
Theoretical Aspects of Schema Merging

MS-CIS-91-49
Logic & Computation 34

Peter Buneman
Susan Davidson
Anthony Kosky

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

June 1991

Theoretical Aspects of Schema Merging *

P. Buneman, S. Davidson and A. Kosky
Depar tment of Computer and Information Sciences

University of Pennsylvania
Philadelphia, PA 19104-6389

June 25, 1991

Abstract

A general technique for merging database schemas is developed that has a number
of advantages over existing techniques, the most important of which is that schemas are
placed in a partial order that has bounded joins. This means that the merging operation,
when it succeeds, is both associative and commutative, i .e . , that the merge of schemas
is independent of the order in which they are considered - a property not possessed
by existing methods. The technique is interactive in that users make assertions about
the relationships between the nodes of the schemas to be merged. These assertions are
then considered to be elementary schemas, and are combined with the schemas using
precisely the same merging operation.

The technique is general and can be applied to a variety of data models. It can also
deal with certain cardinality constraints that arise through the imposition of keys. A
prototype implementation, together with a graphical interface, has been developed.

Keywords: schemas, merging, semantic data models, entity-relationship data models,
inheritance

1 Introduction

The desire t o provide user views that combine existing databases, and t o combine user
views during the design process of new databases, leads directly to the problem of schema
merging - a problem that has been present in the database literature for a t least ten years
and t o which a variety of sophisticated techniques have been applied. At one end of the
spectrum, the user is provided with a set of tools for manipulating two schemas into some

'This research was supported in part by ARO DAAL03-89-C-0031PRIME and NSF IRI 8610617, as well
as by a grant from the UK SERC at Imperial College, London.

1

form of consistency [I, 21; at the other end, algorithms have been developed that take two
schemas, together with some constraints, and create a merged schema [3]. In general, one
will want to use a method that lies somewhere between these two extremes; a number of
such variations have been explored, and are surveyed in [4]. It appears that some user
manipulation of the given schemas is essential - especially to introduce consistent names
- but that a merging algorithm can also be very useful, especially when large schemas are
involved.

To the best of our knowledge, the question of what meaning or semantics this merging
process should have has not been explored. Indeed, several of the techniques that have been
developed are heuristics: there is no independent characterization of what result they should
produce. One would like to have some semantic basis for a merge that would characterize
it with some notion of consistency with the associated data. In this paper, we shall develop
a simple and general characterization of database schemas that allows us to give natural
definitions of what a merge is in terms of the the informational content of the schemas
being merged. In particular we shall define a kind of merge which takes the union of all
the information stored in a collection of database schemas, and, wherever possible, forms a
schema presenting this but no additional information. We shall be able to define a binary
merging operator that is both commutative and associative, which means that if two or
more schemas are merged, the result is independent of the order in which the merges are
performed. Existing techniques do not have this property. Worse still, lack of associativity
is endemic to the data models against which the merging process is commonly defined (for
example, the Enti ty-Relationship (ER) model).

Using a more general formalism, we will be able to rescue this situation by introducing
special, additional information during the merging process. The additional information
describes its own origin, and can be readily identified to allow subsequent merges to take
place. In addition, our new schema merging technique may be applied to other, existing
models, such as the ER-model, by first translating the schemas of these models into our
model, then carrying out the merge, and finally translating back into the original model. It
is possible to show that, if such an approach is used, then the merging process respects the
original model.

The paper is organized as follows: we shall first describe a general data model that subsumes,
in some sense, data models such as relational, entity-relationship and functional. We then
observe that even in this general model, we cannot expect to have associative merges. We
relax the constraints on our model to produce a still more general formulation of a weak
schema for which the merging process is well behaved, and then show how to convert these
weak schemas back into our original schemas. We also show that certain common forms
of constraints on the schemas, such as key constraints and some cardinality constraints,
can be handled in the same framework. Finally we shall indicate how these methods could
be used equally well to give definitions of alternative kinds of merge, and, in particular,
describe how we could form lower merges representing the intersection of the information
represented by a collection of schemas.

2 The Model

We represent a schema as a directed graph, subject to certain restrictions, whose nodes
are taken from a set C of classes, and with two kinds of edges that are used to represent
"attribute of" relationships or "specialization of" relationships between classes. Attribute
edges have labels taken from a set L, so that we represent the attribute-of edges by a relation
E C x L x C. If (p,a,q) E & then we write p q, with the meaning that any instance
of the class p must have an a-attribute which is a member of the class q. Since in some
data models, like the ER data model, the term "attribute" is used to designate a certain
kind of node in a schema, we shall use the neutral term avow to refer to these labeled
relationships, and say for p -"-, q that p has an a -amw of class q. The specialization edges
are represented by a relation S on classes; we use the notation p q and sa.y that p is
a specialization of q when (p, q) E S. This indicates that all the instances of p are also
instances of q. Formally, a schema over C, ,C is a triple (C, &, S) where C C C is a finite set
of classes, S is a partial order (a reflexive transitive and antisymmetric relation on C), and
I is a subset of C x L x C satisfying

1. I f p ql a n d p A q2 then 3s E C . s * ql and s q2 and p s.

2. If p* q and q A T then p A T.

for all a E L and p, q, T, s E C

The first constraint says that for any a-arrow of a class p, there is a least class s (under
the ordering S) such that a has class s. Such a class is said to be the canonical class of
the a-arrow of p. The second constraint says that, if q has an a-arrow of class T and p is
a specialization of q, then p must also have an a-arrow with class T. The third constraint
says that, if p has an a-arrow of class s and s is a specialization of T, then p also has an
a-arrow of class T, SO constraints 2 and 3 together mean that arrows are, in some sense,
preserved by specialization. It is worth remarking that we could equally well have defined
the arrows as partial functions from classes to classes, which is how they are expressed in
Dayal's definition of a functional schema [2]. If we write p 4 q when p has an a-arrow
with canonical class q, we have the conditions

D l . If P A q~ and 5 q . ~ then ql = q2

D2. If q & s and p + q then 3r E C.T s and p -% r

Further, given any - satisfying conditions D l and D2, if we define the relation - by
p A q iff there exists a s E C such that s q and p s, then - will satisfy
conditions 1, 2 and 3 above. Conditions D l and D2 are those given for the arrow in [2]

and are also given by Motro [I] as axioms for functional schemas (the latter uses unlabeled
arrows).

Figure 1: An ER-diagram with "isa" relations

owner

Person

Figure 2: A database schema with "isa" relations

For example, the ER diagram shown in figure 1 corresponds to the database schema shown
in figure 2, where single arrows are used to indicate edges in £ and double arrows are used
to represent pairs in S (double arrows implied by the transitivity and reflexivity of S are

omitted). In all the subsequent diagrams, edges in £ implied by constraint 2 above, will
also be omitted.

Suitable restrictions of such graphs may be used to describe instances of a variety of data
models: relational, entity-relationship and functional. For a relational instance, we stratify
C into two classes C and C A (relations and attribute domains), disallow specialization edges,
and restrict arrows to run labeled with the name of the attribute from CR to C A (first normal
form), while, for the E-R model, we stratify C into three classes (attribute domains, entities
and relationships) and again place certain restrictions on the edges. Moreover, it can be
shown that the merging process described in section 4 preserves these restrictions, so that
we can merge schemas from other models by first translating them into our model, then
merging them, and finally translating them back into the original data model (see [5] for
details). By a less constrained process we can describe instances of the functional model
[6, 2, 11. The graphs are also general enough to represent databases with higher order
relations (that is, relationships between relationships), and complex data structures (such
as circular definitions of entities and relationships), features that are commonly found in
object-oriented data models. Consequently, despite its apparent simplicity, the generality
of the model makes it a good candidate for schema merging. One should note, however,
that further adornment of these graphs is needed to describe instances of sophisticated
data models such as those proposed in [7] and [8], which contain constructors for sets and
variants .

3 Problems with finding merges of schemas

The first problem to be resolved when forming a common merged schema for a number of
distinct databases is to state the correspondences between the classes and correspondences
between the arrow labels of the various databases. This problem is inherently ad hoc in na-
ture, and depends on the real-world interpretations of the underlying databases. Therefore,
the designer of the system must be called on to resolve naming conflicts, whether homonyms
or synonyms, by renaming classes and arrows where appropriate. The interpretation that
the merging process places on names is that if two classes in different schemas have the
same name, then they are the same class, regardless of the fact that they may have different
arrow edges. For example, if one schema has a class Dog with arrow edges License#, Owner
and Breed, and another schema has a class Dog with arrow edges Name, Age and Breed,
then the merging process will collapse them into one class with name Dog and arrow edges
License#, Owner, Name, Age, and Breed. It is also possible to constrain the merging process
by introducing specialization relations a1 + a 2 between nodes a1 in schema S1 and a 2 in
schema Sz . We can treat a 1 + a2 as an atomic schema that is to be merged with S1
and then with 5'2. Because our schema merge is associative and commutative, the result is
well-defined; indeed an arbitrary set of constraints can be added in this fashion.

For the remainder of this section and the following section, we will consider the merge of a

collection of schemas to be a schema that presents all the information of the schemas being
merged, but no additional information (although in Section 6, we will indicate that there
may be other, equally valid interpretations of what the merge should be). Hence what we
will considerto be the merge is the "least upper bound" of the database schemas under some
sort of information ordering. Recall that, in addition to defining a view of a database, a
database schema expresses certain requirements on the structure of the information stored
in the database. When we say that one database schema presents more information than
another, we mean that any instance of the first schema could be considered to be an instance
of the second one. The first schema must, therefore, dictate that any database instances
must contain at least all the information necessary in order to be an instance of the second
schema. It is clear that, were we to construct an ordering on schemas which represented
the fact that one schema contained more information than another, it should be a partial
ordering on schemas, and the binary merge of two schemas would be their least upper
bound, or join, under this ordering. This ties in well with our intuition that a binary
merging operator on schemas should be associative, commutative and idempotent: indeed
any such binary operator will lead us to a partial ordering on schemas.

In looking for a suitable information ordering and definition of merge for schemas, we soon
find that there are some problems. One of the first problems we notice is that the merge
of two schemas may contain extra implicit classes in addition to the classes of the schemas
being merged. For example, figure 3 shows two schemas being merged. The first schema
asserts that the class C is a subclass of both the classes A 1 and A2. The second schema asserts
that the classes A 1 and A2 both have a-arrows, of classes B l and B2 respectively. Combining
this information, as we must when forming the merge, we conclude that C must also have
an a-arrow, and that this arrow must be of both the class B 1 and B2. Consequently, due to
the restrictions in our definition of database schemas in Section 2, the a-arrow of the class
C must have a class which is a specialization of both B 1 and B2 and so we must introduce
such a class into our merged schema.

When we consider these implicit classes further we find that it is not sufficient merely to
introduce extra classes into a schema with arbitrary names: the implicit classes must be
treated differently from normal classes. Firstly, if we were to give them the same status
as ordinary classes we would find that binary merges are not associative. For example
consider the three simple schemas shown in figure 4. If we were to first merge the schemas
G 1 and G 2 we would need to introduce a new implicit class (X?) below D and E, and then
merging with G 3 would make us introduce another new class below X? and F, yielding the
first schema shown in figure 5. On the other hand, if we were to merge GI with G 3 and
then merge the result with G2, we would first introduce an implicit class below E and F,
and then introduce another one below this one and D. Clearly what we really want is one
implicit class which is a specialization of all three of D, E and F.

Another problem is that it is possible for one schema to present more information than
another without containing as many implicit classes. It is clear that for one schema to
present all the information of another (plus additional information) it must have, at least,

Figure 3: Schema merging involving implicit classes

all the normal classes of the other. However let us consider the two schemas shown in
figure 6. We would like to assert that the schema G3 shown in figure 7 is the merge of the
two schemas, G1 and G 2 , but the schema G 4 also presents all the information of G1 and G2,
and in addition contains fewer classes than G3. The point is that G 4 asserts that the a-arrow
of F has class E, which may have restrictions on it in addition to those which state that it's
a subclass of both C and D, while G3 only states that the a-arrow of F has both classes C
and D.

4 Merging Database Schemas

In order to avoid the complexities of introducing implicit classes, we will weaken our def-
inition of database schemas so that implicit classes become unnecessary. We then define
an information ordering on these weak schernas, such that binary joins do exist and are
associative, and form the weak schema merge. Finally we convert the merged weak schema

Figure 4: Some simple schemas

~ e r ~ e (Merge (GI, G2) , G3) : ~erge(Merge(G1, G3), ~ 2) :

Figure 5: An example of non-associative merging

into a proper schema by introducing additional implicit classes (we will refer to the schemas
satisfying the conditions in section 2 as proper schemas. The idea is that we can do all our
merging using weak schema, and then convert the result to a proper schema when we are
done.

4.1 Weak Schemas

A weak schema is a schema in which we no longer require that if class p has an a-arrow,
then the a-arrow has a canonical class (condition 1 of proper schemas). Formally, a weak
schema over C, L is a triple (C,&,S) where C C C is a set of classes, S is a partial order
(a reflexive transitive and antisymmetric relation on C), and & is a subset of C x .C x C
satisfying

W2. If p -% s and s + r then p -%- r.

Figure 6: Yet more schemas

Figure 7: Possible candidates for the merges of the schemas

for all a E L and p , q , r, s E C

The ordering on weak schemas is defined in the obvious way: Given two weak schemas
61 = (Cl ,El ,S l) m d G 2 = (Cz,Ez,S2), we write GI L G 2 iff

That is, every class in GI appears in G2, every a-arrow edge in 61 appears in 6 2 , and every
specialization edge in G1 appears in G2.

It is clear that E is a partial ordering on weak schemas; it is also bounded complete, as
shown in the following proposition.

Proposition 4.1 For any weak schemas GI and g2, i f there exists a weak schema G' such
that G1 G' and G2 G' then them is a least such weak schema GI U G2.

Proof: Given weak schemas g1 and G2 as above, define B = (C, E, S) by

C = C, u C,

S = (Sl uSz)*

& = { p ~ ~ ~ (C ~ ~ ~ C) (3 q , ~ ~ C . p ~ q ~ S , r ~ ~ ~ S ,
and q A r E (I l U E2))

(where (S1 U S2)* denotes the transitive closure of (S1 U S2), and & adds edges to El U E2
necessary for conditions W1 and W2 to hold). I t is clear that, if G is a weak schema, then
it is the least weak schema such that G1 & B and G2 6. Hence it is sufficient to show
that, if there is a weak schema, E' = (C1,I',S'), such that El 5 G' and G2 L G', then G is
indeed a weak schema. The only way that G can fail to be a weak schema is if the relation
S fails to be antisymmetric, so the result follows from the fact that, for any suitable G' as
above, we must have S E Sf, and so if St is antisymmetric then so is S.0

We say a finite collection of weak schemas, 61,. . . , G,, is compatible if the relationship
(S1 U . . . U S,)* is anti-symmetric (where S1,. . . , S, are the specialization relations of
GI,. . . , G, respectively). Consequently we have, for any finite compatible collection of
proper schemas, G I , . . . , G,, there exists a weak schema merge G = Ur=l G;. Furthermore,
since we define G as the least upper bound of GI, . . . , Q,, the operation is associative and
commutative.

Figure 8: The least upper bound of two schemas

For example, the schemas G I and G2 in figure 6 are compatible, and their weak schema
merge is shown in figure 8.

4.2 Building proper schemas from weak schemas

We now must pay the price for our use of weak schemas: we must provide a way of intro-
ducing implicit classes into a weak schema B, in order to form a proper schema g, such that
if there are any proper schemas greater than G then is such a schema.

First we introduce some new notation. For any p E C and any a E L, we write R(p,a) to
denote the set of classes reachable from p via a-arrows

Further, for any set X C, we use R(X,a) to denote the set of classes reachable from
classes in X via a-arrows

We define the function MinS : P(C) + P(C) so that, for any set X C, MinS(X) is the
set of minimal elements of X under the ordering S. That is

Mins(X) = { p ~ X I Vq E X . if q ==+p then q = p }

where ?(A) denotes the power set of the set A.

We now proceed to build a proper schema = (C, £, S) from G as follows:

1. First we will construct a set, Imp C P(C), of sets of classes, corresponding to our
implicit classes. We will construct Imp via a series of auxilary definitions as follows:

P = {{PI 1 P E C}
~ n + l = {R(X,a) I X E P , a E L)

00

I- = U P
n=l

Imp = { M i v (X) 1 X E 1- and IMinS(X)J > 1)

Intuitively, Imp is the set of all sets of minimal classes which one can reach by following
a series of arrows from some class in C , with cardinality greater than 1. Note that the
process of forming Imp will halt since there are a finite number of subsets of P(C).

Using the example in figure 8,

2. We define ?? by first taking C and then adding a new class for every X E I m p .
That is -

C = C U { ~ I X E I ~ ~ }

Continuing with figure 8,
-
c = { A , B , C, D , E , F, { C , Dl1

3. We define so that if p A q for each q E X then p A E z, while if there is a q
such that p -% q then p -% q E z. Formally:

where ~ (x , a) = R(X, a) for all X E I m p .

For our running example,
-
£ = & U { F {C, D))

4. We define 3 by first taking S and then adding every 7 such that every class
in Y has a specialization in X; every p where p has a specialization in X; and
every p =+ F where p is a specialization of every class in X.

Thus, for figure 8,

Summarizing the effect on figure 8, we get the schema G 3 in figure 7, with the class ?
replaced by the class {C, D } .

It can be shown that for any weak schema G, is a weak schema and 6 E G. Furthermore,
can be shown to respect condition 1 of the definition of a proper schema, and is therefore

also a proper schema.

We would like to be able to show that is the least proper schema greater than 6 . Un-
fortunately this isn't quite true. Firstly, it is possible to form other similar proper schemas
by using different names for the implicit classes (compare this to alpha-conversion in the
lambda calculus). Secondly, for any two sets X , Y E I m p , if every class in Y has a special- --
ization in X then our method will include the pair (X, Y) in S. However it is not necessarily
the case that this specialization relation is required, and it might be safe to omit it. We

could attempt to modify our method so that such pairs are only introduced when required.
Instead we will argue that, since the implicit classes have no additional information asso-
ciated with them, it follows that these specialization relations do not introduce any extra
information into the database schema, and so, since they seem natural, it is best to leave
them there. Consequently we feel justified defining the merge of a compatible collection of
database schemas, Q1,. . . , Q,, to be the database schema c, where 6 = Uy=l Q;.

Of course, not every merge of a collection of compatible schemas makes sense. That is,
the new classes introduced may have no correspondence to anything in the real world.
To capture this semantic aspect of our model, we would need to introduce a "consistency
relationship" on C, and require that, for every X E I m p and every p, q E X, the pair
(p, q) is in the consistency relationship. If this condition were violated, the schemas would
be inconsistent, and c would not exist. Note that checking consistency would be very
efficient, since it just requires examining the consistency relationship. However, while the
idea is interesting, it is beyond the scope of this paper. Suffice it to say that if the merge of
GI, . . . , Gn fails, either because GI, . . . , Q, are incompatible, or because they are inconsistent,
the merge should not proceed, and the user must re-assess the assumptions that were made
to describe the schemas.

5 Cardinality Constraints and Keys

The model we have used so far concentrates on the semantic relationships between classes
via specialization and arrow edges, but does not further describe arrows as participating in
keys or having associated cardinality constraints. Cardinality constraints in the ER model
are typically indicated on the edges between a relationship and an entity by labeling them
"O..ln, "1..lV, "O..NV, or "l..Nn, where "N" is used to indicate unrestricted upper bounds
or "many" (rather than oo, which would be more appropriate).l For example, consider the
Lives relationship between Kennel and Dog in Figure 1. As drawn, Lives is a "many-
many" relationship, typically indicated by labeling the home and occ edges "O..Nn; a dog
may occupy many different kennels, and a kennel may be the home for many different dogs.
If we decided to restrict Lives to indicate that a dog can live in at most one kennel the
occ edge from Lives to Dog would be relabeled "O..l". If we further decided that each dog
must live in some kennel, we would change the occ label to "l..ln. In general, each edge a
between a relationship R and entity E in an ER diagram means that in any instance of the
ER diagram defining sets (extents) Ext(E) and Ext(R), R 5 E is functional. The edge

'It is worth noting that there is little agreement on what edge labels to use, and what they mean in ER
digrams, especially for ternary and higher degree relationships. No semantics are given in [9]. Introductory
textbooks on databases avoid the question and merely give examples of binary relationships [lo, 11, 121;
[13] is slightly more honest and says that "the semantics of ternary and higher-order relationship sets can
become quite complex to comprehend." Varying interpretations can be found in [14, 15, 31 We will follow
the intuition given in [3] since it is one that we can understand.

label a..p on a means
Ve E Ext(E).a 5 \ { T I T A e)l 5 P.

While several extensions allow a and P to be any non-negative integers such that a 5 P
(see [3]), we will restrict our attention to the more common cardinality constraints "O..lV,
"1..1", "O..N", "l..NW.

As it stands, however, our model has no way of distinguishing these different edge seman-
tics. Using the example of the previous paragraph, labeling the occ edge in the Lives
relationship "O..l" rather than "O..N" could2 result in the same graph in our model, i.e.
the graph in Figure 2. In this section, we will capture such constraints by introducing
"key constraints" on nodes, and argue that in some sense they are more general than the
cardinality constraints typically found in ER models.

Key constraints, which indicate that certain attributes of an entity form a key for that
entity, are another common form of assertions found in database models. As an example, in
the ER and relational models, for the entity set Person(SS#, Name, Address), we might
claim that there are two keys: {SSP} and {Name, Address}. The intuition behind this
statement is that if two people have the same social security number, or the same name and
address, then they are the same person. Generalizing, one could claim that a set of edges of
a relationship form a key for that relationship. As an example, for the Lives relationship
in which all edges are marked "O..NV, we could claim that the occ and home edges form a
key. In the terminology of proper schema, we capture such key constraints by asserting
that {al, a2, ..., a,} form a key for p, where each ai is the label of some arrow out of p.

In general, a class may have several keys, or no key a t all; the latter departure from a
relational understanding of keys allows us to capture models in which there is a notion of
object identity. A superkey of a class is any superset of a key. We may therefore think of
the set of superkeys for a class p, SK(p), as a set of sets of labels of arrows out of p. SK(p)
has the property that it is "upward closed", i.e. if s E SK(p) and sr > s, then st E SK(p).

We now have the constraint on specialization edges that if p q then SK(p) > SK(q),
i.e. all the keys for q are keys (or superkeys) for p. An example that satisfies this constraint
can be found in Figure 9. In this example (borrowed from [3]), the assertion is made that
the advisor of a student is a member of the thesis committee for that student: Advisor
& Committee. Since the committee for a student consists of several faculty members, and
each faculty member can be on several thesis committees, the set of keys for Committee
is {{faculty, victim)). However, since we assume that each student has at most one
advisor, but that each faculty member can be the advisor of several students, the set of
keys for Advisor is {{victim)}. Note that {{victim}, { facul ty , victim)} Z) {{f acuity ,
victim}).

Our task now becomes to derive keys in the merged schema subject to this constraint.

'Of course, one might eliminate the Lives node entirely, and draw a single home-edge from Dog to Kennel,
but this reasoning does not extend to ternary and higher degree relationships.

Figure 9: "Isa-A" Relation Between Relationships

Suppose schema Q is the proper schema merge of Q1 and 6 2 . Each class p in Q appears at
most once in each of GI and G2, with key assignments SICl(p), SIC2(p) respectively (when
defined). We define SK to be a satisfactory assignment of keys to classes if

1. SKl(p) C SK(p), if p E CI; and

3. S K satisfies the condition that SIC(p) > SIC(q) whenever p q.

It is readily checked that if SIC and SKI are satisfactory assignments, then so is SIC fl SIC!,
defined by (SK: n SK:I)(~) = SIC(p) n SKf(p). Thus there is a unique minimal satisfactory
assingment to keys in classes.

Key constraints and cardinality constraints appear to be incomparable ideas. There are
certain similarities: For example, the difference between labeling the edge occ edge in
Lives "O..NV rather than "O..lV can be captured by stating that the set of keys for Lives
with the "O..NV labeling is {{occ, home)) as opposed t o {{occ)) for the ''O..lV labeling.
However, there are also dissimilarities. Keys do not seem to be able to capture all cardinality
constraint labelings: For example, the labelings ' 'O.. lV and "1..1" (or "O..nV, "l..nV) on the
occ edge cannot be distinguished by keys. On the other hand, cardinality constraints cannot
capture all key assertions: For example, consider the relationship Transact ion in Figure
10. The statement that Transaction has two keys, one being {loc, amount), the other
being {card, amount), has no correspondence in terms of labeling edges.

Keys can also be used to determine when an object in the extent of a class in an instance one
schema corresponds to an object in the extent of the same class in an instance of another
schema. For example, if Person is a class in two schemas, GI and G2, which are being
merged, and both schemas agree that {SS#} is a key for Person, then an object in the
extent of Person in an instance of GI corresponds to an object in the extent of Person in
an instance of Q2 if they have the same social security number. However, suppose that
claims that {SS#) is a key for Person, and G2 has an SS#-arrow for Person but does not
claim that i t is a key. Since {SS#} is a key for Person in the merged schema, an additional
constraint has been placed on the extents of G2: two objects in the extent of Person are

T r a n s a c t i o n

Machine a rd

Figure 10: A Class with Multiple Keys

the same if they have the same social security number, no matter whether both are from an
instance of Q1, both are from an instance of Q2, or one is from an instance of GI while the
other is from an instance of Q2. Furthermore, if G1 claims that {ss#} is a key for Person
but G2 does not have an St -a r row for Person, then there is not way to tell when an object
from the extent of Person in an instance of Q1 corresponds to an object from the extent of
Person in an instance of G2.

6 Lower Merges

In Section 4 we defined the merge of a collection of schemas as their least upper bound under
an information ordering: Whatever the individual schemas assert to be true is believed to
be true in the merged schema. Thus, if we merge a collection of schemas, then any instance
of the merged schema can be considered to be an instance of any of the schemas being
merged. In some cases, however, it may be desirable to define the merge of a collection of
schemas as their greatest lower bound: Whatever the individual schemas agree on as being
true is believed to be true in the merged schemas. In this case any instances of the schemas
being merged would also be instances of the merged schema, and, further, we would expect
to be able to coalesce or take the union of a number of instances of the collection of schemas
and use that as an instance of the merged schema. This kind of merge is likely to arise
in, for example, the creation of a single schema from a collection of user views in database
design.

We will refer to the merges defined in Section 4 as uppe r merges, and the formulation
discussed in this section as lower merges.

As it stands, taking the lower bound of a collection of schemas using our information
ordering is unsatisfactory since any information on which two schemas disagree on is lost.
For example, if one schema has the class Dog with arrows name and age, and another has
Dog with arrows name and breed, then in the lower bound of the two schema the class Dog
will only have the arrow name. What we want, however, is some way of saying that instances

of the class Dog may have age-arrows and may have breed-arrows, but are not necessarily
required to do so. Worse still, if one schema has the class Guide-Dog and another does not,
then the lower bound of the two schemas will not have Guide-Dog. The second problem
can be dealt with easily by adding all classes involved in other schemas to each schema in
a collection before proceeding with the construction of the lower merge. The first problem,
however, is more difficult and requires us to extend our definition of (weak) schemas.

We define the semi-lattice of participation constraints, ordered by 2 , to be as shown in
figure 11. We will extend the definition of (weak) schemas by associating a participation

Figure 11: The semi-lattice of participation constraints

constraint with each arrow of a schema. The idea is that, if a class p has an a-arrow of
class q, then if the arrow has participation constraint 1 then every instance of class p must
have a an a-arrow to an instance of class q; if the arrow has participation constraint 011
then an instance of p may have an a-arrow of class q; and if the arrow has constraint 0
then an instance of p does not have an a-arrow of class q. We adopt the convention of not
drawing arrows with the participation constraint 0 in our diagram, and, further, assume
that a schema which does not have some arrow p q is equivalent to the same schema
but with the arrow p q with participation constraint 0.

Now, if one schema has an arrow which is not included in another, then we can assume
that the second schema also has the arrow with participation constraint 0, and we can take
the greatest lower bound of the participation constraints (under the ordering <) to be the
participation constraint of the arrow in the merged schema.

Hence, with the addition of participation constraints, we can form the weak lower merge
of a collection of schemas in a similar manner to that used to construct the weak upper
merges in Section 4 . We can also build a proper schema from a weak lower merge using an
algorithm similar to that in Section 4, except that that the implicit classes are introduced
above, rather than below, the sets of proper schemas that they represent.

It is worth noting that, while upper and lower merges represent two extreme views of what
the merge of a collection of schemas should be, there may well be valid and useful concepts
of merges lying in between the two. However the authors believe that, in order for a concept
of a merge to be valid and well defined, it should have a definition in terms of an information
ordering similar to the ones given here.

7 Conclusions

Using a simple but general formalism, we have characterized the weak schema merge of a
collection of schemas as their least upper bound. The merge of these schemas is then defined
by translating the weak schema merge to a proper schema. The translation introduces
new "implicit" classes as required, and identifies their origin in their name. Although
not discussed in detail in this paper, the "real-world" validity of an implicit class can be
efficiently checked by consulting a consistency relationship between the classes from which
the implicit class was formed.

Despite the simplicity of our mathematical construction, we believe that using an infor-
mation ordering is the right way of describing the merge of schemas: it has a well-defined
result, and the merge operation is associative and commutative. Thus user assertions about
the relationships between schemas can be thought of as real assertions rather than "guiding
heuristics" since the merge is independent of the order in which the assertions are stated.
The approach in this paper focused on the upper merge of schemas, which seems to be a
natural interpretation for merging pre-existing, heterogeneous databases. Other interpre-
tations of the merge can be used, including the lower merge, by varying the information
ordering used.

The approach presented in this paper can be generalized to describe the merge in a number
of other data models by representing schemas in other data models as "restricted" instances
of schemas in our general model (i . e . stratifying classes in terms of their meaning in other
models), and finding their proper schema merge. Our merge can be shown to "preserve
strata", guaranteeing that the result will an instance of the original model; a proof of this
with full details can be found in [5] .

To use this approach as a practical schema merging tool, several issues should be addressed.
Firstly, more attention should be paid to how cardinality constraints should be encorpo-
rated. While our preliminary approach has been to use a notion of keys, other ideas include
allowing arrows to be "multivalued functions" as in [2]; [5] shows how this idea can be
extended to our model. We also have not adequately captured the lower bound of "0" on
arrow edges (also known as "total versus partial participation" in relationships). Secondly,
some form of assistance should be given for "restructuring" schemas to obtain a better
merge. Not only can "naming" conflicts occur (such as homonyms and synonyms), but
"structural" conflicts can occur. For example, an attribute in one schema may look like an
entity in another schema, or a many-one relationship may be a single arrow in one schema
but introduce a relationship node in another schema. In these cases, the merge will not
"resolve7' the differences but present both interpretations. To force an integration, we need
some kind of "normal form". Thirdly, we need to evaluate how many implicit classes can
be introduced in the merge. Although in the examples we have looked at this number has
been small, it may be possible to construct pathological examples in which the number of
implicit classes is very large; however, we do not think these are likely to occur in practice.

Fourthly, we must discuss how to merge instances; for a discussion of the problems involved,
see [16].

We have found that the simplicity of the method and presence of strong theoretical under-
pinnings have made extensions of the technique very easy to develop. In addition, we have
been able to rapidly prototype the method, together with a graphical interface for creating
and displaying schema graphs.

References

[I] A. Motro, "Superviews: Virtual Integration of Multiple Databases," IEEE Transac-
tions on Software Engineering, vol. SE-13, pp. 785-798, July 1987.

[2] J. Smith, P. Bernstein, U. Dayal, N. Goodman, T. Landers, K. Lin, and E. Wong,
"Multibase- Integrating Heterogeneous Distributed Database Systems," in Proceedings
of AFIPS, pp. 487-499, 1981.

[3] S. Navathe, R. Elmasri, and J . Larson, "Integrating User Views in Database Designs,"
IEEE Computer, pp. 50-62, January 1986.

[4] C. Batini, M. Lenzerini, and S. Navathe, "A Comparative Analysis of Methodologies
for Database Schema Integration," ACM Computing Surveys, vol. 18, pp. 323-364,
December 1986.

[5] A. Kosky, "Modeling and Merging Database Schemas," Tech. Rep., University of Penn-
sylvania, 1991.

[6] D. Shipman, "The Functional Data Model and the Data Language DAPLEX," ACM
Tmnsactions on Database Systems, vol. 6, pp. 140-173, March 1981.

[7] R. Hull and R. King, "Semantic Database Modeling: Survey, Applications, and Re-
search Issues," ACM Computing Surveys, vol. 19, pp. 201-260, September 1987.

[8] A. Ohori, "Semantics of Types for Database Objects," Theoretical Computer Science,
vol. 76, pp. 53-91, 1990.

[9] P. Chen, "The Entity-Relationship Model: Towards a Unified View of Data," TODS,
vol. 1, no. 1, pp. 9-36, 1976.

[lo] J . Ullman, Principles of Datab~se and Knowledge-Base Systems. Vol. 1, Computer
Science Press, 1988.

[ll] H. Korth and A. Silberschatz, Database System Concepts. McGraw Hill, second ed.,
1991.

[I23 R. Elmasri and S. Navathe, Fundamentals of Database Systems. Benjamin/Cummings,
1989.

[13] D. Tsichritzis and F. Lochovsky, Data Modeb. Prentice-Hall, 1982.

[14] T. Teory, D. Yang, and J. Fry, "A Logical Design Methodology for Relational Databases
Using the Entity-Relationship Model," ACM Computing Surveys, vol. 18, pp. 197-222,
June 1986.

[15] M. Lenzerini and G . Santucci, "Cardinality Constraints in the Entity Relationship
Model," in The Entity-Relationship Approach to Software Engineering, pp. 529-549,
North-Holland, 1983.

[16] S. Widjojo, R. Hull, and D. Wile, "Distributed Information Sharing Using Ff70rldBase,"
in A Newsletter of the Computer Society of IEEE, pp. 17-26, August 1989.

