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Abstract 

A general technique for merging database schemas is developed that has a number 
of advantages over existing techniques, the most important of which is that schemas are 
placed in a partial order that has bounded joins. This means that the merging operation, 
when it succeeds, is both associative and commutative, i .e . ,  that the merge of schemas 
is independent of the order in which they are considered - a property not possessed 
by existing methods. The technique is interactive in that users make assertions about 
the relationships between the nodes of the schemas to be merged. These assertions are 
then considered to be elementary schemas, and are combined with the schemas using 
precisely the same merging operation. 

The technique is general and can be applied to a variety of data models. It can also 
deal with certain cardinality constraints that arise through the imposition of keys. A 
prototype implementation, together with a graphical interface, has been developed. 

Keywords: schemas, merging, semantic data models, entity-relationship data models, 
inheritance 

1 Introduction 

The desire t o  provide user views that  combine existing databases, and t o  combine user 
views during the design process of new databases, leads directly to  the problem of schema 
merging - a problem that  has been present in the database literature for a t  least ten years 
and t o  which a variety of sophisticated techniques have been applied. At one end of the 
spectrum, the  user is provided with a set of tools for manipulating two schemas into some 
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form of consistency [I, 21; at  the other end, algorithms have been developed that take two 
schemas, together with some constraints, and create a merged schema [3]. In general, one 
will want to use a method that lies somewhere between these two extremes; a number of 
such variations have been explored, and are surveyed in [4]. It  appears that some user 
manipulation of the given schemas is essential - especially to introduce consistent names 
- but that a merging algorithm can also be very useful, especially when large schemas are 
involved. 

To the best of our knowledge, the question of what meaning or semantics this merging 
process should have has not been explored. Indeed, several of the techniques that have been 
developed are heuristics: there is no independent characterization of what result they should 
produce. One would like to have some semantic basis for a merge that would characterize 
it with some notion of consistency with the associated data. In this paper, we shall develop 
a simple and general characterization of database schemas that allows us to give natural 
definitions of what a merge is in terms of the the informational content of the schemas 
being merged. In particular we shall define a kind of merge which takes the union of all 
the information stored in a collection of database schemas, and, wherever possible, forms a 
schema presenting this but no additional information. We shall be able to  define a binary 
merging operator that is both commutative and associative, which means that if two or 
more schemas are merged, the result is independent of the order in which the merges are 
performed. Existing techniques do not have this property. Worse still, lack of associativity 
is endemic to the data models against which the merging process is commonly defined (for 
example, the Enti ty-Relationship (ER) model). 

Using a more general formalism, we will be able to rescue this situation by introducing 
special, additional information during the merging process. The additional information 
describes its own origin, and can be readily identified to allow subsequent merges to  take 
place. In addition, our new schema merging technique may be applied to other, existing 
models, such as the ER-model, by first translating the schemas of these models into our 
model, then carrying out the merge, and finally translating back into the original model. It 
is possible to show that, if such an approach is used, then the merging process respects the 
original model. 

The paper is organized as follows: we shall first describe a general data model that subsumes, 
in some sense, data models such as relational, entity-relationship and functional. We then 
observe that even in this general model, we cannot expect to have associative merges. We 
relax the constraints on our model to produce a still more general formulation of a weak 
schema for which the merging process is well behaved, and then show how to convert these 
weak schemas back into our original schemas. We also show that certain common forms 
of constraints on the schemas, such as key constraints and some cardinality constraints, 
can be handled in the same framework. Finally we shall indicate how these methods could 
be used equally well to give definitions of alternative kinds of merge, and, in particular, 
describe how we could form lower merges representing the intersection of the information 
represented by a collection of schemas. 



2 The Model 

We represent a schema as a directed graph, subject to  certain restrictions, whose nodes 
are taken from a set C of classes, and with two kinds of edges that are used to represent 
"attribute of" relationships or "specialization of" relationships between classes. Attribute 
edges have labels taken from a set L,  so that we represent the attribute-of edges by a relation 
E C x L x C. If (p,a,q) E & then we write p q, with the meaning that any instance 
of the class p must have an a-attribute which is a member of the class q. Since in some 
data models, like the ER data model, the term "attribute" is used to designate a certain 
kind of node in a schema, we shall use the neutral term avow to refer to these labeled 
relationships, and say for p -"-, q that p has an a -amw of class q. The specialization edges 
are represented by a relation S on classes; we use the notation p q and sa.y that p is 
a specialization of q when (p, q) E S. This indicates that all the instances of p are also 
instances of q.  Formally, a schema over C, ,C is a triple (C, &, S) where C C C is a finite set 
of classes, S is a partial order (a reflexive transitive and antisymmetric relation on C), and 
I is a subset of C x L x C satisfying 

1. I f p  ql a n d p A  q2 then 3s E C .  s * ql and s q2 and p s. 

2. If p* q and q A T then p A  T. 

for all a E L and p, q, T, s E C 

The first constraint says that for any a-arrow of a class p, there is a least class s (under 
the ordering S) such that a has class s. Such a class is said to be the canonical class of 
the a-arrow of p. The second constraint says that, if q has an a-arrow of class T and p is 
a specialization of q, then p must also have an a-arrow with class T. The third constraint 
says that, if p has an a-arrow of class s and s is a specialization of T, then p also has an 
a-arrow of class T,  SO constraints 2 and 3 together mean that arrows are, in some sense, 
preserved by specialization. It is worth remarking that we could equally well have defined 
the arrows as partial functions from classes to classes, which is how they are expressed in 
Dayal's definition of a functional schema [2]. If we write p 4 q when p has an a-arrow 
with canonical class q, we have the conditions 

D l .  If P A q~ and 5 q . ~  then ql = q2 

D2. If q & s and p + q then 3r E C.T s and p -% r 

Further, given any - satisfying conditions D l  and D2, if we define the relation - by 
p A q iff there exists a s E C such that s q and p s, then - will satisfy 
conditions 1, 2 and 3 above. Conditions D l  and D2 are those given for the arrow in [2] 



and are also given by Motro [I] as axioms for functional schemas (the latter uses unlabeled 
arrows). 

Figure 1: An ER-diagram with "isa" relations 

owner 

Person 

Figure 2: A database schema with "isa" relations 

For example, the ER diagram shown in figure 1 corresponds to the database schema shown 
in figure 2, where single arrows are used to indicate edges in £ and double arrows are used 
to  represent pairs in S (double arrows implied by the transitivity and reflexivity of S are 



omitted). In all the subsequent diagrams, edges in £ implied by constraint 2 above, will 
also be omitted. 

Suitable restrictions of such graphs may be used to describe instances of a variety of data 
models: relational, entity-relationship and functional. For a relational instance, we stratify 
C  into two classes C  and C A  (relations and attribute domains), disallow specialization edges, 
and restrict arrows to run labeled with the name of the attribute from CR to C A  (first normal 
form), while, for the E-R model, we stratify C into three classes (attribute domains, entities 
and relationships) and again place certain restrictions on the edges. Moreover, it can be 
shown that the merging process described in section 4 preserves these restrictions, so that 
we can merge schemas from other models by first translating them into our model, then 
merging them, and finally translating them back into the original data model (see [5] for 
details). By a less constrained process we can describe instances of the functional model 
[6, 2, 11. The graphs are also general enough to represent databases with higher order 
relations (that is, relationships between relationships), and complex data structures (such 
as circular definitions of entities and relationships), features that are commonly found in 
object-oriented data models. Consequently, despite its apparent simplicity, the generality 
of the model makes it a good candidate for schema merging. One should note, however, 
that further adornment of these graphs is needed to describe instances of sophisticated 
data models such as those proposed in [7] and [8], which contain constructors for sets and 
variants . 

3 Problems with finding merges of schemas 

The first problem to be resolved when forming a common merged schema for a number of 
distinct databases is to state the correspondences between the classes and correspondences 
between the arrow labels of the various databases. This problem is inherently ad hoc in na- 
ture, and depends on the real-world interpretations of the underlying databases. Therefore, 
the designer of the system must be called on to resolve naming conflicts, whether homonyms 
or synonyms, by renaming classes and arrows where appropriate. The interpretation that 
the merging process places on names is that if two classes in different schemas have the 
same name, then they are the same class, regardless of the fact that they may have different 
arrow edges. For example, if one schema has a class Dog with arrow edges License#, Owner 
and Breed, and another schema has a class Dog with arrow edges Name, Age and Breed, 
then the merging process will collapse them into one class with name Dog and arrow edges 
License#, Owner, Name, Age, and Breed. It is also possible to constrain the merging process 
by introducing specialization relations a1 + a 2  between nodes a1 in schema S1 and a 2  in 
schema Sz .  We can treat a 1  + a2 as an atomic schema that is to be merged with S1 
and then with 5'2. Because our schema merge is associative and commutative, the result is 
well-defined; indeed an arbitrary set of constraints can be added in this fashion. 

For the remainder of this section and the following section, we will consider the merge of a 



collection of schemas to be a schema that presents all the information of the schemas being 
merged, but no additional information (although in Section 6, we will indicate that there 
may be other, equally valid interpretations of what the merge should be). Hence what we 
will considerto be the merge is the "least upper bound" of the database schemas under some 
sort of information ordering. Recall that, in addition to defining a view of a database, a 
database schema expresses certain requirements on the structure of the information stored 
in the database. When we say that one database schema presents more information than 
another, we mean that any instance of the first schema could be considered to be an instance 
of the second one. The first schema must, therefore, dictate that any database instances 
must contain at least all the information necessary in order to be an instance of the second 
schema. It is clear that, were we to construct an ordering on schemas which represented 
the fact that one schema contained more information than another, it should be a partial 
ordering on schemas, and the binary merge of two schemas would be their least upper 
bound, or join, under this ordering. This ties in well with our intuition that a binary 
merging operator on schemas should be associative, commutative and idempotent: indeed 
any such binary operator will lead us to  a partial ordering on schemas. 

In looking for a suitable information ordering and definition of merge for schemas, we soon 
find that there are some problems. One of the first problems we notice is that the merge 
of two schemas may contain extra implicit classes in addition to the classes of the schemas 
being merged. For example, figure 3 shows two schemas being merged. The first schema 
asserts that the class C is a subclass of both the classes A 1  and A2. The second schema asserts 
that the classes A 1  and A2 both have a-arrows, of classes B l  and B2 respectively. Combining 
this information, as we must when forming the merge, we conclude that C must also have 
an a-arrow, and that this arrow must be of both the class B 1  and B2. Consequently, due to 
the restrictions in our definition of database schemas in Section 2, the a-arrow of the class 
C must have a class which is a specialization of both B 1  and B2 and so we must introduce 
such a class into our merged schema. 

When we consider these implicit classes further we find that it is not sufficient merely to 
introduce extra classes into a schema with arbitrary names: the implicit classes must be 
treated differently from normal classes. Firstly, if we were to  give them the same status 
as ordinary classes we would find that binary merges are not associative. For example 
consider the three simple schemas shown in figure 4. If we were to first merge the schemas 
G 1  and G 2  we would need to introduce a new implicit class (X?)  below D and E, and then 
merging with G 3  would make us introduce another new class below X? and F, yielding the 
first schema shown in figure 5. On the other hand, if we were to merge GI with G 3  and 
then merge the result with G2, we would first introduce an implicit class below E and F, 
and then introduce another one below this one and D. Clearly what we really want is one 
implicit class which is a specialization of all three of D, E and F. 

Another problem is that it is possible for one schema to present more information than 
another without containing as many implicit classes. It is clear that for one schema to 
present all the information of another (plus additional information) it must have, at least, 



Figure 3: Schema merging involving implicit classes 

all the normal classes of the other. However let us consider the two schemas shown in 
figure 6. We would like to assert that the schema G3 shown in figure 7 is the merge of the 
two schemas, G1 and G 2 ,  but the schema G 4  also presents all the information of G1 and G2, 
and in addition contains fewer classes than G3. The point is that G 4  asserts that the a-arrow 
of F has class E, which may have restrictions on it in addition to those which state that it's 
a subclass of both C and D, while G3 only states that the a-arrow of F has both classes C 
and D. 

4 Merging Database Schemas 

In order to avoid the complexities of introducing implicit classes, we will weaken our def- 
inition of database schemas so that implicit classes become unnecessary. We then define 
an information ordering on these weak schernas, such that binary joins do exist and are 
associative, and form the weak schema merge. Finally we convert the merged weak schema 



Figure 4: Some simple schemas 

~ e r ~ e  (Merge (GI, G2) , G3) : ~erge(Merge(G1, G3), ~ 2 ) :  

Figure 5: An example of non-associative merging 

into a proper schema by introducing additional implicit classes (we will refer to the schemas 
satisfying the conditions in section 2 as proper schemas. The idea is that we can do all our 
merging using weak schema, and then convert the result to a proper schema when we are 
done. 

4.1 Weak Schemas 

A weak schema is a schema in which we no longer require that if class p has an a-arrow, 
then the a-arrow has a canonical class (condition 1 of proper schemas). Formally, a weak 
schema over C, L is a triple (C,&,S) where C C C is a set of classes, S is a partial order 
(a reflexive transitive and antisymmetric relation on C), and & is a subset of C x .C x C 
satisfying 

W2. If p -% s and s + r then p -%- r. 



Figure 6: Yet more schemas 

Figure 7: Possible candidates for the merges of the schemas 

for all a E L and p , q ,  r, s E C 

The ordering on weak schemas is defined in the obvious way: Given two weak schemas 
61 = (Cl ,El ,S l )  m d  G 2  = (Cz,Ez,S2), we write GI L G 2  iff 

That is, every class in GI appears in G2, every a-arrow edge in 61 appears in 6 2 ,  and every 
specialization edge in G1 appears in G2. 

It is clear that E is a partial ordering on weak schemas; it is also bounded complete, as 
shown in the following proposition. 

Proposition 4.1 For any weak schemas GI and g2, i f  there exists a weak schema G' such 
that G1 G' and G2 G' then them is a least such weak schema GI U G2. 



Proof: Given weak schemas g1 and G2 as above, define B = (C, E, S )  by 

C = C, u C, 

S = (Sl uSz)* 

& = { p ~ ~ ~ ( C ~ ~ ~ C ) ( 3 q , ~ ~ C . p ~ q ~ S , r ~ ~ ~ S ,  
and q A r E ( I l  U E2)) 

(where (S1 U S2)* denotes the transitive closure of (S1 U S2), and & adds edges to  El U E2 
necessary for conditions W1 and W2 to hold). I t  is clear that, if G is a weak schema, then 
it is the least weak schema such that G1 & B and G2 6. Hence it is sufficient to show 
that, if there is a weak schema, E' = (C1,I',S'), such that El 5 G' and G2 L G', then G is 
indeed a weak schema. The only way that G can fail to be a weak schema is if the relation 
S fails to  be antisymmetric, so the result follows from the fact that, for any suitable G' as 
above, we must have S E Sf, and so if St is antisymmetric then so is S.0 

We say a finite collection of weak schemas, 61,. . . , G,, is compatible if the relationship 
(S1 U . . . U S,)* is anti-symmetric (where S1,. . . , S, are the specialization relations of 
GI,. . . , G, respectively). Consequently we have, for any finite compatible collection of 
proper schemas, G I , .  . . , G,, there exists a weak schema merge G = Ur=l G;. Furthermore, 
since we define G as the least upper bound of GI, .  . . , Q,, the operation is associative and 
commutative. 

Figure 8: The least upper bound of two schemas 

For example, the schemas G I  and G2 in figure 6 are compatible, and their weak schema 
merge is shown in figure 8. 



4.2 Building proper schemas from weak schemas 

We now must pay the price for our use of weak schemas: we must provide a way of intro- 
ducing implicit classes into a weak schema B, in order to form a proper schema g, such that 
if there are any proper schemas greater than G then is such a schema. 

First we introduce some new notation. For any p E C and any a E L,  we write R(p,a) to 
denote the set of classes reachable from p via a-arrows 

Further, for any set X C, we use R(X,a) to denote the set of classes reachable from 
classes in X via a-arrows 

We define the function MinS : P(C) + P(C) so that, for any set X C,  MinS(X) is the 
set of minimal elements of X under the ordering S. That is 

Mins(X) = { p ~  X I Vq E X . if q ==+p then q = p }  

where ?(A) denotes the power set of the set A. 
--- 

We now proceed to build a proper schema = (C, £, S) from G as follows: 

1. First we will construct a set, Imp C P(C), of sets of classes, corresponding to our 
implicit classes. We will construct Imp via a series of auxilary definitions as follows: 

P = {{PI 1 P E C} 
~ n + l  = {R(X,a) I X E P , a  E L )  

00 

I- = U P  
n=l 

Imp = { M i v ( X )  1 X E 1- and IMinS(X)J > 1) 

Intuitively, Imp is the set of all sets of minimal classes which one can reach by following 
a series of arrows from some class in C ,  with cardinality greater than 1. Note that the 
process of forming Imp will halt since there are a finite number of subsets of P(C). 

Using the example in figure 8, 



2. We define ?? by first taking C and then adding a new class for every X E I m p .  
That is - 

C = C U { ~ I X E I ~ ~ }  

Continuing with figure 8, 
- 
c = { A ,  B ,  C, D ,  E ,  F, { C ,  Dl1 

3. We define so that if p A q for each q E X then p A E z, while if there is a q 
such that p -% q then p  -% q E z. Formally: 

where ~ ( x ,  a )  = R(X, a)  for all X E I m p .  

For our running example, 
- 
£ = & U  { F  {C, D)) 

4. We define 3 by first taking S and then adding every 7 such that every class 
in Y has a specialization in X; every p  where p  has a specialization in X; and 
every p =+ F where p is a specialization of every class in X. 

Thus, for figure 8, 

Summarizing the effect on figure 8, we get the schema G 3  in figure 7, with the class ? 
replaced by the class {C, D } .  

It can be shown that for any weak schema G, is a weak schema and 6 E G. Furthermore, 
can be shown to respect condition 1 of the definition of a proper schema, and is therefore 

also a proper schema. 

We would like to be able to show that is the least proper schema greater than 6 .  Un- 
fortunately this isn't quite true. Firstly, it is possible to form other similar proper schemas 
by using different names for the implicit classes (compare this to alpha-conversion in the 
lambda calculus). Secondly, for any two sets X ,  Y E I m p ,  if every class in Y has a special- -- 
ization in X then our method will include the pair (X, Y) in S. However it is not necessarily 
the case that this specialization relation is required, and it might be safe to omit it. We 



could attempt to modify our method so that such pairs are only introduced when required. 
Instead we will argue that, since the implicit classes have no additional information asso- 
ciated with them, it follows that these specialization relations do not introduce any extra 
information into the database schema, and so, since they seem natural, it is best to leave 
them there. Consequently we feel justified defining the merge  of a compatible collection of 
database schemas, Q1,. . . , Q,, to  be the database schema c, where 6 = Uy=l Q;. 

Of course, not every merge of a collection of compatible schemas makes sense. That is, 
the new classes introduced may have no correspondence to  anything in the real world. 
To capture this semantic aspect of our model, we would need to introduce a "consistency 
relationship" on C, and require that, for every X E I m p  and every p, q E X, the pair 
(p, q) is in the consistency relationship. If this condition were violated, the schemas would 
be inconsistent,  and c would not exist. Note that checking consistency would be very 
efficient, since it just requires examining the consistency relationship. However, while the 
idea is interesting, it is beyond the scope of this paper. Suffice it to say that if the merge of 
GI, . . . , Gn fails, either because GI, .  . . , Q, are incompatible, or because they are inconsistent, 
the merge should not proceed, and the user must re-assess the assumptions that were made 
to  describe the schemas. 

5 Cardinality Constraints and Keys 

The model we have used so far concentrates on the semantic relationships between classes 
via specialization and arrow edges, but does not further describe arrows as participating in 
keys or having associated cardinality constraints. Cardinality constraints in the ER model 
are typically indicated on the edges between a relationship and an entity by labeling them 
"O..ln, "1..lV, "O..NV, or "l..Nn, where "N" is used to  indicate unrestricted upper bounds 
or "many" (rather than oo, which would be more appropriate).l For example, consider the 
Lives relationship between Kennel and Dog in Figure 1. As drawn, Lives is a "many- 
many" relationship, typically indicated by labeling the home and occ edges "O..Nn; a dog 
may occupy many different kennels, and a kennel may be the home for many different dogs. 
If we decided to restrict Lives to indicate that a dog can live in at most one kennel the 
occ edge from Lives to Dog would be relabeled "O..l". If we further decided that each dog 
must live in some kennel, we would change the occ label to "l..ln. In general, each edge a 
between a relationship R and entity E in an ER diagram means that in any instance of the 
ER diagram defining sets (extents) Ext(E) and Ext(R), R 5 E is functional. The edge 

'It is worth noting that there is little agreement on what edge labels to use, and what they mean in ER 
digrams, especially for ternary and higher degree relationships. No semantics are given in [9]. Introductory 
textbooks on databases avoid the question and merely give examples of binary relationships [lo, 11, 121; 
[13] is slightly more honest and says that "the semantics of ternary and higher-order relationship sets can 
become quite complex to comprehend." Varying interpretations can be found in [14, 15, 31 We will follow 
the intuition given in [3] since it is one that we can understand. 



label a..p on a means 
Ve E Ext(E).a 5 \ { T I T  A e)l 5 P. 

While several extensions allow a and P to  be any non-negative integers such that a 5 P 
(see [3]), we will restrict our attention to the more common cardinality constraints "O..lV, 
"1..1", "O..N", "l..NW. 

As it stands, however, our model has no way of distinguishing these different edge seman- 
tics. Using the example of the previous paragraph, labeling the occ edge in the Lives 
relationship "O..l" rather than "O..N" could2 result in the same graph in our model, i.e. 
the graph in Figure 2. In this section, we will capture such constraints by introducing 
"key constraints" on nodes, and argue that in some sense they are more general than the 
cardinality constraints typically found in ER models. 

Key constraints, which indicate that certain attributes of an entity form a key for that 
entity, are another common form of assertions found in database models. As an example, in 
the ER and relational models, for the entity set Person(SS#, Name, Address), we might 
claim that there are two keys: {SSP} and {Name, Address}. The intuition behind this 
statement is that if two people have the same social security number, or the same name and 
address, then they are the same person. Generalizing, one could claim that a set of edges of 
a relationship form a key for that relationship. As an example, for the Lives relationship 
in which all edges are marked "O..NV, we could claim that the occ and home edges form a 
key. In the terminology of proper schema, we capture such key constraints by asserting 
that {al, a2, ..., a,} form a key for p, where each ai is the label of some arrow out of p. 

In general, a class may have several keys, or no key a t  all; the latter departure from a 
relational understanding of keys allows us to  capture models in which there is a notion of 
object identity. A superkey of a class is any superset of a key. We may therefore think of 
the set of superkeys for a class p, SK(p), as a set of sets of labels of arrows out of p. SK(p) 
has the property that it is "upward closed", i.e. if s E SK(p) and sr > s, then st E SK(p). 

We now have the constraint on specialization edges that if p q then SK(p) > SK(q), 
i.e. all the keys for q are keys (or superkeys) for p. An example that satisfies this constraint 
can be found in Figure 9. In this example (borrowed from [3]), the assertion is made that 
the advisor of a student is a member of the thesis committee for that student: Advisor 
& Committee. Since the committee for a student consists of several faculty members, and 
each faculty member can be on several thesis committees, the set of keys for Committee 
is {{faculty, victim)). However, since we assume that each student has at most one 
advisor, but that each faculty member can be the advisor of several students, the set of 
keys for Advisor is {{victim)}. Note that {{victim}, { facul ty  , victim)} Z) {{f acuity , 
victim}). 

Our task now becomes to derive keys in the merged schema subject to this constraint. 

'Of course, one might eliminate the Lives node entirely, and draw a single home-edge from Dog to Kennel, 
but this reasoning does not extend to ternary and higher degree relationships. 



Figure 9: "Isa-A" Relation Between Relationships 

Suppose schema Q is the proper schema merge of Q1 and 6 2 .  Each class p in Q appears at 
most once in each of GI and G2, with key assignments SICl(p), SIC2(p) respectively (when 
defined). We define SK to be a satisfactory assignment of keys to classes if 

1. SKl(p) C SK(p), if p E CI; and 

3. S K  satisfies the condition that SIC(p) > SIC(q) whenever p q. 

It is readily checked that if SIC and SKI are satisfactory assignments, then so is SIC fl SIC!, 
defined by (SK: n SK:I)(~) = SIC(p) n SKf(p). Thus there is a unique minimal satisfactory 
assingment to  keys in classes. 

Key constraints and cardinality constraints appear to be incomparable ideas. There are 
certain similarities: For example, the difference between labeling the edge occ edge in 
Lives "O..NV rather than "O..lV can be captured by stating that the set of keys for Lives 
with the "O..NV labeling is {{occ, home)) as opposed t o  {{occ)) for the ''O..lV labeling. 
However, there are also dissimilarities. Keys do not seem to  be able to capture all cardinality 
constraint labelings: For example, the labelings ' 'O.. lV and "1..1" (or "O..nV, "l..nV) on the 
occ edge cannot be distinguished by keys. On the other hand, cardinality constraints cannot 
capture all key assertions: For example, consider the relationship Transact ion in Figure 
10. The statement that Transaction has two keys, one being {loc,  amount), the other 
being {card, amount), has no correspondence in terms of labeling edges. 

Keys can also be used to determine when an object in the extent of a class in an instance one 
schema corresponds to an object in the extent of the same class in an instance of another 
schema. For example, if Person is a class in two schemas, GI and G2, which are being 
merged, and both schemas agree that {SS#} is a key for Person, then an object in the 
extent of Person in an instance of GI corresponds to  an object in the extent of Person in 
an instance of Q2 if they have the same social security number. However, suppose that 
claims that {SS#) is a key for Person, and G2 has an SS#-arrow for Person but does not 
claim that i t  is a key. Since {SS#} is a key for Person in the merged schema, an additional 
constraint has been placed on the extents of G2: two objects in the extent of Person are 
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Figure 10: A Class with Multiple Keys 

the same if they have the same social security number, no matter whether both are from an 
instance of Q1, both are from an instance of Q2, or one is from an instance of GI while the 
other is from an instance of Q2. Furthermore, if G1 claims that {ss#} is a key for Person 
but G2 does not have an St -a r row for Person, then there is not way to tell when an object 
from the extent of Person in an instance of Q1 corresponds to  an object from the extent of 
Person in an instance of G2. 

6 Lower Merges 

In Section 4 we defined the merge of a collection of schemas as their least upper bound under 
an information ordering: Whatever the individual schemas assert to be true is believed to 
be true in the merged schema. Thus, if we merge a collection of schemas, then any instance 
of the merged schema can be considered to be an instance of any of the schemas being 
merged. In some cases, however, it may be desirable to  define the merge of a collection of 
schemas as their greatest lower bound: Whatever the individual schemas agree on as being 
true is believed to be true in the merged schemas. In this case any instances of the schemas 
being merged would also be instances of the merged schema, and, further, we would expect 
to  be able to coalesce or take the union of a number of instances of the collection of schemas 
and use that as an instance of the merged schema. This kind of merge is likely to arise 
in, for example, the creation of a single schema from a collection of user views in database 
design. 

We will refer to  the merges defined in Section 4 as uppe r  merges,  and the formulation 
discussed in this section as lower merges. 

As it stands, taking the lower bound of a collection of schemas using our information 
ordering is unsatisfactory since any information on which two schemas disagree on is lost. 
For example, if one schema has the class Dog with arrows name and age, and another has 
Dog with arrows name and breed, then in the lower bound of the two schema the class Dog 
will only have the arrow name. What we want, however, is some way of saying that instances 



of the class Dog may have age-arrows and may have breed-arrows, but are not necessarily 
required to do so. Worse still, if one schema has the class Guide-Dog and another does not, 
then the lower bound of the two schemas will not have Guide-Dog. The second problem 
can be dealt with easily by adding all classes involved in other schemas to each schema in 
a collection before proceeding with the construction of the lower merge. The first problem, 
however, is more difficult and requires us to  extend our definition of (weak) schemas. 

We define the semi-lattice of participation constraints,  ordered by 2 ,  to be as shown in 
figure 11. We will extend the definition of (weak) schemas by associating a participation 

Figure 11: The semi-lattice of participation constraints 

constraint with each arrow of a schema. The idea is that, if a class p has an a-arrow of 
class q, then if the arrow has participation constraint 1 then every instance of class p must 
have a an a-arrow to an instance of class q;  if the arrow has participation constraint 011 
then an instance of p may have an a-arrow of class q; and if the arrow has constraint 0 
then an instance of p does not have an a-arrow of class q. We adopt the convention of not 
drawing arrows with the participation constraint 0 in our diagram, and, further, assume 
that a schema which does not have some arrow p q is equivalent to the same schema 
but with the arrow p q with participation constraint 0. 

Now, if one schema has an arrow which is not included in another, then we can assume 
that the second schema also has the arrow with participation constraint 0, and we can take 
the greatest lower bound of the participation constraints (under the ordering <) to be the 
participation constraint of the arrow in the merged schema. 

Hence, with the addition of participation constraints, we can form the weak lower merge 
of a collection of schemas in a similar manner to that used to  construct the weak upper 
merges in Section 4 .  We can also build a proper schema from a weak lower merge using an 
algorithm similar to that in Section 4, except that that the implicit classes are introduced 
above, rather than below, the sets of proper schemas that they represent. 

It is worth noting that, while upper and lower merges represent two extreme views of what 
the merge of a collection of schemas should be, there may well be valid and useful concepts 
of merges lying in between the two. However the authors believe that, in order for a concept 
of a merge to  be valid and well defined, it should have a definition in terms of an information 
ordering similar to the ones given here. 



7 Conclusions 

Using a simple but general formalism, we have characterized the weak schema merge of a 
collection of schemas as their least upper bound. The merge of these schemas is then defined 
by translating the weak schema merge to a proper schema. The translation introduces 
new "implicit" classes as required, and identifies their origin in their name. Although 
not discussed in detail in this paper, the "real-world" validity of an implicit class can be 
efficiently checked by consulting a consistency relationship between the classes from which 
the implicit class was formed. 

Despite the simplicity of our mathematical construction, we believe that using an infor- 
mation ordering is the right way of describing the merge of schemas: it has a well-defined 
result, and the merge operation is associative and commutative. Thus user assertions about 
the relationships between schemas can be thought of as real assertions rather than "guiding 
heuristics" since the merge is independent of the order in which the assertions are stated. 
The approach in this paper focused on the upper merge of schemas, which seems to be a 
natural interpretation for merging pre-existing, heterogeneous databases. Other interpre- 
tations of the merge can be used, including the lower merge, by varying the information 
ordering used. 

The approach presented in this paper can be generalized to describe the merge in a number 
of other data models by representing schemas in other data models as "restricted" instances 
of schemas in our general model ( i . e .  stratifying classes in terms of their meaning in other 
models), and finding their proper schema merge. Our merge can be shown to "preserve 
strata", guaranteeing that the result will an instance of the original model; a proof of this 
with full details can be found in [5] .  

To use this approach as a practical schema merging tool, several issues should be addressed. 
Firstly, more attention should be paid to how cardinality constraints should be encorpo- 
rated. While our preliminary approach has been to use a notion of keys, other ideas include 
allowing arrows to  be "multivalued functions" as in [2]; [5] shows how this idea can be 
extended to  our model. We also have not adequately captured the lower bound of "0" on 
arrow edges (also known as "total versus partial participation" in relationships). Secondly, 
some form of assistance should be given for "restructuring" schemas to obtain a better 
merge. Not only can "naming" conflicts occur (such as homonyms and synonyms), but 
"structural" conflicts can occur. For example, an attribute in one schema may look like an 
entity in another schema, or a many-one relationship may be a single arrow in one schema 
but introduce a relationship node in another schema. In these cases, the merge will not 
"resolve7' the differences but present both interpretations. To force an integration, we need 
some kind of "normal form". Thirdly, we need to evaluate how many implicit classes can 
be introduced in the merge. Although in the examples we have looked at this number has 
been small, it may be possible to construct pathological examples in which the number of 
implicit classes is very large; however, we do not think these are likely to occur in practice. 



Fourthly, we must discuss how to  merge instances; for a discussion of the problems involved, 
see [16]. 

We have found that the simplicity of the method and presence of strong theoretical under- 
pinnings have made extensions of the technique very easy to develop. In addition, we have 
been able to  rapidly prototype the method, together with a graphical interface for creating 
and displaying schema graphs. 
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