xample 1, Dictionary: A dictionary can be defined as a partial function with finite
domain from some universe K of keys into some set I of informations associated with the
keys .. <\n access operation looks up the function value at an argument, an insert extends the
·jo;n"i ,) of definition , ... Thus a clean definition of the data type dictionary is available and
'l ence a dictionary module should cause no principal difficulties. In fact, the programming
~ anguage COrrulkee [BKMRS84] includes the dictionary among its built· in data types. A
: !'", nor) problem lies in the fact that most programming languages force the user to edit
H>urce text when he wants to change the key or information type. This problem is resolved in
icwgu ages with polYJTlorphic data types such as Clu, Ada, or C++ Program 1 shows a small
example using th. above defined dictionary type.

The program reads a sequence of integers and counts the number of occurrences of each
integer in the sequence, The number of occurrences is then listed for each integer in the
::equence . The details are as follows. In line (1) the dictionary type dictionary(int,int) is
defined. Note that the dictionary module provides dictionaries from J(to I where K and
I are type variables. A specific dictionary type i8 introduced as shown in line (1). Line (3)
introduces D as the name of an object of type dictionary(int,int); D is initialized with the
emp ty function (by a C++ constructor). Line (5) to (9) step through the input sequence. In

3

(I) deciare2(dictionary,int ,int); / / K = I = int

(2) mainO
(3) { dictionary(int,int) D;
(4) int k ;
(5) while (cin » k)
(6) {if (D.defined(k))
(7) D.changeJnf(k,D.lookup(k)+1);
(8) else D.insert(k ,I);
(9) }
(10) foralU.eys(k ,D) cout « k « "" « D.lookup(k) <~ " \ It";

(ll) }

Program 1: Counting the number of occurrences of each eleme nt of do sequence of integers
_~ _ ~. __ . ____ ~_~. __ .. __ ._~ Program 1 ______ ._ .. ______ _

line (6i we test whet.her k belongs to the domain of D and then either increase the value at
argume.lt k by one or insert the pair (k ,J) into the dictionary. F'in .. lly, line (10) steps through
. 11 k.ys It in the domain of D and prints k and the value of D at k.

Hernark: The abov. spel" ;fied dictionary type allows only access hy key. It is not possible to
~ to re tl~ e positions or locations of keys and informations ir. the dic tionary for later use. Th llS
in program 1 three access operations are necessary in lines 6 and 7 to change the information
. ssociated with a key. The LEDA library (version 1.0) contains a different dictionary type
(SO" U;DAI.0 Us .. Manual) . It allows access by position as discussed in the next examples
f()r priority queues and partitions.

l.E; OA is written in C++ which is an extension of the C programming language. In addition to
the faci lities of C, C++ provides data abstraction, data hiding , object oriented programming,
'- ,pcrator overloading and many other features suitable for implemeIlt ing abstract data types.
f or details of the C++ language see "The C++ Programming Language" [5t86]. Every data
l)" p" in LEDA is implemented as a C++ class. A c1 consists of private data and a collection
nf funct ion. which can be applied to the data. We use these.o called member functions of the
'.lass to realize the operations on instances of the corresponding data type. The known syntax
:'or record field access is u.ed to invoke .uch a functions, e.g., if D is an object (variable) of
" clas. with a member function /0 then D.fO calls / to operate on D.

Example 2, Priority Queues: Priority queues are frequently used in network algorithms;
cr. section III for a . example. It is tempting to define a priority queue as a dictionary
with the additional ", erations findmin and decrease _in! (We require a linear order on
i). The operation PQ,findminO returns the element v in the domain of PQ with minimal
function value and PQ.decreaseJnf(v, i) decreases the function value at argument v to i.
The operation raises an error if i is larger than the old value at argument v. It is clear
t hat a decrease_inf operation involves a lookup and hence must be at least as costly as a
iook ap operation in a dictionary. However, several recent papers , e.g. [FT84] and [AMOT88]
, how that the decreasejnf operation can be realized in time 0(1) if its first argument is the
position of the pair (v ,PQ(v)) in the data structure realizing the priority queue PQ. This
led to improvements in several network algorithms.

4

We conclude that the argument of a decreasejnf operation cannot be the key v. But what
should it be? It cannot be the position in a data structure since we want to clearly separate
data type and data structure and therefore cannot use a notion of the particular implemen­
tation in the definition of the data type. What we need is an abstraction of position.

In LEDA, we call an abstract position an item. For most data types XY Z there is also a
type XY Z _item. This type represents the set of positions in objects of data type XY Z. So,
together with the data type prioritll_queue there is also a type prioritll_queue_item or briefly
pq_item. Each pq_item contains or has associated with it a pair (v, i) with v E K and i E I.
We use < v, i > to denote the item which contains the pair (v, i) . A priority queue PQ over
K and I is then nothing but a collection of pq_items where each item contains a pair (v, i).

Remark 1: In mathematical terms a priority queue in LEDA is simply a partial function
from the set of pq j tems to the cartesian product K x I . In computer science terminology,
we may view a pq_item as the name (= address) of a container holding an argument-value
pair (v, i).

Rem ark 2: Access by position can now be achieved as follows. Whr,n we insert a pair (v, i)
into a priority queue PQ, the operation PQ.insert{v, i) returns an item, say %'t, i.e. the name
of a conta iner which holds the pair (v, i). The user of the priority queue remembers this name
and can now access the pair (v, i) in two different ways. He can either access it through the
item it which was returned by the insert (this is access by position) or through the key v
(this is access by key). There is a crucial difference between the two modes of access. In the
latter case, the key v identifying the pair (v, i) was provided by the user and hence access
involves a dictionary look-up, in the former case, the name i t identifying the pair (II, i) was
produced by the data type and therefore can give direct access. The decreasejnf operation
uses access by position, i.e. whenever the user wants to decrease the value associated with II ,
he calls PQ .decrease_inf and gives it the name of the container as an argument. In this way,
the item concept captures the notion of access by position but is nevertheless independent of
implementation.

The complete LEDA specification of the data type priority queue follows.

Priority Queues (priority _queue)

An instance Q of the data type prioritll_queue is a collection of items (pq_item). Every item
contains a key from a type K and an information from a type I. K is called the key type of
Q and I is called the information type of Q. The number of items in Q is called the size of
Q. If Q has size zero it is called the empty priority queue. We use < k, i > to denote the
pq_item with key k and information i. There must exist a linear order on I .

1. D eclaration of a p riority queue type

d eclare2(prioritll_queue,K, I)

introduces a new data type with name prioritll-,/ueue(K, 1) consisting of all priority queues
with key type K and information type I .

2. Creation of a priority queue

prioritll_queue(K,l) Q;

5

creates an instance Q of type prioritll-4Ueue(K, I) and initializes it with the empty priority
queue.

3. Operations on a priority_queue in.tance Q

K

I

pq_item

pq_item

void

K

Q.key(pq_item it)

Q.inf(pq_item it)

Q.insert(K k,I i)

Q.findJIlinO

Q.deUtem(pq_item it)

Q.delJIlinO

returns the key of item it .
Preeondition: it is an item in Q.

returns the information of item it.
Precondition: it is an item in Q.

adds a new item < k , i > to Q and returns it.

returns the item with minimal information
(nil if Q is empty)

removes the item it from Q.
Precondition: it is an item in Q.

removes the item with minimal information
from Q and returns its key.
Preeondition: Q is not empty.

pq_item Q.decreaseJnf(pq_item it,l i) makes i the new information of item it
Precondition: it is an item in Q and i
is not larger then in/Cit).

void

boot

·tn t

Q.clearO

Q.emptyO

Q.sizeO

4. Implementation

makes Q the empty priority queue

returns true, if Q is empty, false otherwise

returns the size of Q.

Priority queues are implemented by Fibonacci Heaps. Operations insert, deUtem, del..min
take time O(log n), find..min, decreaseJnf, key, inf, empty take time 0(1) and clear takes
lime O(n) , where n is the size of Q. The space requirement is O(n).

Example 3, Partitions or Disjoint Set.: In this example we discuss partitions of finite
sets. An application of partitions is shown in program 5 of section IV. Partitions are also
used to discuss some implementation details of LEDA in section V.

An object P of type partition consists of a finite set of partitionJterns and a partition of this
set into blocks. The declaration partition P introduces P as the name of a partition and
initializes it to the e"'pty partition. There are three operations.

partition_item P.muke_blockO returns a new partitionJtem it
and adds the block {it} to the
partition P.

int P.sume_block(partition..item p, q) returns true if p and q belong to
the same block of the partition P.

void P.union..blocks(partition_item p, q) unites the blocks of P containing
items p and q.

6

We want to stress that the make_block-operation has no parameter. It is not given an object
which it is supposed to add to the partition P (this would imply access by key lateron), but
the operation itself chooses an item it, returns it and adds the block {it} to the partition
P. The user has no idea what it is and he does not need to know. The only thing, that is
important to him, is the partition of the items into blocks. This usage of items is similar to
the usage of atoms in SETL. •

Access by position instead of key is abundant in the design of efficient data structures; e.g.
lists are accessed by position , all operations in the union-find problem use access by position,
the decre!l8e-inf operation in priority queues is based on it and fingers in finger trees are
positions. Thus the position concept is crucial for the design of efficient data structures. In
LEDA we use items as an abstraction of positions. Many operations take items as arguments
or return items as results. The undefined item nil is often returned to indicate that an
operation failed, e.g., a lookup operation in a dictionary returns nil if the search key is not
present. The examples above show that the item concept leads to natural specifications of
data types.

III. Graphs

Graph algorithms are a prime example of combinatorial computing. LEDA contains several
graph types and data types related with graphs allowing elegant and efficient implementations
of graph and network algorithms.

(1) #include < LEDA/ graph.h>

(2) bool ACYCLIC(graph G)
(3) { / / Tests if G i. acyclic by repeatedly deleting edges starting in nodes with indeg O.

(4) node.llet zero; / / Set of all nodes v with indeg(v) = 0
(5) node v, w;

(v) foraILllodes(v,G) if (G.indeg(v)==O) zero.insert(v) ;

(7) while (!zero.emptyO)
(8) { v = zero.chooseO;
(9) zero.del(v);
(10) foraILadJ~dges(e,v)
(11) { w = G.target(e);
(12) G.de! .edge(e);
(13) if (G.indeg(w)==O) zero.insert(w);
(14) }
(15) }

(16) return G.number_oLedgesO == 0;
(17) }

Program 2: Testing a directed graph for acyclicity.
_________ _ ___ Program 2 ____________ _

7

graph is the data type of directed graphs. It provides operations for the updating (inserting
and deleting nodes and edges) and accessing internal informations (number of nodes or edges,
out- and indegree of nodes, endpoints of edges, list of edges adjacent to a given node, ...)
of directed graphs. Furthermore there are several iteration statements that can be used to
iterate over the nodes and edges (for ..a1l..nodes, for ..alJ..edges, ...). Program 2 gives a
short demonstration of some graph operations used to test a directed graph G for acyclicity.
The algorithm uses the data types graph and nodo ... e! whose specifications are contained in
the header file "LEDA/graph.h" which is included in line 1. In line 4 a node set zero for the
nodes of graph G is declared. It is initialized in line 6 with all nodes of indegree O. In lines
7·15 the algorithm repeatedly deletes all edges starting in nodes of zero and adds the new
nodes with indegree 0 to zero. G is acyclic if all edges are removed in the end.

Many graph algorithms, especially network algorithms, use additional informations associated
with the nodes and edges (node labels, edge costs, ...). LEDA provides two ways for
associating informations with the nodes and edges of graphs:

1. Parameterized Graphs
A parameterized graph G is a graph whose nodes and edges contain additional (user
defined) informations. Every node contains an element of a data type vtypo, called the
node type of G and every edge contains an element of a data type etype called the edge
type of G . All operations defined on instances of the data type graph are also defined on
inBtances of any parameterized graph type GRAP H(vtype, etype). For parameterized
graphs there are additional operations to access or update the informations associated
with it. nodes and edges.

Ins tances of a parameterized graph type can be used wherever an instance of the data
type graph can be used, e.g., in assignments and as arguments to functions with formal
parameters of type graph or graph&. If a function !(graph&; G) is called with an
argument Q of type GRAPH(vtype,etype) then inside! only the basic graph structure
of Q (the adjacency lists) can be accessed. The node and edge informations are hidden.
For example, function ACYCLIC accepts instances of any parameterized graph type as
argument.

2. Node and Edge Arrays
n ode..JJ,rray (edge..JJ,rray) is a polymorphic data type. An instance of node.array(XYZ)
(edge.array(XYZ)) is an array which is indexed by the nodes (edges) of some graph and
whose entries are values of type XYZ. Thus a node (edge) array is a mapping from the
nodes (edges) of graph into a set of elements of type XYZ.

Node (edge) arrays allow the passing of node and edge informations of networks to
algorithms separatedly from its basic graph structure. In this way reusable network
algorithms acceptillg instances of arbitrary graph types as arguments can be designed.

Examples for reusable network algorithms are the following programs DIJSKTRA (single
source shortest paths) and MST (minimum spanning tree). We use them to illustrate LEDA's
comfortable graph type and its interaction with other data types. Program 3 shows Dijk­
stra's algorithm (ef. [ARU83[, [M84,section IV.7.2], [T83]) for the single source shortest path
problem in digraphs with non-negative edge costs. The algorithm uses the data types graph
and priority queue (lines (1) and (2)). The input to the algorithm is a graph G, a node s of G
and a non-negative cost for each edge. It returns for each node v the length of a shortest path

8

from s to v (array dist) and the last edge on such a shortest path (array pred). In LEDA we
use edge- and node-arrays for the latter three parameters. A node_arra,,(edge) is a mapping
from nodes to edges. The algorithm maintains for each node v a temporary distance label
dist[v]. Initially, diat[s] = ° and diat[v] = 00 for v oF a, cf. lines (13)-(19). In LEDA the loop
foralIJlodes(v, G){ ... } can be used to iterate over all nodes v of a graph G.

(1) #include <LEDA/graph.h>
(2) #include <LEDA/prio.h>

(3) deelare2(prioritYAueue,node,int)
(4) declare(node_array,pq.item)

(5) void DIJKSTRA(graph& G, node s, edge..array(int)& cost,
(6) node-&ITay(int)& dist, node_array(edge)& pred)
(7) (priority _queue(node,int) PQ;

(8) node_array(pq.item) I(G, nil);
(9) pq.item it;
(10) int c;
(11) node u, v;
(1 2) edge e;

(13) forall..nodes(v, G)
(14) (predr"l = 0;
(15) diat[v] = infinit,,;
(16) I[v] = PQ.insert(v,dist[v]);
(17) }
(18) dist[s] = 0;
(19) PQ.decrease.inf(I[s],O);

(20) while (!PQ.empty())
(21) (it = PQ.delete..minO
\22) u = PQ.key(it);
(23) forall..adj_edges(e, u)
(24) { v = G.target(e);
(25) c = dist[u] + cost[e];
(26) if (c < dist[v])
(27) { dist[v] = c;
(28) predr"l = e;
(29) PQ.decrease.inf(I[v], e);
(30) }
(31) }
(32) } / / while
(33) }

Program 3: Dijkstra's algorithm
_____________ Program 3 _____________ _

Dijkstra's algorithm uses a priority queue PQ. The priority queue contains pairs (v,dist[v])

9

and hence has type priority_q (nod.,int); d. lines (3) and (7). Each node v of the graph
needs to know the position of the item < v, dist!vJ > in the priority queue. We therefore de­
clare the data type node_array(pq_it.m) in line (4) and declare nod._array(pq_it.m) ltG, nil)
in line (8) . In this declaration the parameter G tells LEDA that we want an array which is
indexed by the nodes of G and the second parameter tells it that we want all entries initialized
to the pq_item nil.

Initially, the items < s, 0> and < v, infinity> for vis are put into PQ, cf. line (16) . Then
in each iteration we select and delete an item it with minimal inf from PQ, cf. line (21). Let
it =< .. , dist ! ..] > , cf. line (22) . We now iterate through all edges. starting in edge U; cf.
line (23). Let e = (.. ,v) and let c = dist! ..] + cost!.] be the cost of reaching v through edge
e, cf. lin .. (24) and (25). IT c is smaller than the temporary distance label dist!v] of v then
we change dist [vJ to c and record. as the new predecessor of v and decrease the information
associated with v in the priority queue., cf. lines (26) to (29).

(1) #include <LEDA/graph.h>

(2) void aILpairs.shortest_paths(graph&: G, edge..arraY(int)& cost,
(:l) node.matrix(int)& DIST)
(4) {
(5) I I computes for every node pair (v, w) DIST[vllw] = cost of the least cost
(6) I I path from v to w, the single source shortest paths algorithms BELLMAN_FORD
(7) I I and DIJKSTRA are used as subroutines

(8) edge ';
(9) node v;
(10) int C = 0;

(11) fora ILedges(e,G) C+ = cost!.];
(12) node s = G.new.nodeO; I I add s to G
(13) foralLnodes(v,G) G.new_edge(s,v); II add edges (s,v) to G

(14) node..a.rray(int) dist1(G);
(15) node..a.rray(edge) pr.d(G);
(16) edge_array(int) cosn(G);
(17) forall..edges(e,G) cosn!.] = (G.8ourc.(.) == 8)?C : cost[eJ;

(18) BELLMAN..FORD(G, s, cosn, dist1,pr.d);

(19) G.del.node(8) ; I I delete s from G
(20) edge_array(i~t) cost2(G);
(21) forall..edgesle, G) cost2!.J = dist1!G.sourc.(.)J + cost[.J - dist1!G.target(e)J;

(22) forall..nodes(v, G) DIJKSTRA(G, v, c08t2, DIST!vJ,pr.d);

(23) foralLnodes(v, G)
(24) forall..nodes(w, G) DIST!vl!w] = DIST!vl!wJ - dist1!v] + dist1!w];
(25) }

Program 4: All Pairs Shortest Path
_ _ _ _____ Program4 ____________ _

10

The running time of this algorithm for a graph G with n nodes and m edges is O(n + m +
Tdeclare + n(T.n • ert + TDeletemin + Tgd..in/) + m . TDec,.eQuJe~) where Tclee14N is the cost of
declaring a priority queue and Txyz is the cost of operation XY Z. With the time bounds
stated in section II we obtain an O(m + nlogn) algorithm.

Program 3 is very similar to the way Dijkstra's algorithm is presented in textbooks (lAHU83),
[M84J, [T83)). The main difference is that program 3 i. executable code whilst the
textbooks still require the reader to fill in (non-trivial) details.

Dijkstra's algorithm is a useful subroutine for the solution of the all-pairs shortest path
problem in graphs with arbitrary edge costs, d . [M84, section IV.7.4]. One uses the algorithm
of Bellman-Ford to solve the single-source shortest path for some source 8, then uses the
solution of this computation to make all edge costs non-negative and then uses Dijkstra's
algori thm to solve n - 1 single-source problems with non-negative edge costs. In order for
this approach to work it is important that all nodes of the graph are reachable from s. The
easiest way to achieve this is to add a new node. and to add edges of high cost from. to all
other nodes. The details are given in program 4.

(1) #include < LEDA/ graph.h>
(2) #include <LEDA/ partition.h>

(3) declare(node_array,partitionJtem);
(4) int cmp(edge <1, edge .2, edge_array(int)& C) { return (Glel) - (C[e2)); }

(5) void MST(graph& G, edge..array(int)& C08t, edgelist& EL)

(6) // the input is an undirected graph G together with a cost function
(7) // co.t on the edges; output: list of edges EL of a minimum spanning tree
(8) { node tI, w;
(9) edge e;
(10) partition P ;
(11) node..array(partitionJtem) I(G);
(l2) foraJLnodes(v, G) I[v) = P.makblockO;

(13) edgelist OEL = G.aILedgesO;
(14) OEL.sort(cmp,cost);
(16) // OEL is now the list of edges of G ordered by increasing cost

(16) EL.clearO;
(17) forall(e,OEL)
(1 8) { v = G.source(e);
(19) w = G.target(e);
(20) if (!(P.saUle_block(I[v],l[w))))
(21) { P.union_blocks(I[v),I[w));
(22) EL.append(e);
(23) }
(24) }
(25) }

Program 5: Minimum Spanning Tree
_ ____________ Program I; _____________ _

11

IV. Graphs and Data Types

We use the minimum spanning tree problem to further discuss the interaction between graphs
and data types. Program 5 shows a minimum spanning tree algorithm. We do not discuss the
details of the algorithm, cf. IM84, section IV.8) for the proof of correctness, but concentrate
instead on the similarities of programs 3 and 5. In both cases a node_array(item) is used and
in both cases the program starts by creating one item for each node of the graph. Similar
statements occur in many graph algorithms.

A user of LEDA may want to incorporate all these statements into the declaration of the
partition or the priority queue. He can do so (in fact we have done it already) by deriving
a data type node_partition from the data type partition and similarly for priority-Queue (cf.
section VI) . A node_partition Q consists of a node_array(partition_item) I and a partition
P. The declaration

node_part ition Q(G)

will then execute lines (3), (10), (11), and (12). The operations on node_partitions are also
easily derived , e.g., Q.same_block(v, w) just calls P.3ame_block(Ilv),Ilw)). Altogether, this
yields the simplified program 6.

--_. -------- --
(1) # include <LEDA/ graph.h>
(2) #include < LEDAj partition.h>

(3) int cmp(edge 01, edge e2, edge..arraY(int)& C) { return (Ciel) - (Cle2)); }

(4) void MST(graph& G, edge..array(int)& c03l, edgelist& EL)
(5) (node v, w;
(6) edge e;
(7) node_partition Q(G);

(8) edgelist OEL = G.aILedgesO;
(9) OEL.sort(cmp,cost);

(10) EL.c1earO;
(11) forall(e,OEL)
(12) { v = G .• ""rco(e);
(13) w = G.target(e);
(14) if (!(Q.same_block(v,w))
(15) { Q.union_blocks(v,w);
(16) EL.append(e);
(17) }
(18) }
(19) }

Program 6: Simplified MST Program
____ ___________ Program 6 _____ _________ _

The reader may ask at this point why we provide the elegant types node_partition and
node_priority _queue in this roundabout way. Why do we first introduce items and then

12

show how to hide them? The reason is that in the case of graphs the ground set of the
partition or priority queue is static. In general, this is not the case

Consider, for example, the standard plane sweep algorithm (ef. iMS4, section VIIA.l, sec­
tion VII.4.1]) for computing line segment intersections. It uses two information structures,
usually called the X-and Y -structure. The Y -structure is an ordered sequence of intersec­
tions of the sweep line with the line segments and the X-structure is a priority queue. The
priority queue contains an event for each line segment I of the Y -structure which intersects
the succeeding line segment Isuc in front of the sweep line. The event occurs when the sweep
line p ses the intersection.

(1)
(2)
(3)
(4)
(5)

(6)
(7)
(S)

(9)
(10)

(11)
(J 2' ,)
(1 3)

x_sweep = Xj

sort_8eq_item sit = Y _structure.insert{l,nil);
sort-seq_item sitpred = Y..structure.predecessor(sit);
sorLseq_item sit sue = Y _structure.8uccessor{sit)j
pq_item pqit;

if (sitpred ! = nil)
{ if «pqit = Y_structure .info(sitpred)) ! = nil) X_structure.delete_item(pqit);

/ / removes the event, if any, associated with sitpred from the event queue

line_segment Ipred = Y..structure.kel/(sitpred);
condpair inter = intersection(lpred,I);

if (inter.status && (inter.x > x ... weep))
Y _structure.change_inf(sitpred, X ..structure.insert(sitpred, inter.x))

else
Y _structure.change_inf(sitpred, nil)

(14) }
(IS) if (sit sue! = nil)
(16) { line_segment Isuc = y ... tructure.kel/(sitsuc);
(17) condpair inter = intersection(I,lsuc);
(18) if (inter.status && (inter.x > x..sweep))
(19) Y --"tructure.changeJnf(sit, X ... tructure.insert(sit, inter.x);
(20) }

Program 7: This program fragment processes the left endpoint of a line segment in the plane
, weep algorithm for line segment intersection.

_____ ______ Program 7 ____________ _

In the algorithm the sweep line is moved from left to right. The sweep line stops whenever it
passes through a left or right endpoint of a line segment or through an intersection. In either
c e the X-and the Y -structure have to be updated appropriately. Consider for example
the situation where a left endpoint of some line segment I is encountered at coordinate x.
The following actions have to be taken: insert I into the Y -structure, say between Ipred and
Isuc, remove the event, if any, associated with Ipred from the X-structure and add the events
associated with lpred and I, if they exist.

13

The appropriate LEDA types are

sort..seq(line..segment,pq-.item) Y..structure;

priority _queue(sortseq-.item,int) X..structure;

The Y -structure is a sequence of sortseq-.items. Each item contains a line segment as
its key and a pqjtem aB its information. The ordering is induced by the intersection of the
line segments with the sweep line. Similarly, the X-structure stores for each item of the Y­
structure the x-coordinate of the corresponding event. Each item in the Y -structure haB direct
access (through pqjtem) to the aBsodated event and each event in the X-structure haB direct
access (through sortseqjtem) to the affected position of the Y -structure. Program 7 shows
the code which processes the left endpoint of a line segment I at x-coordinate x. It makes
use of a function inter8ection(line_segment lpred,l), which given two line segments returns
a pair (status, xcoord) (type condpair), where status indicates whether the two segments
intersect and, if so, xcoord is the x-coordinate of the intersection. The variable x_sweep
denotes the current position of the sweep line.

V. Inside LEDA

This section gives some of the implementation details of LEDA. T he reader should be familiar
with the major features of C++

1. Implementation of abstract data types

As mentioned before each data type in LEDA is realized by one or more C++ claBses. The
operations and operators are member functions of the corresponding classes. In C.+ a class
definition consists of a declaration part and an implementation part. The declaration of a
class describes the interfaces of its member functions (return and parameter types) and the
private data of each instance of the elaBs. The former part of a class declaration corresponds
to the abstract specification of the data type. The implementation part of the class fills in
the missing C++ code to realize the member functions.

We will now treat a realization of the data type partition in detail. The implementation is
based on the well-known union-find data structure. A partition is a forest of partition nodes,
partition_items are pointers to partition nodes. All nodes of a partition are linked in a singly
linked list. This list is used (by the destructor) to free storage when the scope of the partition
ends .

typedef partitionJlode* partition-.item;

class partition {

/ / private:

partitionjtem usedjtems; / / first item on linked list of used items

public: / / operations

part itionjtem make_blockO;
partit ion-.item find_block(partition-.item);
int same_block(partition-.item, partitionjtem);
void union_blocks(partition-.item, partition-.item);

14

void c1earO;

/ / constructor:
partitionO { used-items = nil; }

/ / destructor:
-partitionO { c1earO; }

};

Note that the constructor is called automatically to initialize an instance of the class when it
is created by a variable declaration. The destructor is called automatically when the scope
of the instance ends.

class partition..node {

friend class partition; / / members of class partition are allowed to access private data

/ / private:

partition.node. father; / / parent node in the forest
partition.llodeo next; / / next node in the linked list of used nodes
int size; / / size of the subtree rooted at this node

public:

/ / constructor:
partition.llode(partition.llode* n) { father=nil; size=l; next=n; }

}

The C++ code realizing the member functions of the class partition follows. We use the
union-find algorithm with weighted union rule and path compression.

partition_item partition::maJre_blockO
{ / / create new item and insert it into list of used item

}

used-items = new partition.llode(used-items);
return used-items;

partition-item partition::find_block(partition-item it)
{ /! return the root of the tree that contains item it

}

partitionJtem x,root = it;

while (root-+father) root = root-+father;

/ / path compression:

while (it!=root)
{ x = it-+father;

}

it-+father = root;
it = x;

return rootj

15

int partition::same_block(partitionJtem a, partitionJtem b)
{ return find_block(a)==find_block(b); }

void partition::union_blocks(partitionJtem a, partitionJtem b)
{ j j weighted union

}

a = find_block(a);
b = find_block(b);

if(a-->size > b-->size)
{ b-->father = a;

a--tsize += b---+sizej }
else{ a-->father = b;

b---+size += a--+size; }

void partition::clearO
{ j j delete all used items

partitionjtem p = used...items;
while (used_items)
{ p = usedJtems;

}
}

usedJ tems = llsedJtems - -+ nextj
d elete p;

Note that only member functions or member functions of friends are allowed to access the
pri vate data of a class. This guarantees that the user can manipulate objects of a class only
by member functions, i.e. only by the operations defined in the specification of the data type.
This data hiding feature of C++ supports complete separation of the specification and the
implementation of data types.

For every data type XYZ there exists a so-called header file "XYZ.h" containing the decla­
rat ion of class XYZ. Programs using XYZ have to include this file. For example, partitions
can only be used after the line

include <LEDAjpartition.h> (see program 6)

The implementation of all classes are precompiled and contained in a library which can be
used by the linker.

2. Parameterized Types

Most of the data types in LED A have type parameters. In section II we defined a dictionary
to be a mapping from a key type K to an information type I, here K and I are formal type
parameters. The LEDA statement

"declare2(dictionary, t 1 , t2)"

declares a dictionary type with name "dictionary(tl, t2)" and actual type parameters K = t 1

and 1 = t2. How is this realized?

16

Note that the operations on a dictionary are independent of key type K and information
type I. So it is possible to implement all dictionary operations (member functions) without
knowing K and I. This is done by implementing a base class dictionary with K = I = void •.
For example

class dictionary { / / base class

/ / private data

public:

void insert(void* k, void. i)i

void. access(void* k);

};

In C++ the type void. (pointer to void) is used for passing arguments to functions that are not
allowed to make any assumptions about the type of their arguments and for returning untyped
re." lts from functions. To declare a concrete data type for given actual type parameters
(e.g., dictionary(int,int)) a derived class of the corresponding base class (dictionary) has to
be declared. This derived class inherits all operations and operators from its base class and
performs all necessary type conversion:

class dictionary(int,int): public dictionary {

void insert(int k,int i) { dictionary::insert((void.)k, (void.)i); }

int access(int k) { return (int)dictionary::access((void.)k); }

};

CH 's macro facility is used to fill in such declarations of derived classes. There are
macros declare, declare2, ... to declare data types with one, two, ... type parameters. de­
clare2(dictionary,int,int) for example just creates the above declaration of dictionary(int,int) .

3. Iteration

LI~DA provides various kinds of iteration statements. Examples are

for iists:

forall(x,L) { the elements of L are successively assigned to x}

for graphs:

foralL.nodes(v, G) { the nodes of G are successively assigned to v}

foraILadj...nodes(w,v) {the neighbor nodes ofv are successively assigned to w}

17

All these statements are macros that are expanded to more complicated for-statements. The
list iteration macro forall is defined 88 follows

define forall(x,L) for(L.iniLcursorO; x = L.currenLelementO; L.move_cursorO;)

Here init_cursorO, move_cursorO and current_elementO are member functions of the class list
that manipulate an internal cursor.

The other iteration statements are implemented similarly.

VI. Extendibility

The goal of the LEDA project is the design of a library of reusable data types and algorithms
that can easily be included into user programs. Of course, such a library can never be
complete, i.e., there will always be situations requiring data types not contained in the library.
Therefore there should be a poasibility for users to extend the library by adding new data
types and algorithms

LEDA is extendible in two ways:

1. N .. w data types can be added as described in section V (Inside LEDA). This kind of
extending the library is suitable for users having a detailed knowledge of the data struc­
tures, they want to use, and having experience in C++ programming.

2. New data types can also be constructed by combining already existing LEDA data types.
This method allows non-experts to build data types on a higher level of description (the
level of most example programs in this paper). An example of such a combination of
two LEDA data type is the data type node_partition (cf. section IV). It is implemented
by combining partitions and node..arrays of partition-.items as follows:

class node_partition {

node_array(partition-.item) I;
partition P ;

public:

void union_blocks(node v, node w) { P.union_blocks(I[vJ, I[w]); }
int same_block(node v, node w) { return P.same_block{I[v],I[wJ); }

/ / constructor
node_partition(graph& G);

};

node_partition: :nodc_partition(graph& G)
{ / / construct a node_partition for the nodes of graph G

node v;
·I.init(G, nil);
foralLllodes(v, G) I[v] = P .make_blockO;

}

We give another example for combining two LEDA data types. Assume we want to construct
a data type !MtJist. An instance of the data type !astJist is a linear list with a fast by key

18

access operation. Fast lists can be implemented by a linear list L of dictionary items and a
dictionary D. The dictionary is used to associate with each key its position in the list. The
operations of the data type / asUist perform the corresponding operations on the linear list
L and operations on the dictionary D to store or lookup the positions of the elements in L .
The details are as follows .

declare2 (dictionary,K,list..item)

(K is the element type of /asUi.t)

declare(list,dicjtem)

typedef dicjtem fasUist..item;

class fasUist {

list(dicjtem) L;

dictionary(K,list..item) D;

public:

/asUisLitem insert(JasUisLitem it, K k)

{ / / insert key k after item i t

}

dicitem x = D.insert(k, nil);

list_item p = L.insert(D.inf(it),x);

D.changejnf(x,p);

void remove(Ja.UisLitem it) { L.del(D.inf(it)); D.del(it); }

/ asUisLitem access(K k) { D.lookup(k); }

K entry(JasUisLitem it) {return D.key(it) }

/asUisLitem succ(!asUisLitem it) { return L.entry(L.succ(D.inf(it))) }

};

VII. Experiences

We report on our experiences in designing, implementing and using LEDA.

We found the task of specifying a data type surprisingly difficult. The data types dictionary
and priority queue were the first two examples which we tried. The dictionary was readily
specified; we had, however, lengthy discussions whether a dictionary is a function from keys
to variables of type I or to objects of type I. The former alternative allows array notation
for dic"tionaries, e.g. line 8 in program 1 could be written Dlk] + +, but also allows the
user to store pointers to variables in our modules. The latter alternative makes notation
more cumbersome but seems to be safer. We did not resolve the conflict but now have both
alternatives to gain further insight by experiments. The priority queue took us a long time.
We wanted to support access by position and we wanted a complete separation of data type

19

and data structure. We found neither the combinatorial algorithms nor the abstract data
type literature very helpful. In the algorithms literature the position concept is usually only
discussed in the context of concrete implementations and is then equated with an index in an
array or a pointer to a node of a data structure. In this way, no abstract definition of the data
type is given and the data structures are intimately tied with the applications; e.g. priority
queues are tied to shortest path calculations and partitions are tied to graph algorithms. In
the latter part of the literature the position concept is only discussed in simple examples, e.g.
iterators in linear lists [TRE881.

We use items as an abstraction of positions. Items are similar to the atoms of 8ETL. We found
the item approach very flexible and, once we used it for priority queues, the specification of
data types like sequences, partitions and lists became easy.

The implementation of LED A was done by the second author, in particular, lists, graphs,
and sorted sequences were implemented by him. Once the standards were set, we asked
students to join in and to either realize additional data types or to give alternative realizations.
Implementations of various kinds of dictionaries (BB[al-trees, red-black-trees, (a,b)-trees,
dynamic perfect hashing) and priority queues (Fibonacci-heaps , C-heaps) were provided by
Dirk Basenach, Jurgen Dedorath, Evelyn Haak, Michael Muth, Michael Wenzel and Walter
Zimmer.

LF: DA was used to write graph and geometry algorithms. Some examples are shortest paths ,
components of various kinds, unweighted and weighted matchings, network flows, embeddings
of planar graphs, visibility graphs of line segments, Voronoi diagrams and intersection of half
spaces . The graph users liked LEDA because all the required data types such as graphs,
node- and edge-arrays, lists, dictionaries, ... were available and hence LEDA increased their
prod uctivity enormously. This has led to more experimental work, one of the goals of the
project . The first geometry users of LEDA were much less enthusiastic because almost none
of the required types such as points, lines, ... were available. Stefan Meiser implemented
some of them and we are now hearing the first positive reactions from the geometry users.

VIII. Conclusions

L E:DA is a library of efficient data types and algorithms. At present, its strength is graph
a lgori thms and the data structures related to them. The computational geometry part is
evolving.

T here are several other projects which aim for similar goals as LEDA, e.g. [B88, 8089, L891.
We believe, that LED A compares well with these systems because of

.. the clear separations between specification and implementation,

- the natural syntax, and

- the inclusion of many of the most recent and most efficient data structures and algo-
rithms.

We close this section with a list of algorithms that we implemented using LEDA data types.

1. Graph Algorithms

20

All graph algorithms are part of the library. They accept instances of any user-defined graph
type GRAPH(IItllpe,etype) as argument. 1.1. Basic Graph Algorithms

- depth first search

- breadth first search

- connected components

- transitive closure

1.2. Shortest Path Algorithms

- Dijkstra's algorithm

- Bellman/Ford algorithm

- all pairs shortest paths

1.3. Matchings

- maximum cardinality bipartite matching

- maximum weight bipartite matching

1.4. Network Flow

- maximum flow algorithm of Galil/Namaad

- maximum flow algorithm of Goldberg/Tarjan

1.5. Planar Graphs

- planarity test

- triangulation

- straight line embedding

2. Computational Geometry

- intersection of half spaces

.- convex hull of point sets

- construction of Voronoi diagrams

- construction of visibility graphs

Acknowledgement: We want to thank our colleagues G. Hotz, J. Loeckx, W. Riilling, K.
Sieber and R. Wilhelm for many helpful discussions.

21

IX. References

[AHU8S]

[AMOT88]

[B88]

[BKMRS84]

[FT84]

[J.89]

[M84]

[S089)

ISt86]

[T83]

[TRE88]

A.V. Aho, J.E. Hopcroft, J.D. Ullman: "Data Structures and Algorithms",
Addison-Wesley Publishing Company, 1983

R.K. Ahuja, K. Mehlhorn, J.B. Orlin, R.E. Tarjan: "Faster Algorithms for
the Shortest Path Problem", Technical Report No. 193, MIT, Cambridge,
1988

A. Bachem: Personal Communication, 1988

A. Miiller-von Brochowski, T. Kretschmer, J. Messerschmitt, M. Ries, J.
Schiitz: "The Programming Language Comskee", Linguistische Ar~eiten,
Heft 10, SFB 100, Univ. des Saarlandes, Saarbriicken, 1984

M.L. Fredman, and R.E. Tarjan: "Fibonacci Heaps and Their Uses in Im­
proved Network Optimization Algorithms", 25th Annual IEEE Symp. on
Found. of Compo Sci., 338-346, 1984

C. Lins: "The Modula-2 Software Component Library", Springer Publishing
Company, 1989

K. Mehlhorn: "Data Structures and Algorithms", Vol. 1-3, Springer Pub­
lishing Company, 1984

J. Soukup: "Organized C", Typescript, 1988

B. Stroustrup: "The C++ Programming Language", Addison-Wesley Pub­
lishing Company, 1986

R.E. Tarjan: "Data Structures and Network Algorithms", CBMS-NSF Re­
gional Conference Series in Applied Mathematics, Vol. 44, 1983

P. Thomas, H. Robinson, J.Emms: "Abstract Data Types", Oxford Applied
Mathematics and Computing Science Series, 1988

22

	A_1988_05 0000_1heitscover
	A_1988_05 0001
	A_1988_05 0002
	A_1988_05 0003
	A_1988_05 0004
	A_1988_05 0005
	A_1988_05 0006
	A_1988_05 0007
	A_1988_05 0008
	A_1988_05 0009
	A_1988_05 0010
	A_1988_05 0011
	A_1988_05 0012
	A_1988_05 0013
	A_1988_05 0014
	A_1988_05 0015
	A_1988_05 0016
	A_1988_05 0017
	A_1988_05 0018
	A_1988_05 0019
	A_1988_05 0020
	A_1988_05 0021
	A_1988_05 0022

